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A fundamental result pertaining to differential/integral equations theory 
is the so-called Gronwall-Bellman inequality asserting that, if U: R, + R is 
a continuous solution of 

x(t) <f(t) + j’ k(s) x(s) ds, teR, (1) 

(wheref: R, + R and k: R, + R, are continuous functions) then 

~(t)~~(t)+j~k(s)ex[I,~k(r)dr~~(s)ds, tER+; 

see as basic references Coddington and Levinson [ 18, Chap. I, Problem 11, 
Bellman and Cooke [S, Chap. VII, Ex. 21, Lakshmikantham and 
Leela [31, Chap. I, Sect. 1.91, Corduneanu [22, Chap. I, Sect. 1.51. During 
the last three decades, this result was extended in many directions, the most 
representative of them being, from our viewpoint, the multivariable ones. 
Concerning the linear extensions of this kind, let us mention as a first 
illustrative example, the 1973 Young’s result [67] stating that, if U: R”, + R 
is continuous and satisfies (1) modulo R: (f: R”, + R and k: R”, + R + 
being continuous) then 

u(t) <f(t) + j' k(s) 4s; t)f(s) ds, teR”,, 
0 

where u(s; t) is the solution of the characteristic initial value problem 

( - 1)” u,~, .&; t) = k(s) u(s; t), Ods<t 
(2) 

u(s; t) = 1 on si=fi, l<i<n; 

a further vectorial extension of Young’s result was performed in 1976 by 
Chandra and Davis [lS], through a specific “resolvent” procedure. As a 

100 
0022-247X/86 $3.00 
Copyright 0 1986 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82046856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


GRONWALL-BELLMAN INEQUALITIES 101 

second illustrative example, one must mention the 1979 Bondge-Pachpatte 
theorem [ 12) stating in essence that any continuous solution u: R: -+ R + 
of (l)(modulo R:) with f: R: + R, continuous and increasing, and 
k:R:-+R, continuous, satisfies 

~(,)6f(l)exp(j~k(a)~~). tER;; 

this result may be viewed as a n-variable extension of the so-called Wen- 
droff inequality 17, Chap. IV, Sect. 301. Concerning the nonlinear mul- 
tivariable extensions of (l), let us first mention the 1974 Headley’s 
theorem [27] asserting in essence that, if u: R”, + R is continuous and 
satisfies 

u(t) <f(t) + j’kb, 4s)) 4 tER: 
0 

(1’) 

with f: R”, -+ R continuous and k: R”, x R + R continuous and increasing 
with respect to its last argument then, for any to in R:, 

u(t) G w,(t) O<t<to, 

where w. is the maximal solution on [0, to] of the integral equation 
associated to (1’). (Of course, Headley’s contribution may be also viewed 
as a nonlinear version of Young’s result; the idea of the proof goes back to 
Viswanatham [59].) Second, note that a more abstract version of 
Headley’s result were formulated in the 1970 Chandra-Fleishman paper 
[ 161: letting (X, 11 . 11, d ) be an ordered Banach space and supposing the 
point f E X and the increasing completely continuous mapping T: X + x 
are such that, an increasing continuous function o: R, -+ R + may be 
found with 

II Tu - TV II G 4 II u - v II h u, VEX, 

4r) + II T(O)ll + II f II G r, r~.r,forsomes>O 
(3) 

then, any solution u E X of the operator inequality 

x<f+Tx (1") 

must satisfy u < w, where w  is the maximal solution in X of the 
corresponding operator equation associated to (1”). Finally, as a further 
generalization of this result, let us mention the 1973 Krasnoselskii-Sobolev 
contribution [29], obtained through a specific “iterative” compactness 
method. Under these lines, it is our main objective in the present exposition 
to state and prove a couple of comparison results involving (abstract) 
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increasing self-mappings of a metrizable uniform space+xtending in this 
way the above quoted Chandra-Fleishman and Krasnoselskii-Sobolev 
statements-the basic instrument of our investigations being a special order- 
ing procedure similar in essence to that indicated in [56]. As direct 
applications, some “functional” versions of the contributions we exposed 
before are given. At the same time, as indirect applications of our main 
results, two reduction principles concerning multivariable Gronwall- 
Bellman inequalities are formulated; it is worth noting at this moment that, 
as a rather surprising consequence of these principles, most of the 
(multivariable) Wendroff type extensions of (1) may be regarded, in the 
last analysis, as a particular case of this one-variable statement. It should 
also be underlined our main results may be put into a “purely” uniform 
framework; these aspects will be discussed elsewhere. 

1. PRELIMINARIES 

Let X be a nonempty set, and let 6 be an ordering (i.e., a reflexive, 
antisymmetric, and transitive relation) on X. For any XE X denote 
(<,x]={y~X;y<x} and [x, <)={y~x, xQy}; also, given any 
couple x, y E X, x 6 y, put [x, y] = ( <, y] n [x, 6 ) and call it the (order) 
interval between x and y. A sequence (x,; II EN) in X will be said to be 
increasing when xi < xi for i < j, and bounded from above in case x, < y, 
n E N, for some y in X. Furthermore, let D = (di; i E N) be a denumerable 
sufficient family of semi-metrics on X (in which case, the triplet (X, D, <) 
will be termed an ordered metrizable uniform space). We shall say the 
sequence (x, ; n E N) in X, D-converges to x E X (and we write x, +D x) 
when di(x,, x) + 0 as n --f co, for each i E N. Of course, any D-convergent 
sequence is necessarily D-Cauchy (i.e., d&auchy, for all iE N); in this con- 
text, X will be said to be order complete when each increasing D-Cauchy 
sequence converges. A subset Y of X will be termed order closed when the 
limit of any D-convergent increasing sequence in Y belongs to Y; also, the 
ambient ordering < on X will be called self-closed (anti self-closed) in case 
[x, d )(resp. ( 6, x]) is order closed for any x in X, and interval-closed, 
when it is both self-closed and anti self-closed (or, equivalently, when each 
interval of X is order closed). 

In what follows, we shall say ( yn ; n E N) is a subsequence of (x, ; n E N) 
when a strictly increasing function k from N to itself may be found with 
Xk(n) = Y,, n E N. Under such a convention, let us call the sequence (x,; 
n E N) in X, relatively compact when any subsequence ( y,; n E N) of it con- 
tains a convergent subsequence. The importance of this notion is put into 
evidence by the following result-largely used in the sequel-closely related 
to that of Ward [63] (see also Krasnoselskii [28, Chap. I, Sect. 51). 
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LEMMA 1. Let the ordered metrizable uniform space (X, D, 6 ) be such 
that < is interval closed. Then, the increasing sequence (x, ; n E N) in X is a 
relatively compact one, if and only tj- it converges to some element x of X. 

Prooj Let (u, ; n E N) and (v, ; n E N) be a couple of convergent sub- 
sequences of (x, ; n E N). If U, --) D u and v, +D v then, by the interval- 
closedness property we immediately get u ,< v d U, that is, u = v. In other 
words, all convergent subsequences of (x, ; n E N) have the same limit, x. 
We claim x, -+4x. Indeed, suppose this assertion were false then, a couple 
iE N, E > 0 may be chosen so that, for each n E N there exists m > n with 
dj(x,, x) 2 E. It follows at once a subsequence ( y, ; n E N) of (x, ; n E N) 
exists with the property di( y,, x) 3 E, n E N, proving no convergent sub- 
sequence (2,; n E N) of it (hence of (x,; n E N)) can have x as limit, con- 
tradicting the above conclusion. Q.E.D. 

A close analysis of the notion we just introduced shows it would be 
desirable (for both theoretical and practical reasons) to express it in terms 
of the sequence itself. To this end, let us call the sequence (x,; n EN) in X, 
precompact when for each i E N, E > 0, a finite subset A = A,, of N may be 
found so that, for every n EN there exists p E A with di(x,, xp) < E. Now, as 
a completion of Lemma 1, we have 

LEMMA 2. Assume (X, D, < ) is such that X is order complete. Then, for 
each increasing sequence in X, relatively compact is identical with precom- 
pact. 

Proof: Necessity. Let (x,; n E N) be an increasing relatively compact 
sequence in X which is not precompact. Then, a couple i E N, E > 0 may be 
chosen so that, for each finite subset A of N, an index n E N will exist with 
d,(x,, xp) 2 E, for all p E A. It easily follows a subsequence (y,; n E N) of 
(x,; n E N) may be constructed such that di( yn, y,J 2 E, n cm, proving 
( y,; n EN) has no D-Cauchy (hence, by our hypothesis, no D-convergent) 
subsequences, contrary to our assumption. 

Sufficiency. Let (x,; n E N) be an increasing precompact sequence in X 
and let ( yn; n E N) be a subsequence of it. As ( y,; n E N) is precompact too, 
it clearly follows, by definition, that a subsequence (u,; n EN) of it may be 
found with dI(u,, u,) < 1, n 6 m; furthermore, by the precompactness of 
(u,; n E N), a subsequence (v,; n E N) of it may be found with dz(v,, v,) < 4, 
n <m, and so on. By a standard diagonal process one easily arrives at a D- 
Cauchy (hence, by our completeness hypothesis, a D-convergent) sub- 
sequence (z,; n E N) of ( y, ; n E N) and the proof is complete. Q.E.D. 

As an interesting particular case, let (K, d) be a metric space and let < 
be a quasi-ordering (i.e., a reflexive and transitive relation) on X. Putting 
foreachtEK,&>O,S(t,~,&)={sE[t,~);d(t,s)<&),assumeKmaybe 
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represented as the union K, v K, u . . . , where the family % = {K,, K2 ,...,I 
satisfies 

(H,) to every tEK there corresponds or=a(t)>O and i=i(t)EN with 
S(t, <, a)c Ki. 

Also, let ( Y, 11. I( ) be a normed space and 5 an ordering on Y. A function 
x: K -+ Y will be said to be continuous at the right when to any t E K and 
E > 0 there corresponds a 6 = d(t, E) > 0 such that s E S(t, <, 6) implies 
II x(t) -x(s) )I <E. Let X indicate the class of all continuous at the right 
functions x from K into Y with sup { (I x(t) (1; t E Ki} < co, i E N. A standard 
ordered metrizable uniform structure on X is that introduced by the con- 
ventions 

d,(x,y)=sup{lIx(t)-y(t)ll; tEKi}, iEiV,x,yEX, 

xgy if and only if x(t)sy(t), tE K. 

LEMMA 3. Let the ordering 5 on Y be self closed (resp. anti self-closed 
or interval-closed) then, so is the associated ordering 5 on X. In the same 
context, let Y be order complete. Then, X is order complete too. 

Proof: The first part of the statement is evident. To prove the second 
one, let (x, ; n E N) be an increasing D-Cauchy sequence in X. Clearly, 
(x,(t); n E N) is an increasing Cauchy sequence in Y for each t E K so that, 
by the order completeness assumption, x(t) = lim,x,( t) exists for any t E K. 
It remains to show x is an element of X. To do this, let t E K be arbitrary 
fixed and let c( > 0 and i E N be given by (H 1). Since x,(t) + x(t) uniformly 
with respect to K,, it follows that, given E > 0, a n = n(e) may be found with 

ll%2(~)--x(~)lI <e/3 for all tE K,. 

On the other hand, x, being continuous at the right, a 6 E (0, a) may be 
chosen so that 

II x,(t) - X?I(~)ll <E/3 forall sES(t, <,o)cK,. 

By a classical triangular procedure we get 

II x(t) - xb)ll < 6 seS(t, f, 6) 

proving x is continuous at the right and completing, in fact, our argument. 
Q.E.D. 

Under the same general conventions, let us call a family Fc X, x-quasi- 
order-equicontinuous when for each i E N, E > 0, there exists a finite subset 
H = Hi,E in Ki and a number 6 = 6( i, E) > 0 such that 



GRONWALL-BELLMAN INEQUALITIES 105 

(H,) to every t E Ki there corresponds s E H with s < t and d(s, t) < 6, 

(H3) for any couple (t, s) like in (H,) we have 11 x(t) -x(s)11 < .s for all 
x E F. 

The usefulness of this notion is put into evidence by the following precom- 
pactness result (for the sake of simplicity we restricted our considerations 
to denumerable families). 

LEMMA 4. Let the increasing sequence (x, ; n E N) in X be K-quasi-order- 
equicontinuous and let in addition assume 

(H4) (x,(t); n E N) is precompact in Y for all t E K. 

Then, necessarily, (x, ; n E N) is precompact in (X, D, 6 ). 

Proof (Dieudonne [24, Chap. VIII, Sect. 51). Let i E N and E > 0 be 
given. By hypothesis, there exist a finite subset Hj,E in Ki and a number 
6(i, E) > 0 such that (H2) and (H,) (with s/4 in place of E) hold. The subset 
Zi,E = {x,(t); n E N, t E Hi,E} is precompact in Y so, a finite subset ZF, of Z,, 
exists with the property 

for each n E N and t E Hi,, there corresponds y = y(n, t) in ZF, 
with ((x,,(t) - y (( < c/4. (4) 

Let G denote the family of all mappings from Hj,E to ZF, and, for any 
gEG, put 

L(g)= {nEN; IIxn(~)-dt)ll <s/4, tEHi,c}. 

By (4), N will be covered by the union of the sets L(g), g E G; moreover, by 
the above evaluations, 

di(xn 7 Xm ) < 6, n, mEL(g), gEG 

so that, if we take as Ai,E the (finite) subset of N having a single element in 
common with L(g) for any g in G, our proof is finished. Q.E.D. 

As a first remark about this result, assume 5 is interval-closed and Y is 
order complete then, by Lemma 1 the hypothesis (H4) may be written as 

(H4’) (x,(t); n E N) is convergent, for all t E K 

while, by Lemmas 2 and 3, the conclusion just obtained can be rephrased 
as : (x,; n EN) is convergent in (X, D, < ), At the same time, suppose 6 is 
the trivial quasi-ordering on K then, the above statement coincides with 
Theorem 7.7.7 of Dieudonne we already quoted. Finally, a more general 
version of Lemma 4 could be obtained in case Y were taken as an ordered 
metrizable uniform space; we preferred, however, this normed variant for 
some technical reasons whose usefulness will become clear by our future 
developments. 
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2. THE MAIN RESULTS 

Let X be an ordered metrizable uniform space under the denumerable 
sufftcient family of semi-metrics D = (d,; i E N) and the ordering <. Also, 
let Y be a subset of X and T a mapping from Y to itself. An important 
problem concerning these elements is that of determining the existential 
comparative (modulo <) connections between the subset Yoi of all 
solutions in Y of the operator inequality 

x<Tx (01) 

and the subset Y,, of all solutions in Y of the associated operator equation 

x= TX. (OE) 

Of course, it implicitly follows from our context that we are in fact 
interested in establishing a number of topological answers to the above for- 
mulated question, in which case, it is quite natural to accept as basic 
hypothesis 

0) < is interval-closed, 

Under these preparatory facts, the first main result of the present paper is 

THEOREM 1. Let the order-closed subset Y of X and the increasing mapp- 
ing Tfrom Y to itself be such that 

(ii) Yoi is not empty 

(iii) each increasing sequence (x,; n E N) in Y with x, E Tktn)( Yoi), 
n E N, for some (strictly) increasing sequence (k(n); n E N) in N, is relatively 
compact. 

Then, to any u in Y,,, there corresponds v E Y,, with the properties (a) u < v, 
(b) if w E Y,, satisfies v 6 w then v = w. 

Proof: First, let us observe that, without loss of generality one may 
suppose D is an increasing family (di < d, whenever i <j) because, 
otherwise, replacing it by the family E = (e,; iE N) defined as 

ei = d, + . . * + d;, iEN, 

the general hypothesis (i) as well as the specific assumption (iii) remain 
valid. Second, we claim for every couple i E N, E > 0, the following assertion 
is true 

foreachmENandxoTm(Y,i)thereexistn>minNandy2x 
in T”( Y,i) such that, for every p 2 n in N and z 2 y in TP( Y,,), 
di( Y, z) < E. (5) 
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Indeed, assuming (5) were not valid, a m E N and x E T”( Y,i) may be found 
with the property 

for every n>m in N and y>x in T”(Y,i), a pan in N and a 
z > y in P( Y,i) will exist with di( y, z) 2 E. 

It immediately follows that an increasing sequence ( yn; n E N) in Y and a 
(strictly) increasing sequence (k(n); n E N) in N may be constructed with 

Yn E Tk(‘)( Y,i) and di(y,,y,+,)>& forallnEN. 

By (iii), ( y,; n E N) is necessarily relatively compact, hence D-convergent if 
we take (i) plus Lemma 1 into account, so that di( yn, y,, i) -+ 0 as n -+ co. 
The contradiction at which we arrived shows the assertion (5) is true. In 
this case, given the arbitrary fixed u in Yoi, an increasing sequence (x,; 
n E N) in Y and a (strictly) increasing sequence (k(n); n E N) in N may be 
chosen so as to satisfy u <x, E Tk(“)( Y,,), n E N, plus 

N 3 p>k(n) and Tp( Yoi) 3 y B X, imply d,( y, x,) < l/2”. (6) 

Now, by (i) + (iii) in conjunction with Lemma 1 it follows x, +D u for 
some u in Y. We claim u is the desired element. Indeed, let us first observe 
that, in view of the self-closedness property of our ordering, 

u<x,<u, nsN (7) 

and therefore, ~6 u. As an immediate consequence of (7) we have 
TX, d To, n E N, so that, combining with the fact that, by the evident 
relation 

plus (6) it clearly follows TX, _tD V, one arrives (by the anti-self-closedness 
property of our ordering) at the conclusion v d TV, that is, u E Yoi; 
moreover, as a further consequence of (7) 

x, < Tk(“)x, < Tk’“‘u E T+)( YJ, nEN 

in which situation, again by (6), T~@)D +D u, which in turn implies 

u < TV < Tk(“)v < v, neN, 

that is, VE Y,,. Finally, suppose u < w  for some w  in Yoi then, observing 
that 

u < P(")w E Tky Y,,), tlEN 
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one immediately gets by (6) that Tk’“)w -+D u and therefore, by (i), 

w < Tk’“‘w 6 v, \ n E N, 

completing the argument. Q.E.D. 

Let us call the subset 2 of X, order-sequentially (resp. sequentially) 
relatively compact when each increasing sequence (each sequence) in Z is 
relatively compact. Clearly, a sufficient condition guaranteeing the validity 
of (iii) is 

(iii,) Tk( Y) is order-sequentially relatively compact, for some index 
kEN 

(resp. 

(iii:) Tk( Y) is sequentially relatively compact, for some k E N) 

in which case, as an useful variant of the first main result, we have (see also 
Turinici [ 581) 

THEOREM 2. Let the order-closed subset Y of X and the increasing 
mapping T from Y to itself be such that (ii) plus (iii,) (resp. (iii:)) hold. 
Then, conclusions (a + b) of Theorem 1 remain valid. 

Let X, D and < be as before. We shall say the subset Z of X is order- 
bounded (resp. bounded) when 

(resp. 

sUp{di(x,y);x,yEZ,X~Y}<~, ieN 

suP{di(x,Y);x,YEZ}<oO, iE N); 

remark at this moment that any sequentially relatively compact subset of X 
is necessarily a bounded one. A simple inspection of the reasonings 
involved in the proof of the first main result shows no boundedness 
property of this type was effectively required for the ambient subset Y or its 
iterates Tk( Y), k E N; however, under such an assumption, a more elegant 
proof of Theorem 1 (patterned after Krasnoselskii and Sobolev [29]) may 
be obtained. To be more precise, assume that, in addition to (ii) plus (iii), 
we accept 

(iv) Tk( Y) is order-bounded, for some k E N 

and let us define for every couple i E N, u E Yoi, 

g,(U) = tpf, SUP { di( T”x, T”y); U d T”X 6 T”y, X, Y  E Y,i >. 

Clearly, gi is decreasing on its existence domain, i.e., 

U<V implies g,(u) > g,(u), i E N; 
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moreover, we claim that 

inf{ g,(V); U < U E Yoi} = 0, Ian, UE Y,i. (5’) 

Indeed, supposing the assertion (5’) were not valid, a couple i E N, u E Yoi 
may be found with 

gi(O)>fi, yoi 3 02u for some fi > 0 

or, in other words, for any u 2 u in Y,i and any n > k in N, a pair x, y E Yoi 
will exist with 

u<T”xQT”y and 4 T”x, T”Y) > P; 

by a finite induction procedure, one may easily construct the sequences 
(XII; KZEN) and (y”; HEN) in Y,i with 

U,<PX,<TkYl< *‘. <Tk+n-lX,<.++n--yn< . ..) 

di(Tk+n-lXn, ~+n-lYn)>P, nEN, 

and therefore, observing that the first of these relations contradicts (via the 
ambient hypotheses plus Lemma 1) the second one, our assertion is 
proved. In such a situation, given the arbitrary fixed u E Y,,, , a sequence 
(u,; n E N) in Y,i may be determined so that 

u < Tu, < T’u, < . . ’ 

and 

&I( T”%l) < l/2”? nEN. (6’) 

Now, by (i), (iii) and Lemma 1, T”u,, +D u for some v E Y. We claim u 
satisfies the requirements (a)+(b). Indeed, it is clear that, by the self- 
closedness property of our ordering 

UdT”U,dU, nEN (7’) 

and thus u 6 u. As a consequence of (7’) 

T”u, < 7” + lu,, < TV, neN 

so that (passing to limit and using the anti self-closedness property) u < Tu 
that is, u E Y,i ; moreover, by the evident relations 

T3.d <T”+T4 nl n+mdu< To< T”+9, n>k,mcN 

one immediately gets by (6’) 

4(T”+h(“)%+h(n)T T” + Wu) < l/2”, n>k 
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for some (strictly) increasing sequence (h(n); no N) in N so that, 
necessarily, T”v + D v which in turn implies (by (i) again) 

v<Tv~T”vdv, n E N, 

proving v E Y,,. Finally, let w  in YOi be such that v < w; by the same 
reasonings as above (with w  in place of v) one gets 7”‘~ -+D v so that, by 
our basic hypothesis, w  < T”w < u, n EN, completing the argument. 

Since, as we had already occasion to say, a sufficient condition for (iv) to 
be valid is (iii:), the above reasoning is in effect to Theorem 2 but not in 
general to Theorem 1. Regarding this last aspect, it would be not without 
importance to ask whether the method we developed here might be applied 
to nonmetrizable uniform structures; a partial answer to this question will 
be given elsewhere. 

Returning to the hypothesis (iii), essential to the present discussion, let 
us remark its particular form (iii,) may be viewed as a “spatial” (strong) 
restriction of it so that it is of practical interest to determine what happens 
when (iii) is replaced by its “temporal” (weak) restriction 

(iii,) each increasing sequence (T”x; n E N) in Y with x E YOi, is a 
relatively compact one. 

To do this, we have to introduce the notions below. Given the mapping U 
from Y to itself, let us call it continuous at the left when for each x in Y and 
each increasing sequence (x, ; n E N) in Y with x, +D x and x, < x, n E N, 
we have Ux, +D Ux. Also, let us say U has an order uniqueness property 
when x Q y and x = Ux, y = Uy imply x = y (i.e., any two fixed points of U 
are either identical or incomparable). Under these conventions, the second 
main result of the present note is (cf. also Dugundji and Granas [25, 
Chap. I, Sect. 43). 

THEOREM 3. Let the order-closed subset Y of X and the increasing mapp- 
ing Tfrom Y to itself be such that (ii) + (iii!) as well as 

(v) T is continuous at the left 

(vi) T has an order uniqueness property 

hold. Then, conclusions (a) + (b) of the main result remain valid. 

Proof Let u in Y,i be arbitrary fixed. By (iii,) plus Lemma 1, 7% jD v 
for some v E Y. Clearly, 7% <v, n E N, so that, by the left-continuity 
assumption (v), T”+‘u +D TV, proving v E Y,,. Let w  in Y,i be such that 
v < w. By the above reasonings T”w dD v’ for some v’ E Y,,; on the other 
hand, by (i), T”w 6 II’, n E N, and this proves v < v’. Combining this fact 
with (vi), one gets v = v’ and hence w  < v, completing the proof. Q.E.D. 
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An interesting feature of the above statements is given by the fact that 
(although implicitly embodied into the hypothesis (iii) or its variants) no 
explicit (order) completeness property for the ambient ordered metrizable 
uniform space were assumed so that, to complete our treatment and, at the 
same time, to cover some useful particular cases, it would be necessary to 
discuss this eventuality. Assume therefore in the following that, in addition 
to the basic hypothesis (i) we admit 

(vii) X is order complete 

then, in view of Lemma 2, a more appropriate formulation of the main 
results might be obtained if one replaces in (iii), (iii,), (iii,), the word 
“relatively compact” by “precompact.” Particularly, if we restrict our con- 
siderations to Theorem 3 above, the following remark turns out to be in 
effect in many concrete situations. Let J R, + R, be an increasing 
function; after a terminology suggested by [54] we shall say f has the 
property (P) provided that 

f”(t) -0 as n + cc for all t > 0, 

where f” indicates its nth iterate (note that, by a lemma due to 
Matkowski [33] we necessarily have in such a case f(t) < t, for all t > 0 
(and hence f (0) = 0)). Now, Y and T being as before, let us denote 

fi(t)=sup{di(Tx, Ty);x,y~ Y,x<y,d,(x,y)<t}, teR+,icN. 

Then we claim the hypothesis 

(v’) f, has the property (P) for all i E N 

is a sufficient one for the validity of (iii,) + (v) + (vi). Indeed, letting u E Yoi 
be arbitrary fixed, put ai = di(u, Tu), i E N, and observe that 

d,(T’k, T+'u)<fy(aJ, 

a relation which in turn implies, by (v’) 

i, n E N, 

dJT”u, T”+b)+O as n-+a, forall iEN. 

Let iE N and E > 0 be arbitrary fixed. By the above relation, a 
m = m(i, E) EN may be found with di( 7’“‘u, T”‘+‘u) d E --~JE) < E; combin- 
ing this with the definition of fi, one gets di( T” + ‘u, T”‘+ ‘u) < fi(E) so that, 
by the triangle property, di( T’?, 7”” + ‘u) < E. Again using the definition of 
fi, we have d,(T”+ ‘u, T”+3~) <fi(E) so that, by the same procedure as 
above, di(T”u, T”+3~) < E, and so on. By a finite induction one easily 
arrives at di( 75, Tm+%) d E, n E N, proving (iii,) and therefore, the asser- 
tion follows because (v) + (vi) are almost trivial in our case. 

409:117/l-8 
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In concluding this section, let us remark that the comparison theorems 
we formulated before may be interpreted either as maximality results 
modulo Yoi in which case, via Theorem 1 of Turinici [58] they appear as a 
particular version of the maximality principle stated in [56] (see also the 
variant indicated in [57]) or as fixed point results modulo Y in which 
situation (under a continuity assumption similar to (v)) they may be 
viewed as metrizable uniform versions of some topological contributions in 
this area due to Wallace [61], Ward [63], Smithson [49], and 
Turinici [55] (see also, from a more abstract perspective, Tarski [Sl], 
Abian and Brown [2], Bakhtin [6]). On the other hand, suppose X is a 
complete Frechet space under a denumerable sufficient family of seminorms 
S = { 1.1 i; i E N} and let X, be a closed cone in X then, defining an order- 
ing structure by 

X<.Y if and only if y - x E X, 

the general hypotheses (i) + (vii) of this section are clearly fulfilled; in par- 
ticular, when S reduces to a single element (resp. a norm on X) Theorem 1 
reduces (under the supplementary assumption (iv)) to the above quoted 
Krasnoselskii-Sobolev result, while Theorem 3 reduces to the Chan- 
dra-Fleishman result quoted in the introductory part of the paper (see also 
Azbelev and Tsaljuk [S] ). Some concrete examples of such cones may be 
found in Krasnoselskii [28, Chap. I] (cf. also Vulikh [60, Chap. III]). 
Finally, suppose the self-mapping T were decreasing then, evidently, T2 is 
increasing so that (modulo the remaining hypotheses) a number of 
appropriate comparison results concerning the couple (01) + (OE) (with 
T2 in place of T) may be given; some topological aspects of the problem 
were discussed by Seda [44] (see also Pelczar [41], Abian Cl], 
Kurepa [30], and Taskovic [52] for an abstract ordered set viewpoint). 

3. MULTIVARIABLE GRONWALL-BELLMAN INEQUALITIES 

Let n E N be a positive integer and let R”, denote the standard positive 
cone in R”, endowed with one of the usual norms (e.g., that introduced by 
the familiar scalar product ( . , . ) in R”) and the natural ordering. Also, 
m E N being another positive integer, let II+ 11 indicate one of the usual 
norms in R” and < the ordering on R” defined as 

(S I,..., s,) d (fl,..., t,) when si d ti, i E I and sj > tj, j E J, 

where {I, J} is a partition of {l,..., m} (the cases Z or J is empty being not 
excluded). Now, let X; indicate the class of all continuous functions from 
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R”, to R”. An useful Frechet structure on X; is that indicated by the family 
of seminorms S(A) = ( 1.1;; i E N) introduced by the convention 

IxI~=sup{IIx(t)ll;O~t~a,), iEN, xEX;, 

A = (a,; iEN) being a cohnal sequence in R”, (to any TV R”, there 
corresponds i E N with t< a,); also, a natural ordering structure on X; is 
that indicated by 

x<y ifandonlyif x(t)<y(t), tER”,. 

It is a simple exercise to verify XT is complete (hence order complete) and 
6 as well as 3 (its dual) are closed in Nachbin’s sense [34, Appendix] 
hence interval closed. Furthermore, let e denote the class of all continuous 
functions from R”, to R + . Defining as before (by deleting the sign )I * II ) a 
Frechet structure and (with ,< taken as the usual ordering on R,) an 
ordering structure on x, it is clear that the above (order) completeness 
and (interval) closedness properties continue to hold in our case. Finally, 
given s, t E R: , s< t, and XE X;, by s: X(T) dr we shall mean the n-fold 
integral fCs,(, x(r) dr. 

Under these preparatory facts, let x + k(x) be an increasing map from 
.Y; to itself, and f~Xr a given element. Consider the multivariable 
Gronwall-Bellman inequality 

x(t) <f(t) + j; W)(s) 4 tER:. (GW 

As in the preceding section, we are interested in determining the existential 
comparative connections between the solutions in X; of (GBI) and the 
solutions in X7 of the associated multivariable Volterra equation 

x(t) =f(t) + jr W)(s) 4 tER”,. WEI 
0 

In this direction, as an immediate application of the first main result, the 
following theorem about the couple (GBI) + (VE) may be formulated. I 

THEOREM 4. Assume there is a cojkal sequence (a,; i E N) of vectors in 
R”, , a sequence G = ( g, ; i E N) in g and a sequence (hi ; i E N) of mappings 
from e to itself, with the properties 

(viii) to any i E N there corresponds j E N such that, for every x in Xr 
with II x(t) )I d gi( t), 0 < t < uj we have 11 k(x)(t) I[ d hj( gj)( t), 0 < t < ai, 

(ix) for each ie N, at least one couple (i, j) with jE N taken as in (viii) 
satisfies 

II f(t) II + [i hj( gj)(s) ds G gin O<t<aa, 
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Assume also that (GBI) has at least a solution in the subset XT(G) consisting 
of ail x in X; with IIx(t)ll <g,(t), O<t<a,, iEN. Then, to any solution 
u E X:(G) of (GBI) there corresponds a solution u E X;(G) of (VE) with 
u < v and, moreover, for each solution w  E X;(G) of (GBI) distinct from v, 
the relation v d w  does not hold. 

Proof: Denote by T the mapping from X; into itself defined by the 
right hand of (GBI). Clearly, T is increasing; moreover, we claim X;(G) is 
invariant under T. Indeed, let x E X;(G) and i E N be arbitrary fixed; taking 
Jo N as in (viii) we have, by the definition of X;(G) 

II W)(t)ll +(gj)@), O<tga, (8) 

so that, by (ix) 

II TX(t) II G II f(t)11 + ji hj( gj)(S) ds Q g,(t), Odt<ai 

proving our assertion. Observing that, as another consequence of (8) 

ll~~~~~-~~~~~ll~llf~~~-f~~~ll+~~~~,~~,(R,~~~~~~. Ods,tGai 

(where Z(s, t) stands for the symmetric difference between [0, s] and [0, t]) 
an immediate application of Lemma 4 (modulo the trivial quasi-ordering) 
tells us T(X;(G)) is order-sequentially precompact. This shows all con- 
ditions of the first main result (more precisely, of Theorem 2) are fulfilled 
and conclusion follows. Q.E.D. 

As an interesting particular case, let us analyse the situation 

k(x)(t) = K t, x(a(t)), j: H(s, x(s)) ds), tER”+,xEX;, 

where K(t, U, u) is continuous from R”+ x R” x R” to R” and increasing 
with respect to u and v, H(t, u) is continuous from R”, x R” to R” and 
increasing with respect to u, and a(t) is continuous from R”, to itself. 
Assume that 

II at9 4 v)ll GP(t)oI u II + II 0 II 1, tcR”,, u, v E R”, 

II H(t, ~1 II < q(t) II ~4 II 2 tER”+,uERm 

(p, q E x being increasing) and let (a,; i E N) be an increasing cofinal 
sequence in R”, satisfying, for each iE N, 

O<tba, implies Oda(t)dai+, 
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then, putting 
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condition (viii) of the above theorem will be clearly fulfilled (with j = i + 1) 
while (ix) reduces to 

X O<t<u,,iEN, (9) 

a condition that, actually, may be fulfilled in a large number of concrete 
situations. It will follow then by the above result that, if the sequence 
G = ( gi; i E N) in g were constructed so as to satisfy (9) then, any solution 
in X;(G) of the (integro-functional) multivariable Gronwall-Bellman 
inequality 

$9 x(4)), j'y ff(r, x(r)) dr) 4 tER: (IFGBI) 
0 

is necessarily bounded above by a certain (maximal) solution in X;(G) of 
the corresponding (integro-functional) multivariable Volterra equation 

x(t) =f(t) + jr GJ, x(a(s)), js H(r, x(r)) dr) 4 tER: (IFVE) 
0 0 

for a number of related contributions in this direction we refer to Ashirov 
and Mamedov [4] as well as Turinici [SS]. A dual form of this statement 
is the following: suppose (IFGBI) has at least a solution in X;(G) 
then-modulo the remaining hypotheses-(IFVE) possesses at least a 
solution in X;(G); note that, under such a perspective, the corresponding 
formulation of Theorem 4 might be interpreted as a multivariable 
“monotone” counterpart of Corduneanu’s existence result [21] (cf. also 
Pelczar [42]) in the “nonanticipative” case (u(t) d t, t E R”,) and, respec- 
tively, Oberg’s existence result [36] (see also Skripnik [48]) in the 
“anticipative” case (u(t) < t, t E R”, ). Of course, a rather prohibitive feature 
of the above reasonings is the existence of the a priori evaluation involved 
in the definition of X;(G) for the solution to which we are going to apply 
this comparation procedure because we do not dispose in general, of such 
an evaluation; more exactly, the usual device is to start from a certain 
solution u in X; of (GBI or (IFGBI) and to obtain for this function an 
evaluation of the form u < u where u is a solution in X; of (VE) or (IFVE). 
However, this evaluation is in many concrete situations a perfectly feasible 
fact, whenever one substitutes in (ix) (or in (9) for the particular case just 
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considered) the function 11 f(t)/1 by max( )I f(t) II, 11 u(t)ll); note that, by 
such a procedure it is possible to arrive at Headley’s result [27] if we 
restrict the domain of the functions involved in the above example to a 
compact [0, b] with bE R”, (see also Westphal [64], Rasmussen [43], 
Pachpatte [39, and others). 

Passing to the second part of our developments, let us specify another 
usual Frtchet structure on X; is that defined by the family of seminorms 
S(A, G) = { 1.1 i; i E N} introduced by the Bielecki procedure [lo] 

I x Ii = suP ( II x(t) Il/gitt); O Q t  G ai}, 
iEN, XEXY, 

A = (a,; iE N) being a colinal sequence in R”+ and G = (g,; i E N) a 
sequence in g with 

g,(t)>O, O<t<a,, iEN; 

clearly, (X;, S(A)) and (X;, S(A, G)) are equivalent as Frechet spaces and 
therefore the order completeness and interval closedness properties, valid 
for the first of these structures, will remain as such for the second one. Also, 
letting (R2,“) + indicate the subset of all (t, S) in RZ,” with s < t, denote by Y; 
(resp. c) the class of all continuous functions from (R2,“) + to R”‘(R + ); of 
course, a corresponding Frtchet as well as ordering structure may be 
introduced on Y; (c) by the same way as that indicated, at the beginning 
of this section, for X; (resp. e). Now, let x E-- k(x) be an increasing map 
from X; to Y; and VEX; a given element. Consider the multivariable 
Gronwall-Bellman inequality 

x(t) <f(t) + j-‘ W)(t, s) 4 tER”,. (GBI’) 
0 

As above, we are interested to compare the solutions in X; of this 
inequality with the solutions in X; of the corresponding multivariable 
Volterra equation 

x(t) =f(t) + s,’ k(x)(t, s) 4 tER”, WE’) 

in this direction, as a consequence of the second main result, we have 

THEOREM 5. Suppose there exist a cofinal sequence (a,; ig N) in R”, , a 
sequence ( g,; i E N) in x satisfying the above positivity condition, a sequence 
(hi; ie N) of mappings from x to x and a sequence (Ai; ie N) in [0, 1) with 
the properties 

(x) x,yEX;,x<y,aEx,iEN, 11x(t)-y(t)II<a(t),O<t<aiimpZy 
II k(x)( t, s) - k( y)( t, s) II < hi(a)( t, s), 0 < s < t 6 ai 
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(xi) Jh hi(rgj)(t, S) dS<Ajrg,(t), 06 t <Ui, r 20, ieN. 

Then, to every solution u E X; of (GBI’) there corresponds a solution v E X7 
of (VE’) with u < v and, moreover, for each solution w E X; of (GBI’) dis- 
tinct from v, relation v 6 w does not hold. 

Proof: Denote by T the mapping from X; into itself given by the 
second part of (GBI’), and let x, y E X; be such that x < y and 1 x - y 1; 6 z 
for some z 2 0, i E N. Then, clearly, 

II x(t) -Y(t)11 d x,(t), O<t<Lq 
so that, by (x) + (xi), 

II TX(t) - Ty(t) II 6 j-’ II 4x)(& ~1 - k(y)(t, $1 II & 
0 

< s ’ hi(zgi)( ty s) ds 
0 

d Aizgi(t), O<t<a,, 

that is, 1 TX - Ty 1; 6 Ait and therefore, Theorem 3 (under its “contractive” 
form) applies. Q.E.D. 

A simple inspection of the above hypotheses shows that, due to the inter- 
val-restrictive condition (x), Theorem 5 may be effectively applied 
especially to nonanticipative multivariable Gronwall-Bellman inequalities 
of the preceding form. A particular case of practical interest is that 
corresponding to the choice 

k(x)(t, s) = Nt, 4 x(s)), W~(R2+n)+,X~~~, 

where K(t, s, u) is continuous from (R2,“)+ x R” to R”, increasing with 
respect to u, and satisfies the order type Lipschitz condition 

IIK(t,s,u)-K(t,s,v)llgL(t,s)llu-VII, (t,s)E(R2+“)+,u,vERm,u<v, 

L being an element of c then, defining the sequence (hi; ig N) of map- 
pings from x to c by 

hi(y)(t,s)=PiY(s)v (t,s)E(R~)+~yEX, ieN, 

where 

~i=sup(L(t,s);O<s~t<a,}, iEN, 

condition (x) will clearly take place, while (xi) reduces to 
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a condition which is fulfilled, e.g., by the sequence of functions 

gi(t)=exP(bj9 t>, teR”,,ieN, 

where (bi = (pii ,..., bin); in N) is a sequence of vectors in R”, satisfying 
Pik>O, l<k<n,i~N, as well as ~l<li/?il.~~/?in, iEN. An interesting 
linear variant of this case may be constructed as follows. Letting ZLm) 
indicate the class of all (m, m) matrices over c, put 

Wt, s, u) = C(t, s) u, (t, $1 E (R2,“)+, UER”‘, 

where C(t, s) = (cii(t, s); 1 < i, j d m) is an element of Zim); clearly the above 
Lipschitz condition is fulfilled by any couple U, u in R” and therefore, the 
mapping T appearing in the right member of the corresponding (GBI’) 
possesses a global uniqueness property. As an immediate consequence of 
this fact, the conclusion of Theorem 5 may be written as: let u E XT be a 
solution of the (linear) multivariable Gronwall-Bellman inequality 

x(t) <f(t) + j’ C( t, s) x(s) ds, tER”, (LGBI) 
0 

then, it necessarily satisfies 

u(t) <f(t) + j' Wt, ~1.0~) ds, tER”+, 
0 

(10) 

where H(t, s) = (h,( t, s); 1 < i, j < m), the resolvent kernel, is the unique 
solution in ZLm) of the (linear) matrix Volterra integral equation 

Z(t,s)=C(t,s)+jrC(t,r)Z(r,s)dr, (t,s)E(Ry)+. (LMVE) 
s 

Indeed, it is a simple exercise to verify (see, e.g., Tricomi [53, Chap. I, 
Sect. 1.31) the right part of (10) is, by (LMVE) the (unique) solution of 

x(t) =f(t) + j; C(t, s) 4s) ds, teR”, (LVE) 

and this proves our assertion. Note at this moment, a more direct way of 
studying the above inequality is that of using the successive approximation 
method for (LVE) starting with a solution of (LGBI); the idea of this 
method goes back to Chu and Metcalf [17]. At the same time, let us 
observe that, if we take 

C(t, s) = P(t) Q(s), (6 s) E (Rz,“) + 

with P(t)=(p,(t); l<i,j<m) and Q(t)=(qij(t); l<i,j<m), (m,m) 
matrices over x, the above inequality (10) becomes 

u(t) <f(t) + P(t) j' Wt, s) Q(s)f(s) ds, tER:, (10’) 
0 
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where H(t, s) is a solution in Zim) of the linear matrix equation 

Z(t, s) = I+ j’ Q(r) Z’(r) Z(r, s) dr (t, s) E (R2,“)+ (LMVE’) 
s 

and therefore, the corresponding variant of Theorem 3 reduces to the 
Chandra-Davis result [lS]; see also Snow [SO], Nagumo and Simoda 
[33], Young [67], Berruti Onesti [9], and Walter [62, Chap. III, 
Sect. 191. Finally, as a more technical example of this kind, let us consider 
the linear multivariable Gronwall-Bellman inequality 

x(t, )...) t,) <f(t* )...) t,) +; ji’ K(‘)(t, )...) t,; 0 ,...) si )...) 0) 
I 

x x(t, ,..., s; ,..., t,) ds, 

+ c j” j” P)(t, )..., t,; 0 )...) sj )...) sj )..., 0) 
(ij) o O 

x x(t, ,..., si ,..., sj ,..., t,) dsidsi + . . . 

II + s I . . . rn ZP-qt, ,...) t,; s, )..., s,) 
0 0 

xx(sI ,..., s,)dsl~.~ds,, (tl ,..., t,)~ R”,, (LGBI’) 

where &, comprises (;) = n terms, Ccij) comprises (;) = n(n - 1)/2 terms, 
etc., and Kc’), @) ,..., K(i,...,“) are elements of ZL”). Formally, (LGBI’) 
appears as a generalization of (LGBI); however, a close analysis shows it is 
in fact reductible to the above quoted inequality. Indeed, regarding 
(LGBI’) as a linear Gronwall-Bellman inequality with respect to the 
variable tr and making use of (10) with n = 1, it follows that any solution 
of it must also satisfy the linear inequality 

41, ,.‘., t,) q-i(t , )...) t,) + c’ Kl”(f 1 )..., t, ; 0 )...) s i,..., 0) 
(1) 

x x(1, ,..., si ,..., t,) ds, 

+ 1 j*’ jl’ 
(ij) 0 0 

Kl’j) (t I,..., t,; 0 ,...) s; )...) sj )...) 0) 

X X(1, ,..., si ,..., ~j,..., t,) dsidsj + . . . 

+ j;’ . . . jr K(ll’J)(tl )...) t,; s, )...) s,) 

xx(sI ,..., s,)ds, ‘..ds,,, (tl ,..., t,)~ R:, (LGBI;) 

where xii, indicates &) without its first term and Kc,‘), KY),..., K\‘*...,“) are 
defined in terms of K(‘) 3 K”J ,..., J?..*“) and some additional expressions 
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involving the resolvent kernel associated to the first part of &; further- 
more, treating (LGBI;) as a linear Gronwall-Bellman inequality with 
respect to tz one arrives (again by (10) with n = 1) at a new linear 
inequality of the form (LGBI’) in which two terms of c(i) were deleted, etc. 
Continuing in this way, one concludes, after (7) = n steps, that any solution 
of (LGBI’) must satisfy the linear inequality 

x(t1,..., t,) <f,(t1, . . . . t.)+(;) j;‘j+qrl)...) t,; 0 )...) sj )...) sj )...) 0) 
I 

x X(ll,..., si ,..., s ,,..., t,) dsidsj 

+ ji’ . . . j; Kpqtl )...) t,; Sl)...) s,) 

x x(sl ,..., s,) ds, . *. ds,, (t, ,..., t,) E R”, . (LGBI;) 

Now, treating successively (LGBIL) as a linear Gronwall-Bellman 
inequality with respect to the couples (ti, t*),..., (t,,- i, t,) and making use 
of (10) with n = 2, one arrives, after (;) = n(n - 1)/2 steps, at another 
integral inequality of the form (LGBI’), in which CciJJ were deleted, and so 
on. Consequently, after (?) + . . . + (n Y i ) = 2” - 2 steps, it will follow that 
any solution in X; of (LGBI’) must satisfy an inequality of the form 
(LGBI) and our assertion is proved. Of course, these reasonings do not 
make any distinction between ( < ) and ( = ) in the above reduction process 
so that, the solution of the Volterra integral equation associated to the last 
inequality is nothing but the solution of the Volterra integral equation 
associated to (LGBI’). A number of concrete forms of this solution (under 
some restrictive conditions about our kernels) were given by 
DeFranco [23]; see also Conlan and Diaz [ 191 or, from a more particular 
viewpoint, Ghoshal and Masood [26]. 

4. A REDUCTION PRINCIPLE 

The comparison results we formulated in the preceding section are, in a 
certain sense, the best possible ones, because, as already noted, the 
solutions of (VE) (resp. (VE’)) appear as maximal elements among the 
solutions of (GBI) ((GBI’)). However, in many concrete situations, these 
solutions are, technically speaking, difficult to be handled, the most visible 
disadvantages being the rather complicated Zorn procedure for the con- 
struction of a maximal solution of (VE) and/or the intervention of the mul- 
tivariable iterated integrals in the process of building up a solution of 
(VE’). For these reasons, some “approximate” comparative evaluations for 
a solution of (GBI) (resp. (GBI’)) via one-variable techniques were 
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welcomed. It must be noted at this time that, although the statements given 
below are formulated in the cone (X;) + = (x)” of all continuous functions 
from R”, to R”, , their corresponding extensions to the whole space X7 are 
almost immediate; some of these questions will be treated elsewhere. 

In the following, it is convenient to express a point of R”, as a couple 
(t,z) where PER,, PER”,-‘. Given any XE (x)“‘, we shall denote by x(r) 
the element of (g)“’ defined as 

x(z)(t) =x(6 z), tER,> T E R”,- 1 ; 

in this context, an element x E (x)m will be termed quasi-increasing when 
Q 6 z implies X(O) < x(r) in (e)m. Let xc k,(x) be an increasing map 
from (x)m to itself and f, an element of (e)m. We shall say (fi, k,) is a 
normal couple when (PI) the set V(fi, k,) of all solutions in (g)m of (VE) 
is not empty, (PJ to any solution u1 E (J$m of (GBI) there corresponds a 
u, E F’(fi, k,) with u1 < ul. Sufficient conditions assuring this property were 
made precise, in fact, by the results of the preceding section. Under these 
conventions, let x + k(x) be an increasing map from (e)” to itself and f a 
quasi-increasing element of (e)“. The following “sectional” comparison 
principle may be stated and proved. 

THEOREM 6. Suppose there exists a family (K,,,; T E R”; ‘) of increasing 
mappings from (g)” to itself, such that 

(xii) j;, k(x)(s, a) da 6 KC,,(x(z))(s), s E R + , z E R”,- ‘, fi)r each quasi- 
increasing x in (x)“, 

(xiii) the couple (f(z), K,,,) is normal, for any t E R”,- ‘. 

Then, for each solution u E (J$)” of (GBI) one has 

46 7) 6 q*,(t), tER,,zER”,-’ 

with II(,) belonging to V(f(z), K,,,) for any ZE RI-‘. 

(11) 

Proof: Let u be a solution in (x)” of (GBI). Suppose in addition u is 
quasi-increasing then, by the above hypothesis (xii) we get for each 
ER”,-’ 

u(T)(t) Sf (r)(t) + i’ (5’ Wu)(s, a) do) ds 
0 0 

<f(t)(t) + j-’ K~z,tut~))ts) 4 t E R+ 
0 

so that, by (xiii) one immediately arrives at (11). Now, if u were not quasi- 
increasing then, replacing it by 

u*(t) =f(t) + j-t k(u)(s) ds, tER”,, 
0 
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it is clear this new function is a quasi-increasing solution in (x)“’ of (GBI) 
and the conclusion follows from the preceding discussion combined with 
the evident relation u < u*. Q.E.D. 

As an interesting particular case when m = 1, let us consider the choice 

Wx)(t) = h(f) W(t)), tER”+,xEx, 

where h is an element of e and F is a continuous increasing function from 
R, to itself then, putting 

K,,,(Y)(~) = f-f,,,(t) F(Y(~)) t~R,,y Eg,TER”+-l, 

where 

H,,,(t) = j’ NC 0) da, [CR,, TER”,-‘, 
0 

condition (xii) will evidently take place and consequently, under the accep- 
tance of (xiii), any solution u E e of the scalar Gronwall-Bellman 
inequality 

x(f) G’(t) + j-’ 0) F(x(s)) ds, teR”, (SGBI) 
0 

satisfies, for any r E R”,- ‘, an evaluation of the form (1 l), uC,) being a 
solution of the one-variable nonlinear Volterra integral equation 

y(t) =.f(~)(t) + j’ H,,,(s) F(Y(s)) & tER+. WE,) 
0 

For example, assume F is strictly increasing, F(0) = 0, and 

0 <f(t, ~1 G M(T) + &#I ds, t~R+,zgR”“, 

where (g(,,; r E R”’ ‘) is a family of elements belonging to e and (M(r); 
TER”;‘) is a family of strict positive numbers; then, every solution y E g 
of (SVEi) satisfies 

in which case, by a standard procedure (see, e.g., Bihari [ 111) 

u&t) < G-l 
( 

G(W 1) + 
T s, 

’ (g&)lWb, T))) ds + j-i H,,,(s) ds) 

for all t > 0 with 

G(M(t)) + jf (s&)lW(s, 7))) ds + j; H,,,(s) ds< G(a) 
0 
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the function G: (0, co) + R being defined as 

at) = J’ (l/m)) ds, t>Oforsomea>O. 
a 

Note that, under such a circumstance, the corresponding variant of 
Theorem 6 extends a series of Wendroff type inequalities due to Singare 
and Pachpatte [47]; see also Mamedov, Ashirov, and Atdaev [32, 
Chap. II, Sect. 21 or, from a more particular viewpoint, Shih and Yeh [46], 
Bondge and Pachpatte [13], Yeh [65], Shastri and Kasture [4S], 
Abramovich [3], and others. 

Let x + k,(x) be an increasing map from (G)m into itself and fi an 
element of (x)“‘. We shall say (fi, k,) is a strongly normal couple when it 
is normal and (P3) u, <w, for each solution u, E (q)” of (VE) and every 
solution w, E (g)” of (GBI), with ( < ) replaced by its dual ( > ). Now, as a 
completion of the above result, we have 

THEOREM 7. Under the same general hypotheses, assume there exists a 
family (K,,,; T E R;’ ’ ) of increasing mappings from (e)“’ to itself such that, 
(xii) plus 

(xiii’) the couple (f(,,, K,,,) is strongly normal for any t E R”,- ’ 

hold and let in addition the element w  in (e)” be such that 

(xiv) f(t, z)+~:,&)(w(r))(s)ds<w(t, z), PER,, PER”,-‘. 

Then, we necessarily have u < w, for each solution u E (x)” of (GBI). 

Proof By the reasonings of the above theorem we have the evaluation 
(11) where a(,) is a solution in (x)m of (VE) with (f, k) replaced by 
(f(t), K,,,). This fact, together with (xiii)’ plus (xiv), establishes our asser- 
tion. Q.E.D. 

As a particular case useful in applications, let us take 

k(x)(t) = p(t)(x(t) + J; e(s) x(s) ds), ER:,xE(X~])~ 

with P(t)=(p,(t); l<i,jGm) and Q(t)=(q&t); l<i,j<m), (m,m) 
matrices over q then, defining 

&r,(Y)(t) = H,,,(t) Y(t)> ~ER+,~E(~)“‘JER;~-~, 

where 

I,,, = J* f’(f, 0) I+ Jr Jo Qk, PI dr & 
0 ( > do, tER,,zER”,-’ 

0 0 

hypothesis (xii) will be fulfilled if we restrict our considerations to the 
increasing elements of (e); note that, a sufficient condition that such a 
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restrictive statement of (xii) be effective is that f be increasing. Moreover, 
by the discussion of the preceding section (xiii’) takes evidently place. Now, 
let us put 

with f taken as above, and assume t I- H,,,(t) and t + [b H,,, (s) ds are 
permutable as (m, m) matrix functions then (cf. also Coddington and 
Levinson [ 18, Chap. III, Sect. 41) 

and (xiv) will be satisfied too. By the above theorem it will follow that any 
solution u E (2)” of the (vector) linear Gronwall-Bellman inequality 

x(t)<f(t)+j’P(r)(x(v)+j’Q(r)x(r)dr)ds, teR”+ (LGBI) 
0 0 

is necessarily bounded above by the function w  defined as before. Note 
that, when m = 1, this conclusion is nothing but the Pachpatte result [38] 
proved by a specific “differential” procedure; see also Bondge, Pachpatte, 
and Walter [14], Yeh and Shih [66], Corduneanu [20], and 
Pachpatte [37,40]. At the same time, it is not without interest to specify 
that an appropriate matrix version of this example may be identified with a 
similar one due to Chandra and Davis [ 151. A number of useful 
applications of these results to hyperbolic partial differential equatons may 
be found in the above quoted Pachpatte’s papers. 
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