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INTRODUCTION

A fundamental result pertaining to differential/integral equations theory
is the so-called Gronwall-Bellman inequality asserting that, if u: R, —> R is
a continuous solution of

X</ +] Ks)x(s)ds,  1eR, (1)
0
(where f: R, > R and k: R, —» R, are continuous functions) then

u(t)<f<z)+j0'k(s>exp(jo'kmdr)f(s)ds, (R,

see as basic references Coddington and Levinson [ 18, Chap. I, Problem 1],
Bellman and Cooke [§8, Chap. VII, Ex.2], Lakshmikantham and
Leela [31, Chap. I, Sect. 1.9], Corduneanu [22, Chap. I, Sect. 1.5]. During
the last three decades, this result was extended in many directions, the most
representative of them being, from our viewpoint, the multivariable ones.
Concerning the linear extensions of this kind, let us mention as a first
illustrative example, the 1973 Young’s result [67 ] stating that, if u: R” — R
is continuous and satisfies (1) modulo R” (f'R" — R and k: R" - R,
being continuous) then

w0 <f(0)+ [ Ks)ols; 0 f(s)ds, e R,

0

where v(s; t) is the solution of the characteristic initial value problem
(—1)"v,.. . (s t)=k(s) v(s; 1), 0<s<t

(2)

vis;t)=1 on s;=t,1l<i<n;

a further vectorial extension of Young’s result was performed in 1976 by
Chandra and Davis [15], through a specific “resolvent” procedure. As a
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second illustrative example, one must mention the 1979 Bondge—Pachpatte
theorem [12] stating in essence that any continuous solution #: R, - R,
of (1)(modulo R%) with f:R” — R, continuous and increasing, and
k: R", - R, continuous, satisfies

u(t) <f(t)exp <LI k(s) ds), teR";

this result may be viewed as a n-variable extension of the so-called Wen-
droff inequality [7, Chap.IV, Sect. 30]. Concerning the nonlinear mul-
tivariable extensions of (1), let us first mention the 1974 Headley’s
theorem [27] asserting in essence that, if u: R — R is continuous and
satisfies

t
u(z)sf(t)+f k(s, u(s)) ds, teR" (1)
0
with f: R, — R continuous and k: R”, x R — R continuous and increasing
with respect to its last argument then, for any 7, in R”,

u(t) < wy(t) 0<1<ty,

where w, is the maximal solution on [0, 7,] of the integral equation
associated to (1’). (Of course, Headley’s contribution may be also viewed
as a nonlinear version of Young’s result; the idea of the proof goes back to
Viswanatham [59].) Second, note that a more abstract version of
Headley’s result were formulated in the 1970 Chandra-Fleishman paper
[16]: letting (X, || - ||, <) be an ordered Banach space and supposing the
point fe X and the increasing completely continuous mapping 7 X - X
are such that, an increasing continuous function w: R, - R, may be
found with

ITu—To| <o(lu—v|), uveX,
o(r)+ I TO) + | fII<r,  r=s, forsomes>0 3

then, any solution u € X of the operator inequality
x<f+Tx (1)

must satisfy #<w, where w is the maximal solution in X of the
corresponding operator equation associated to (1”). Finally, as a further
generalization of this result, let us mention the 1973 Krasnoselskii-Sobolev
contribution [29], obtained through a specific “iterative” compactness
method. Under these lines, it is our main objective in the present exposition
to state and prove a couple of comparison results involving (abstract)
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increasing self-mappings of a metrizable uniform space—extending in this
way the above quoted Chandra-Fleishman and Krasnoselskii-Sobolev
statements—the basic instrument of our investigations being a special order-
ing procedure similar in essence to that indicated in [56]. As direct
applications, some “functional” versions of the contributions we exposed
before are given. At the same time, as indirect applications of our main
results, two reduction principles concerning multivariable Gronwall-
Bellman inequalities are formulated,; it is worth noting at this moment that,
as a rather surprising consequence of these principles, most of the
(multivariable) Wendroff type extensions of (1) may be regarded, in the
last analysis, as a particular case of this one-variable statement. It should
also be underlined our main results may be put into a “purely” uniform
framework; these aspects will be discussed elsewhere.

1. PRELIMINARIES

Let X be a nonempty set, and let < be an ordering (ie., a reflexive,
antisymmetric, and transitive relation) on X. For any xeX denote
(<, x]={yeX;y<x} and [x, <)={yeX, x<y}; also, given any
couple x, ye X, x<y, put [x, y]=(<,y]n[x, <) and call it the (order)
interval between x and y. A sequence (x,; ne N) in X will be said to be
increasing when x;<x; for i<j, and bounded from above in case x,<y,
ne N, for some y in X. Furthermore, let D =(d;; ie N) be a denumerable
sufficient family of semi-metrics on X (in which case, the triplet (X, D, <)
will be termed an ordered metrizable uniform space). We shall say the
sequence (x,; ne N) in X, D-converges to xe X (and we write x, —>° x)
when d{x,, x) -0 as n— oo, for each ie N. Of course, any D-convergent
sequence is necessarily D-Cauchy (i.e., d-Cauchy, for all i e N); in this con-
text, X will be said to be order complete when each increasing D-Cauchy
sequence converges. A subset Y of X will be termed order closed when the
limit of any D-convergent increasing sequence in Y belongs to Y; also, the
ambient ordering < on X will be called self-closed (anti self-closed) in case
[x, <)resp. (<, x]) is order closed for any x in X, and interval-closed,
when it is both self-closed and anti self-closed (or, equivalently, when each
interval of X is order closed).

In what follows, we shall say (y,; ne N) is a subsequence of (x,; ne N)
when a strictly increasing function k from N to itself may be found with
Xpm =Y n€N. Under such a convention, let us call the sequence (x,;
ne N) in X, relatively compact when any subsequence (y,; ne€ N) of it con-
tains a convergent subsequence. The importance of this notion is put into
evidence by the following result-largely used in the sequel-closely related
to that of Ward [63] (see also Krasnoselskii [28, Chap. I, Sect. 57).
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LEMMA 1. Let the ordered metrizable uniform space (X, D,<) be such
that < is interval closed. Then, the increasing sequence (x,; ne N)in X is a
relatively compact one, if and only if it converges to some element x of X.

Proof. Let (u,; ne N) and (v,; ne N) be a couple of convergent sub-
sequences of (x,; neN). If u,—»"u and v, —»”v then, by the interval-
closedness property we immediately get u <v<u, that is, u=v. In other
words, all convergent subsequences of (x,; ne N) have the same limit, x.
We claim x, —»© x. Indeed, suppose this assertion were false then, a couple
ie N, ¢>0 may be chosen so that, for each ne N there exists m >n with
d{x,,, x) =& It follows at once a subsequence (y,; ne N) of (x,; neN)
exists with the property d{y,, x) =&, ne N, proving no convergent sub-
sequence (z,; ne N} of it (hence of (x,; ne N)) can have x as limit, con-
tradicting the above conclusion. QE.D.

A close analysis of the notion we just introduced shows it would be
desirable (for both theoretical and practical reasons) to express it in terms
of the sequence itself. To this end, let us call the sequence (x,; ne N) in X,
precompact when for each ie N, ¢> 0, a finite subset 4 =A,, of N may be
found so that, for every n e N there exists pe 4 with d(x,, x,) <&. Now, as
a completion of Lemma 1, we have

LEMMA 2. Assume (X, D, <) is such that X is order complete. Then, for
each increasing sequence in X, relatively compact is identical with precom-
pact.

Proof. Necessity. Let (x,; ne N) be an increasing relatively compact
sequence in X which is not precompact. Then, a couple i€ N, ¢ >0 may be
chosen so that, for each finite subset A of N, an index ne N will exist with
dfx,,x,)=e¢, for all pe A. It easily follows a subsequence (y,; ne N) of
(x,; ne N) may be constructed such that d{y,,y,)=¢ n<m, proving
(y,; ne N) has no D-Cauchy (hence, by our hypothesis, no D-convergent)
subsequences, contrary to our assumption.

Sufficiency. Let (x,; ne N) be an increasing precompact sequence in X
and let (y,; ne N) be a subsequence of it. As (y,; ne N) is precompact too,
it clearly follows, by definition, that a subsequence (u,; n € N) of it may be
found with d,(u,, u,,) <1, n<m; furthermore, by the precompactness of
(u,; ne N), a subsequence (v,; ne N) of it may be found with d,(v,, v,,) <3,
n<m, and so on. By a standard diagonal process one easily arrives at a D-
Cauchy (hence, by our completeness hypothesis, a D-convergent) sub-
sequence (z,; ne N) of (y,; ne N) and the proof is complete. Q.E.D.

As an interesting particular case, let (K, d) be a metric space and let <
be a quasi-ordering (ie., a reflexive and transitive relation) on X. Putting
for each 1€ K, £>0, S(¢, <,¢)={se[,<); d(t,s) <e}, assume K may be
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represented as the union K, U K, U -+, where the family X = {K,, K,,...,}
satisfies

(H,) to every te K there corresponds o= a(1)>0 and i=i(t)e N with
S, <, a)cK,.

Also, let (Y, ||-||) be a normed space and < an ordering on Y. A function
x: K— Y will be said to be continuous at the right when to any te K and
£¢>0 there corresponds a d=45(t,¢)>0 such that seS(s, <, §) implies
| x(¢£)—x(s)|| <& Let X indicate the class of all continuous at the right
functions x from K into Y with sup{||x(¢)||; t€ K;} < o0, i€ N. A standard
ordered metrizable uniform structure on X is that introduced by the con-
ventions

dix, y)=sup{|x(t)—y()l; 1€ K;}, ieN,x,yeX,
xSy if and only if x(¢)=Sy(t), te K.

LEMMA 3. Let the ordering < on Y be self closed (resp. anti self-closed
or interval-closed) then, so is the associated ordering < on X. In the same
context, let Y be order complete. Then, X is order complete too.

Proof. The first part of the statement is evident. To prove the second
one, let (x,; ne N) be an increasing D-Cauchy sequence in X. Clearly,
(x,(t); ne N) is an increasing Cauchy sequence in Y for each ¢ € K so that,
by the order completeness assumption, x(¢) =lim,x,(¢) exists for any re K.
It remains to show x is an element of X. To do this, let 1€ K be arbitrary
fixed and let « >0 and ie N be given by (H,). Since x,(¢) = x(¢) uniformly
with respect to K;, it follows that, given ¢ >0, a n = n(¢) may be found with

Ix,(t)—x(2)| <¢/3 forall reKk,.

On the other hand, x, being continuous at the right, a d € (0, «) may be
chosen so that

| x,(2) — x,(s)] <&/3 forall seS(t, <,8)<K;.
By a classical triangular procedure we get
[ x(r)—x(s)ll <&,  seS(t, <,0)

proving x is continuous at the right and completing, in fact, our argument.
Q.ED.

Under the same general conventions, let us call a family F < X, A -quasi-
order-equicontinuous when for each ie N, ¢ >0, there exists a finite subset
H=H, in K, and a number é =4(i, ¢) >0 such that



GRONWALL-BELLMAN INEQUALITIES 105

(H,) to every te K, there corresponds s€ H with s <t and d(s, t) < 9,

(H3) for any couple (t, 5) like in (H,) we have || x(t)— x(s)l| <e for all
xeF.

The usefulness of this notion is put into evidence by the following precom-
pactness result (for the sake of simplicity we restricted our considerations
to denumerable families).

LEMMA 4. Let the increasing sequence (x,; ne N) in X be K-quasi-order-
equicontinuous and let in addition assume
(H,) (x,(t); ne N) is precompact in Y for all te K.

Then, necessarily, (x,; n€ N) is precompact in (X, D, <).

Proof. (Dieudonné [24, Chap. VIII, Sect. 5]). Let ie N and ¢>0 be
given. By hypothesis, there exist a finite subset H,, in K; and a number
4(i, ¢) >0 such that (H,) and (H;) (with ¢/4 in place of ¢) hold. The subset
Z,,={x,(t);neN, e H,} is precompact in Y so, a finite subset Z?, of Z,,
exists with the property

for each ne N and te H,, there corresponds y = y(n, t) in Z?,
with || x,(¢)—y| <e/4. 4)

Let G denote the family of all mappings from H,, to Z?, and, for any
geG, put

L(g)={neN;lx,(1)—g(t)l <¢&/4, te H,.}.

By (4), N will be covered by the union of the sets L(g), g € G; moreover, by
the above evaluations,

di(xn,xm)<£’ n,mEL(g), gEG

so that, if we take as 4,, the (finite) subset of N having a single element in
common with L( g) for any g in G, our proof is finished. Q.E.D.

As a first remark about this result, assume < is interval-closed and Y is

order complete then, by Lemma 1 the hypothesis (H,) may be written as
(Hy') (x,.(2);neN) is convergent, for all te K

while, by Lemmas 2 and 3, the conclusion just obtained can be rephrased
as : (x,; ne N) is convergent in (X, D, <). At the same time, suppose < is
the trivial quasi-ordering on K then, the above statement coincides with
Theorem 7.7.7 of Dieudonné we already quoted. Finally, a more general
version of Lemma 4 could be obtained in case Y were taken as an ordered
metrizable uniform space; we preferred, however, this normed variant for
some technical reasons whose usefulness will become clear by our future
developments.
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2. THE MAIN RESULTS

Let X be an ordered metrizable uniform space under the denumerable
sufficient family of semi-metrics D = (d;; i€ N) and the ordering <. Also,
let Y be a subset of X and T a mapping from Y to itself. An important
problem concerning these elements is that of determining the existential
comparative (modulo <) connections between the subset Y, of all
solutions in Y of the operator inequality

x<Tx (0)8)
and the subset Y, of all solutions in Y of the associated operator equation
x=Tx. (OE)

Of course, it implicitly follows from our context that we are in fact
interested in establishing a number of topological answers to the above for-
mulated question, in which case, it is quite natural to accept as basic
hypothesis

(1) < is interval-closed.

Under these preparatory facts, the first main result of the present paper is

THEOREM 1. Let the order-closed subset Y of X and the increasing mapp-
ing T from Y to itself be such that

(ii) Y, is not empty

(ili) each increasing sequence (x,;neN) in Y with x,e TF"(Y,,),
ne N, for some (strictly) increasing sequence (k(n); ne N) in N, is relatively
compact.

Then, to any u in Y, there corresponds ve Y, with the properties (a) u<v,
(b) if we Y, satisfies v<w then v=w.

Proof. First, let us observe that, without loss of generality one may
suppose D is an increasing family (d;<d, whenever i<j) because,
otherwise, replacing it by the family E = (e;; i€ N) defined as

ei=d1+"'+d,<, lEN,

the general hypothesis (i) as well as the specific assumption (iii) remain
valid. Second, we claim for every couple ie N, ¢ > 0, the following assertion
is true

for each me N and xe T™(Y,;) there exist nzm in N and y =2 x
in T"(Y,;) such that, for every p=nin N and z2y in T?(Y,),
d{y, z)<e (5)
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Indeed, assuming (5) were not valid, a me N and xe T™(Y ;) may be found
with the property

for every nz2min N and y=x in T(Y,), ap=nin N and a
zzyin TP(Y,;) will exist with d(y, z) =e.

It immediately follows that an increasing sequence (y,; neN)in Y and a
(strictly) increasing sequence (k(n); ne N) in N may be constructed with

y.eT*(Y,) and  d{y,,V,,:)=¢ forallneN.

By (iii), (y,; ne N) is necessarily relatively compact, hence D-convergent if
we take (i) plus Lemma 1 into account, so that d(y,, y,,1) — 0 as n— .
The contradiction at which we arrived shows the assertion (5) is true. In
this case, given the arbitrary fixed v in Y, an increasing sequence (x,;
neN) in Y and a (strictly) increasing sequence (k(n); ne N) in N may be
chosen so as to satisfy u < x,e T*")(Y,;), ne N, plus

N 3 p=zk(n) and T°(Y,) 2 y=2x, implyd,(y, x,)<1/2". (6)

Now, by (i)+ (iii) in conjunction with Lemma 1 it follows x,—” v for
some v in Y. We claim v is the desired element. Indeed, let us first observe
that, in view of the self-closedness property of our ordering,

U<X, <, neN (7)

and therefore, u<v. As an immediate consequence of (7) we have
Tx,< Tv, ne N, so that, combining with the fact that, by the evident
relation

x, < Tx,e T**Y(Y,), neN

plus (6) it clearly follows Tx, —° v, one arrives (by the anti-self-closedness
property of our ordering) at the conclusion v< Tv, that is, ve Y;
moreover, as a further consequence of (7)

X, < T*"x, < T*"pe TF"(Y,), neN
in which situation, again by (6), T"™v -2 v, which in turn implies
v<To< T <, neN,
that is, ve Y,.. Finally, suppose v <w for some w in Y, then, observing
that

v<T""we T*"(Y,), neN



108 MIHAI TURINICI

one immediately gets by (6) that 7w —?  and therefore, by (i),
w< T w <o, neN,

completing the argument. Q.E.D.

Let us call the subset Z of X, order-sequentially (resp. sequentially)
relatively compact when each increasing sequence (each sequence) in Z is
relatively compact. Clearly, a sufficient condition guaranteeing the validity
of (iii) is

(iii,) T*(Y) is order-sequentially relatively compact, for some index
keN

(resp.
(iiiy) T*(Y) is sequentially relatively compact, for some k € N)

in which case, as an useful variant of the first main result, we have (see also
Turinici [58])

THEOREM 2. Let the order-closed subset Y of X and the increasing
mapping T from Y to itself be such that (ii) plus (iii,) (resp. (iil})) hold.
Then, conclusions (a +b) of Theorem 1 remain valid.

Let X, D and < be as before. We shall say the subset Z of X is order-
bounded (resp. bounded) when

sup{d(x,y);x,yeZ,x<y} <o, ieN

(resp.
sup{d(x, y); x, ye Z} < o0, ieN);
remark at this moment that any sequentially relatively compact subset of X
is necessarily a bounded one. A simple inspection of the reasonings
involved in the proof of the first main result shows no boundedness
property of this type was effectively required for the ambient subset Y or its
iterates T%(Y), k € N; however, under such an assumption, a more elegant
proof of Theorem 1 (patterned after Krasnoselskii and Sobolev [29]) may
be obtained. To be more precise, assume that, in addition to (ii) plus (iii),
we accept
(iv) T*(Y) is order-bounded, for some ke N

and let us define for every couple ie N, ue Y,

gilu)= ini sup {d(T"x, T"y); us T"x < T"p, x, y€ Y ;}.

Clearly, g, is decreasing on its existence domain, i.e.,

u<sv implies g{u) = g/v), ie N;
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moreover, we claim that
inf{g(v);u<ve ¥Y,} =0, ieN,uet,. (5)

Indeed, supposing the assertion (5’) were not valid, a couple ie N, ue Y,
may be found with

g(v)>B,Y;3v=2u forsome >0

or, in other words, forany v >uin Y,;and any n >k in N, a pair x, ye Y ;
will exist with

v<T'x<Ty and  d(T"x, T"y)>B;

by a finite induction procedure, one may easily construct the sequences
(x,; neN)and (y,; neN)in Y with

usTkxlsTkylg <Tk+n—1xn<Tk+n~1yn<

d,-(Tk+"_1x,,,Tk+"_1y,,)>ﬂ, nEN,

?

and therefore, observing that the first of these relations contradicts (via the
ambient hypotheses plus Lemma 1) the second one, our assertion is
proved. In such a situation, given the arbitrary fixed ue Y, a sequence
(,; ne N) in Y,; may be determined so that
u<<Tu, <T?u, < -
and
g.(T"u,)<1/2", neN. (6")

Now, by (i), (iii) and Lemma 1, T"u, »® v for some ve Y. We claim v
satisfies the requirements (a)+ (b). Indeed, it is clear that, by the self-
closedness property of our ordering

usT'u,<v, neN (7)
and thus ¥ <v. As a consequence of (7')
T'u,<T" 'u,<Tv, neN

so that (passing to limit and using the anti self-closedness property) v < Tv
that is, v € Y;; moreover, by the evident relations

T, <T"* " "u,, . <v<To<T" ", nzk,meN
one immediately gets by (6')

AT+ M0y, o, TP <127 nk
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for some (strictly) increasing sequence (A(n); neN) in N so that,
necessarily, 7"v —” v which in turn implies (by (i) again)

v<Tv< T <, neN,

proving ve Y .. Finally, let w in Y be such that v <w; by the same
reasonings as above (with w in place of v) one gets T"w —° v so that, by
our basic hypothesis, w < T"w < v, ne N, completing the argument.

Since, as we had already occasion to say, a sufficient condition for (iv) to
be valid is (iii;), the above reasoning is in effect to Theorem 2 but not in
general to Theorem 1. Regarding this last aspect, it would be not without
importance to ask whether the method we developed here might be applied
to nonmetrizable uniform structures; a partial answer to this question will
be given elsewhere.

Returning to the hypothesis (i), essential to the present discussion, let
us remark its particular form (iii;) may be viewed as a “spatial” (strong)
restriction of it so that it is of practical interest to determine what happens
when (iii) is replaced by its “temporal” (weak) restriction

(iii,) each increasing sequence (T"x;neN) in Y with xe Y, is a
relatively compact one.

To do this, we have to introduce the notions below. Given the mapping U
from Y to itself, let us call it continuous at the left when for each x in Y and
each increasing sequence (x,; ne N) in Y with x, »? x and x,<x, neN,
we have Ux,—” Ux. Also, let us say U has an order uniqueness property
when x <y and x = Ux, y= Uy imply x =y (i.e., any two fixed points of U
are either identical or incomparable). Under these conventions, the second
main result of the present note is (cf. also Dugundji and Granas [25,
Chap. 1, Sect. 4]).

THEOREM 3. Let the order-closed subset Y of X and the increasing mapp-
ing T from Y to itself be such that (ii) + (iii,) as well as

(v) T is continuous at the left
(vi) T has an order uniqueness property

hold. Then, conclusions (a)+ (b) of the main result remain valid.

Proof. Let uin Y; be arbitrary fixed. By (iii,) plus Lemma 1, T"u —»” v
for some veY. Clearly, T"u<v, ne N, so that, by the left-continuity
assumption (v), T"*'u - Tv, proving ve Y,.. Let w in Y,; be such that
v <w. By the above reasonings 7"w —? v’ for some v’ € Y, ; on the other
hand, by (i), T"w </, ne N, and this proves v <v'. Combining this fact
with (vi), one gets v =1’ and hence w < v, completing the proof. QED.
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An interesting feature of the above statements is given by the fact that
(although implicitly embodied into the hypothesis (iii) or its variants) no
explicit (order) completeness property for the ambient ordered metrizable
uniform space were assumed so that, to complete our treatment and, at the
same time, to cover some useful particular cases, it would be necessary to
discuss this eventuality. Assume therefore in the following that, in addition
to the basic hypothesis (i) we admit

(vii) X is order complete

then, in view of Lemma 2, a more appropriate formulation of the main
results might be obtained if one replaces in (iii), (iii,), (iii,), the word
“relatively compact” by “precompact.” Particularly, if we restrict our con-
siderations to Theorem 3 above, the following remark turns out to be in
effect in many concrete situations. Let f R, — R, be an increasing
function; after a terminology suggested by [54] we shall say f has the
property (P) provided that

f"(t)-»0 as n—ooo forallt>0,

where f" indicates its nth iterate (note that, by a lemma due to
Matkowski [33] we necessarily have in such a case f(¢)<¢, for all t>0
(and hence f(0)=0)). Now, Y and T being as before, let us denote

f{y=sup{d(Tx, Ty}, x,ye Y, x<yp,d{x,y)<t}, teR,, ieN.
Then we claim the hypothesis

(v') f; has the property (P) for all ie N

is a sufficient one for the validity of (iii,) + (v) + (vi). Indeed, letting ue Y ;
be arbitrary fixed, put a,=d(u, Tu), i€ N, and observe that

di(jmu’ 7"n+1u) <f‘?(ai)a i9n€N’
a relation which in turn implies, by (v')
d{T"u, T"*'u) >0 as n- o, forall ieN.

Let ieN and e¢>0 be arbitrary fixed By the above relation, a
m=m(i, ¢)e N may be found with d(T™u, T"* 'u) <e—f(e) <&, combin-
ing this with the definition of f;, one gets d(T™ " 'u, T™*u) < f(¢) so that,
by the triangle property, d(7™u, T™*?u) <e. Again using the definition of
fi» we have d(T™+'u, T"*3u)<fi(¢) so that, by the same procedure as
above, d{(T"u, T"*?u)<¢, and so on. By a finite induction one easily
arrives at d,(T™u, T"*"u)<e, ne N, proving (iii,) and therefore, the asser-
tion follows because (v) + (vi) are almost trivial in our case.

409/117/1-8
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In concluding this section, let us remark that the comparison theorems
we formulated before may be interpreted ecither as maximality results
modulo Y,; in which case, via Theorem 1 of Turinici [58] they appear as a
particular version of the maximality principle stated in [56] (see also the
variant indicated in [57]) or as fixed point results modulo Y in which
situation (under a continuity assumption similar to (v)) they may be
viewed as metrizable uniform versions of some topological contributions in
this area due to Wallace [61], Ward [63], Smithson [49], and
Turinici [55] (see also, from a more abstract perspective, Tarski [51],
Abian and Brown [2], Bakhtin [6]). On the other hand, suppose X is a
complete Fréchet space under a denumerable sufficient family of seminorms
S={|‘|;;ie N} and let X, be a closed cone in X then, defining an order-
ing structure by

X<y ifand oniyif y—~xe X,

the general hypotheses (i) + (vii) of this section are clearly fulfilled; in par-
ticular, when .S reduces to a single element (resp. a norm on X) Theorem 1
reduces (under the supplementary assumption (iv)) to the above quoted
Krasnoselskii-Sobolev result, while Theorem 3 reduces to the Chan-
dra-Fleishman result quoted in the introductory part of the paper (see also
Azbelev and Tsaljuk [5]). Some concrete examples of such cones may be
found in Krasnoselskii [28, Chap.I] (cf. also Vulikh [60, Chap. I11]).
Finally, suppose the self-mapping T were decreasing then, evidently, 7° is
increasing so that (modulo the remaining hypotheses) a number of
appropriate comparison results concerning the couple (OI)+ (OE) (with
T? in place of T) may be given; some topological aspects of the problem
were discussed by Seda[44] (see also Pelczar [41], Abian [1],
Kurepa [30], and Taskovi¢ [52] for an abstract ordered set viewpoint).

3. MULTIVARIABLE GRONWALL-BELLMAN INEQUALITIES

Let ne N be a positive integer and let R”. denote the standard positive
cone in R”, endowed with one of the usual norms (e.g., that introduced by
the familiar scalar product {-,- > in R") and the natural ordering. Also,
me N being another positive integer, let ||-| indicate one of the usual
norms in R™ and < the ordering on R™ defined as

81 peres Sp) K (H1 50y L when s,<t,,ielands;>t;, jeJ,
1 m J J j

where {I, J} is a partition of {1,.., m} (the cases I or J is empty being not
excluded). Now, let X™ indicate the class of all continuous functions from
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R" to R™. An useful Fréchet structure on X7 is that indicated by the family
of seminorms S(4)={|-|,; ie N} introduced by the convention

|x|;=sup{l|x(1)];0<t<a;}, ieN, xeX7,

A= (a;;ie N) being a cofinal sequence in R (to any reR" there
corresponds ie N with #<q,); also, a natural ordering structure on X is
that indicated by

x<y ifand only if x(f)<y(t), teR".

It is a simple exercise to verify X7 is complete (hence order complete) and
< as well as > (its dual) are closed in Nachbin’s sense [34, Appendix]
hence interval closed. Furthermore, let X° denote the class of all continuous
functions from R” to R, . Defining as before (by deleting the sign || |}) a
Fréchet structure and (with < taken as the usual ordering on R,) an
ordering structure on X?, it is clear that the above (order) completeness
and (interval) closedness properties continue to hold in our case. Finally,
given s, te R" , s<t, and xe X7, by jg x(r) dr we shall mean the n-fold
integral {, , x(r) dr.

Under these preparatory facts, let x — k(x) be an increasing map from
X7 to itself, and fe X7 a given element. Consider the multivariable
Gronwall-Bellman inequality

!
x(z)sf(z)+f k(x)(s)ds, teR". (GBI)
0
As in the preceding section, we are interested in determining the existential

comparative connections between the solutions in X7 of (GBI) and the
solutions in X7 of the associated multivariable Volterra equation

x(t):f(z)+j k(x)(s)ds, teR". (VE)
0

In this direction, as an immediate application of the first main result, the
following theorem about the couple (GBI)+ (VE) may be formulated.

THEOREM 4. Assume there is a cofinal sequence (a;;ic N) of vectors in
R" , a sequence G=(g;;ie N) in X° and a sequence (h;; i€ N) of mappings
Sfrom X° to itself, with the properties

(vili) fo any i€ N there corresponds je N such that, for every x in X7
with || x(1)]| <g,(1), 0< 1 < a, we have [[k(x)(1)| <h(g,)(1), 0<i<a,,

(ix) for each ie N, at least one couple (i, j) with je N taken as in (viii)
satisfies

171+ [ g ds<z(n,  0<i<a,
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Assume also that (GBI) has at least a solution in the subset X"(G) consisting
of all x in X7 with | x(1)] <gdt), 0<t<a,, ie N. Then, to any solution
ue X7(G) of (GBI) there corresponds a solution ve X7(G) of (VE) with
u<v and, moreover, for each solution we X7(G) of (GBI) distinct from v,
the relation v < w does not hold.

Proof. Denote by T the mapping from X" into itself defined by the
right hand of (GBI). Clearly, T is increasing; moreover, we claim X™(G) is
invariant under 7. Indeed, let xe X7(G) and ie N be arbitrary fixed; taking
J€ N as in (viii) we have, by the definition of X7(G)

Tk(x) ) <h{g)(1), O0<t<a, (8)

so that, by (ix)
ITX Ol <L/ @1+ [ hg))ds<gln).  0<i<a
proving our assertion. Observing that, as another consequence of (8)

1 Tx(2) = Tx(s)Il < | f() = f ()] +j

h(g)(r) dr, 0<s,1<a,
1(s,1)

(where I(s, t) stands for the symmetric difference between [0, s] and [0, ¢])
an immediate application of Lemma 4 (modulo the trivial quasi-ordering)
tells us T(X7(G)) is order-sequentially precompact. This shows all con-
ditions of the first main result (more precisely, of Theorem 2) are fulfilled
and conclusion follows. Q.E.D.

As an interesting particular case, let us analyse the situation

k(x)(1) = K(t, x(a(1)), jo H(s, x(s)) ds), teR", xeX™,

where K(t, u, v) is continuous from R" X R”™x R” to R™ and increasing
with respect to u and v, H(t, u) is continuous from R” x R™ to R™ and
increasing with respect to u, and a(f) is continuous from R to itself.
Assume that

I Kt u, )l <p()(ull +lvl),  teR%,uveR”,
I H(z, w) <q()lull, teR" ,ueR"
(p, g€ X° being increasing) and let (a,; ie N) be an increasing cofinal
sequence in R” satisfying, for each ie N,

0<t<aq; implies O0<a(f)<a;,,
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then, putting

hON0 =pla) Hato)+g(a) [ (5)ds), 1Ry yexs. e
condition (viii) of the above theorem will be clearly fulfilled (with j=i+1)
while (ix) reduces to

L7+p(ar ) [ g ilals)) ds+plar) alas )

<[ [gndras<eq,  0<r<a,ieN, ()
0 Y0

a condition that, actually, may be fulfilled in a large number of concrete
situations. It will follow then by the above result that, if the sequence
G=(g;;ie N)in X° were constructed so as to satisfy (9) then, any solution
in X7(G) of the (integro-functional) multivariable Gronwall-Bellman
inequality

(1) <f(1) + L K(s, x(a(s)), fo H(r, x(r))dr)ds, t€R" (IFGBI)

is necessarily bounded above by a certain (maximal) solution in X7(G) of
the corresponding (integro-functional) multivariable Volterra equation

x(1)=f(1) + L K(s, x(a(s)), jo H(r,x(r))dr)ds, teR". (IFVE)

for a number of related contributions in this direction we refer to Ashirov
and Mamedov [4] as well as Turinici [58]. A dual form of this statement
is the following: suppose (IFGBI) has at least a solution in X7(G)
then—modulo the remaining hypotheses—(IFVE) possesses at least a
solution in X”(G); note that, under such a perspective, the corresponding
formulation of Theorem 4 might be interpreted as a multivariable
“monotone” counterpart of Corduneanu’s existence result [21] (cf. also
Pelczar [42]) in the “nonanticipative” case (a(t) <t te R" ) and, respec-
tively, Oberg’s existence result [36] (see also Skripnik [48]) in the
“anticipative” case (a(¢) £ t, € R". ). Of course, a rather prohibitive feature
of the above reasonings is the existence of the a priori evaluation involved
in the definition of X7(G) for the solution to which we are going to apply
this comparation procedure because we do not dispose in general, of such
an evaluation; more exactly, the usual device is to start from a certain
solution u in X7 of (GBI or (IFGBI) and to obtain for this function an
evaluation of the form u < v where v is a solution in X™ of (VE) or (IFVE).
However, this evaluation is in many concrete situations a perfectly feasible
fact, whenever one substitutes in (ix) (or in (9) for the particular case just
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considered) the function | f(¢)]| by max(| f(z)|l, |u(2)|); note that, by
such a procedure it is possible to arrive at Headley's result [27] if we
restrict the domain of the functions involved in the above example to a
compact [0, b] with be R" (see also Westphal [64], Rasmussen [43],
Pachpatte [39, and others).

Passing to the second part of our developments, let us specify another
usual Fréchet structure on X is that defined by the family of seminorms
S(4, Gy={|"|;; ie N} introduced by the Bielecki procedure [10]

|x|;=sup{l|x(1)ll/g{1);0<1<qa,}, ieN, xeXy,

A=(a;; ie N) being a cofinal sequence in R” and G=(g;; ieN) a
sequence in X? with

gi([)>09 Oﬁfﬁa,,lEN,

clearly, (X, S(4)) and (X, S(4, G)) are equivalent as Fréchet spaces and
therefore the order completeness and interval closedness properties, valid
for the first of these structures, will remain as such for the second one. Also,
letting (R*"), indicate the subset of all (7, 5) in R?" with s <1, denote by Y7
(resp. Y?) the class of all continuous functions from (R*"), to R™(R_); of
course, a corresponding Fréchet as well as ordering structure may be
introduced on Y™ (Y?) by the same way as that indicated, at the beginning
of this section, for X™ (resp. X°). Now, let x — k(x) be an increasing map
from X™ to Y™ and fe X™ a given element. Consider the multivariable

n

Gronwall-Bellman inequality
(1) <f(1) + f k(x)(1,s)ds, 1€R". (GBI
4]

As above, we are interested to compare the solutions in X7 of this
inequality with the solutions in X7 of the corresponding multivariable
Volterra equation

13
x()=f()+ | kst ) ds, 1R (VE')
0
in this direction, as a consequence of the second main result, we have

THEOREM 5. Suppose there exist a cofinal sequence (a;;ie N) in R, a
sequence (g;; i€ N) in X? satisfying the above positivity condition, a sequence
(h;; ie N) of mappings from X° to X° and a sequence (A;;i€ N) in [0, 1) with
the properties

(x) x,yeX™, x<y,aeX%,ieN, |x(t)—y()<a(r), 0<t<a; imply
I k(x)(t, ) —k(p)(t, ) S hLa)(t, s), 0<s<t<a;
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(xi) 8 ho(tg)(t, s) ds<Angt), 0<t<a;, 120, ieN.

Then, to every solution ue X" of (GBI') there corresponds a solution ve X7
of (VE’) with u< v and, moreover, for each solution we X7 of (GBI') dis-
tinct from v, relation v < w does not hold.

Proof. Denote by T the mapping from X7 into itself given by the
second part of (GBI'), and let x, y € X7 be such that x<y and |x—y|, <t
for some 70, ie N. Then, clearly,

Ix(r) =y} <t8dt), O0<t<a,
so that, by (x)+ (xi),

I75(0) = Ty <[ 1A 5) = k() )] ds

<f' h(tg )1, s) ds

< 4,18(1), 0<t<a,

that is, | T7x — Ty|; < 4,7 and therefore, Theorem 3 (under its “contractive”
form) applies. Q.E.D.

A simple inspection of the above hypotheses shows that, due to the inter-
val-restrictive condition (x), Theorem 5 may be effectively applied
especially to nonanticipative multivariable Gronwall-Bellman inequalities
of the preceding form. A particular case of practical interest is that
corresponding to the choice

k(x)(t, 5)= K(¢, s, x(5)), (1, s)e(R¥),,xe X7,

where K(1,s, u) is continuous from (R%'), x R™ to R™, increasing with
respect to u, and satisfies the order type Lipschitz condition

”K(t9 8, u)_K(t’ s, U)” SL(t’ S)”u—‘l)”, (tas)e(RZ:)Jr’ u, UERm,MSU,

L being an element of Y? then, defining the sequence (A;; i€ N) of map-
pings from X° to Y° by

hp)t, s)=p; y(s), (1, 5)e(RY),,yeX?, ieN,
where

pi=sup{L(t,s);0<s<t<a;}, I€N,

condition (x) will clearly take place, while (xi) reduces to

t
u gds)ds<iglr), O<t<a,ieN,
. |
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a condition which is fulfilied, e.g., by the sequence of functions
g(t)=exp{b;,t), teR",ieN,

where (b;=(B;,... Bin); i€N) is a sequence of vectors in R” satisfying
Bx>0, 1<k<n ieN, as well as u,<A,B, B, i€ N. An interesting
linear variant of this case may be constructed as follows. Letting Z0"
indicate the class of all (m, m) matrices over Y?, put

K(t,s,uy=C(t, s)u, (1, s)e (R*") ., ue R™,

where C(t, 5) = (c;(t, 5); 1 <i,j<m) is an element of Z/™; clearly the above
Lipschitz condition is fulfilled by any couple u, v in R™ and therefore, the
mapping T appearing in the right member of the corresponding (GBI')
possesses a global uniqueness property. As an immediate consequence of
this fact, the conclusion of Theorem 5 may be written as: let ue X7 be a
solution of the (linear) multivariable Gronwall-Bellman inequality

x(z)sf(t)+£: Clt,5) x(s)ds, teR" (LGBI)

then, it necessarily satisfies

uN<S(0)+ [ His)f(s)ds. 1eRr, (10)

where H(t,s)=(hy(t, 5); 1<i,j<m), the resolvent kernel, is the unique
solution in ZU) of the (linear) matrix Volterra integral equation
Z(t, s)=C(t, s)+'[ C(t,r) Z(r, s) dr, (t,s)e (R™) .. (LMVE)

Indeed, it is a simple exercise to verify (see, e.g., Tricomi [53, Chap.1,
Sect. 1.3]) the right part of (10) is, by (LMVE) the (unique) solution of

x(t):f(t)+f0' C(t,s)x(s)ds, teR" (LVE)

and this proves our assertion. Note at this moment, a more direct way of
studying the above inequality is that of using the successive approximation
method for (LVE) starting with a solution of (LGBI); the idea of this
method goes back to Chu and Metcalf [17]. At the same time, let us
observe that, if we take

Ct,s)=P(1) Qs),  (t,5)e(RY),

with P(1)=(py(1); 1<ij<m) and Q(1)=(q,(t); 1<ij<m), (m, m)
matrices over X°, the above inequality (10} becomes

u() S0 +P0) [ Ht) Q) f(9)ds. 1R, (10)
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where H(t, s) is a solution in Z™ of the linear matrix equation
t
Z(t, s)= I+J Q(r) P(r) Z(r, s) dr (1, s)e (R, (LMVE’)

and therefore, the corresponding variant of Theorem 3 reduces to the
Chandra-Davis result [15]; see also Snow [50], Nagumo and Simoda
[33], Young [67], Berruti Onmesti [9], and Walter [62, Chap.]III,
Sect. 197]. Finally, as a more technical example of this kind, let us consider
the linear multivariable Gronwall-Bellman inequality

’l .
XLy gy 1) S (Eryoes 1) +Zf Kty 1,50,y $1,00 0)
(i 0
X X(E] yerey Sigeeey £,) dS;

+ Zj J K91y 15 0pecty Sy Sy 0)

(i) °0
X X8y gy Sipeery Sjperey by} dS;dS; 4 -

3 In

|| K 1 Sy S,)

X X(S) 50y $,) dsy v+ dS,, (8y4s 1,) € R, (LGBI')

where 3, comprises () =n terms, 3, comprises (%) =n(n—1)/2 terms,
etc, and KV, K% K"-" are elements of Z. Formally, (LGBI')
appears as a generalization of (LGBI); however, a close analysis shows it is
in fact reductible to the above quoted inequality. Indeed, regarding
(LGBI') as a linear Gronwall-Bellman inequality with respect to the
variable ¢, and making use of (10) with n=1, it follows that any solution
of it must also satisfy the linear inequality

' .
X(t s L) S 1 (s 1)+ Y, K1y, 1,50, 8,0, 0)
(i)
X X(2] gy Siyeeny 1) dS;

+ZJ f KD (£ ey £ Opey 8500 3y 0)

19 el
(i) 0

X XLy yeuny Sipenry Sjyeny 1) dS;ls;+ -+

X x(sl,..., $,)dsy - ds,, (), t,)€R", (LGBI})

where 3, indicates }',, without its first term and K, K{(¥,..., K{*" are
defined in terms of K, K™= K"-" and some addltlonal expressions
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involving the resolvent kernel associated to the first part of ¥ ,; further-
more, treating (LGBI;) as a linear Gronwall-Bellman inequality with
respect to f, one arrives (again by (10) with n=1) at a new linear
inequality of the form (LGBI’) in which two terms of 3", were deleted, etc.
Continuing in this way, one concludes, after () = n steps, that any solution
of (LGBI') must satisfy the linear inequality

x(tla‘", tn)gfn(tl" " n +ZJ‘ J K(U) tla ,tn,O, 5 Sigee ’sj"",O)

(i) "0
X X(L yerny Siperey Sjyenny 1) S,

t Iy
+fl"'J Kbty ey 13 S50y S)
0 0
X X(S1 50y 8,) Sy dS,, (2,0, 1) ERT, . (LGBI)

Now, treating successively (LGBI,) as a linear Gronwall-Bellman
inequality with respect to the couples (¢, ¢5),..., (¢,_, t,) and making use

f (10) with n=2, one arrives, after (3)=n(n—1)/2 steps, at another
integral inequality of the form (LGBI'), in which 3, ;) were deleted, and so
on. Consequently, after (})+ -+ +(,",)=2"—2 steps, it will follow that
any solution in X7 of (LGBI') must satisfy an inequality of the form
(LGBI}) and our assertion is proved. Of course, these reasonings do not
make any distinction between (<) and (=) in the above reduction process
so that, the solution of the Volterra integral equation associated to the last
inequality is nothing but the solution of the Volterra integral equation
associated to (LGBI'). A number of concrete forms of this solution (under
some restrictive conditions about our kernels) were given by
DeFranco [23]; see also Conlan and Diaz [19] or, from a more particular
viewpoint, Ghoshal and Masood [26].

4. A REDUCTION PRINCIPLE

The comparison results we formulated in the preceding section are, in a
certain sense, the best possible ones, because, as already noted, the
solutions of (VE) (resp. (VE')) appear as maximal elements among the
solutions of (GBI) ((GBI')). However, in many concrete situations, these
solutions are, technically speaking, difficult to be handled, the most visible
disadvantages being the rather complicated Zorn procedure for the con-
struction of a maximal solution of (VE) and/or the intervention of the mul-
tivariable iterated integrals in the process of building up a solution of
(VE'). For these reasons, some “approximate” comparative evaluations for
a solution of (GBI) (resp. (GBI')) via one-variable techniques were
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welcomed. It must be noted at this time that, although the statements given
below are formulated in the cone (X7*), = (X?2)™ of all continuous functions
from R" to R™, their corresponding extensions to the whole space X' are
almost immediate; some of these questions will be treated elsewhere.

In the following, it is convenient to express a point of R” as a couple
(t,7) where te R, , 1€ R"~!'. Given any x € (X7)", we shall denote by x(t)
the element of (X9)™ defined as

x(t)(1) = x(1, 1), teR,,te R

in this context, an element x € (X?)” will be termed quasi-increasing when
o <t implies x(o)<x(7) in (X9)". Let x+—k,(x) be an increasing map
from (X9)™ to itself and f, an element of (X9)”. We shall say (f,,k,)is a
normal couple when (P,) the set V(f,, k) of all solutions in (X?9)™ of (VE)
is not empty, (P,) to any solution u, € (X7)” of (GBI) there corresponds a
v, € V(f1, k;) with u; <wv,. Sufficient conditions assuring this property were
made precise, in fact, by the results of the preceding section. Under these
conventions, let x — k(x) be an increasing map from (X°)” to itself and f'a
quasi-increasing element of (X°)”. The following “sectional” comparison
principle may be stated and proved.

THEOREM 6. Suppose there exists a family (K,); t€ R""") of increasing
mappings from (X3)" to itself, such that

(xit) [§k(x)(s, 0) do < K)(x(1))(s), s€e R, ,te R, for each quasi-
increasing x in (X°)",

(xiii) the couple (f(t), K)) is normal, for any te R
Then, for each solution ue (X°)” of (GBI) one has
u(t, 1) <)1), teR,,TeRY! (11)
with v, belonging to V(f(z), K,,) for any 1€ R"~ 1.

Proof. Let u be a solution in (X°)” of (GBI). Suppose in addition u is
quasi-increasing then, by the above hypothesis (xii) we get for each
TeRy!

W) (1) <f()(t) + fo ( jor k(u)(s, o) do’) ds
<f(o)(t)+ fol K(u(t))(s)ds, 1€ R,

so that, by (xiii) one immediately arrives at (11). Now, if « were not quasi-
increasing then, replacing it by

W (1) = (1) + fo ku)(s)ds, teR",
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it is clear this new function is a quasi-increasing solution in (X%)” of (GBI)
and the conclusion follows from the preceding discussion combined with
the evident relation u < u*. QED.

As an interesting particular case when m =1, let us consider the choice

k(x)(t)=h(r) F(x(1)), teR" , xeX?,

where A is an element of X? and F is a continuous increasing function from
R, to itself then, putting

Ko(»)(0)=H(0) F(y(r)) teR,,yeX), 1eR ",
where

H(T)(t)zjor h(t,0)ds, teR, teR ",

condition (xii) will evidently take place and consequently, under the accep-
tance of (xiii), any solution ueX? of the scalar Gronwall-Beliman
inequality

x(t)sf(t)+ffh(s)F(x(s))ds, teR" (SGBI)

0

satisfies, for any e R%~!, an evaluation of the form (11), v, being a
solution of the one-variable nonlinear Volterra integral equation

YO =10+ [ Hiofs) F6Nds 1€R,.  (SVE))
For example, assume F is strictly increasing, F(0) =0, and
0<f(z,t)<M(r)+£:g(f)(s)ds, teR,,teRV ',
where (g, TeR"" ') is a family of elements belonging to X7 and (M(1);
e R"~ ') is a family of strict positive numbers; then, every solution y € X

of (SVE,) satisfies
J()< M) + [ (8ol 1) + Hiofs)) Fy(s)) ds. 1€ R,
in which case, by a standard procedure (see, e.g., Bihari [11])
bl <G (G(M(r)) + [ (WP s 2 ds + [ Hio(o) ds>
for all +=0 with

GOM(N) + | (8sVFU (5.2 ds+ [ Hicls) ds < Geo)

t
0
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the function G: (0, o) — R being defined as

!
G(t):j (1/F(s))ds, 1> 0forsome a> 0.

Note that, under such a circumstance, the corresponding variant of
Theorem 6 extends a series of Wendroff type inequalities due to Singare
and Pachpatte [47]; see also Mamedov, Ashirov, and Atdaev [32,
Chap. II, Sect. 2] or, from a more particular viewpoint, Shih and Yeh [46],
Bondge and Pachpatte [13], Yeh [65], Shastri and Kasture [45],
Abramovich [3], and others.

Let x+—k,(x) be an increasing map from (X9)™ into itself and f, an
element of (X?9)”. We shall say (f,, k,) is a strongly normal couple when it
is normal and (P;) v, <w, for each solution v, € (X9)” of (VE) and every
solution w, € (X9)™ of (GBI), with (<) replaced by its dual (>). Now, as a
completion of the above result, we have

THEOREM 7. Under the same general hypotheses, assume there exists a
Sfamily (K .,; 1€ R, ') of increasing mappings from (X3)™ to itself such that,
(xii) plus

(xiii’) the couple (f.), K.)) is strongly normal for any te R" "
hold and let in addition the element w in (X°)™ be such that

(xiv) f(5, 1)+ [6 Koy(w(t))(s) ds<w(t,7), te R, te R"~".
Then, we necessarily have u<w, for each solution ue (X°)™ of (GBI).

Proof. By the reasonings of the above theorem we have the evaluation
(11) where v, is a solution in (X7)” of (VE) with (f, k) replaced by
(f(z), K()). This fact, together with (xiii)’ plus (xiv), establishes our asser-
tion. Q.E.D.

As a particular case useful in applications, let us take
k(x)(t) = P(t)(x(¢) +f Q(s) x(s) ds), teR", xe (X"
4]

with  P(t)=(py(t); 1<i,j<m) and Q(t)=(q,(t); 1<i,j<m), (m,m)
matrices over X° then, defining

Ko =H()y(t), teR,,ye(X})", teR} ",

where
He )= fo P(1, a)<1+f0 L’ O(r, p) dr dp> ds, teR,. teR"!

hypothesis (xii) will be fulfilled if we restrict our considerations to the
increasing elements of (X?); note that, a sufficient condition that such a
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restrictive statement of (xii) be effective is that f be increasing. Moreover,
by the discussion of the preceding section (xiii’) takes evidently place. Now,
let us put

w(t, 1) = <exp (jo H.s) ds))f(t, 1), teR,,teR%!

with f taken as above, and assume 7+— H,,(¢) and t+— |5 H,, (s) ds are
permutable as (m, m) matrix functions then (cf. also Coddington and
Levinson {18, Chap. I11, Sect. 4])

S0+ [ Kiolw()(s) ds
~f(t,7)+ jo Hy(s) exp ( J, Hietr) dr> 1(s,7) ds

< <1+ L Ho(s) exp ( L Ho(r) dr) ds) £(6,7)

= (exp (L’ H\(s) ds))f(t, T)=w(t, 1)

and (xiv) will be satisfied too. By the above theorem it will follow that any
solution u € (X°)™ of the (vector) linear Gronwall-Bellman inequality

(1) <f(0)+ jo P(s)(x(s) + L 0(r) x(r) dr> ds, teR" (LGBI)

is necessarily bounded above by the function w defined as before. Note
that, when m =1, this conclusion is nothing but the Pachpatte result {38]
proved by a specific “differential” procedure; see also Bondge, Pachpatte,
and Walter [14], Yeh and Shih[66], Corduneanu [20], and
Pachpatte [37,407]. At the same time, it is not without interest to specify
that an appropriate matrix version of this example may be identified with a
similar one due to Chandra and Davis [15]. A number of useful
applications of these results to hyperbolic partial differential equatons may
be found in the above quoted Pachpatte’s papers.
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