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INTRODUCTION

Arguing from a few evident oscillatory characteristics shared by numerous
vibrating physical systems, Gantmacher and Krein [1] showed that the
influence functions of many of these systems were totally positive (TP),
see Definition 1.1. Subsequently, they supplied formal proofs establishing
that the Green’s functions associated with several standard boundary-value
problems (BVP) of Sturm-Liouville type were TP. This discovery then served
as a keystone for the elucidation and clarification of much of the classical
theory of these boundary-value problems. The work of Krein and Gant-
macher, which also includes discussions of some special 4th order equations
as well as the 2nd order Sturm-Liouville theory, has undergone several exten-
sions and refinements. For intance, in Karlin [3], a family of 2kth order
linear differential operators is presented together with an appropriate set of
separate boundary conditions for which the associated Green’s functions
are TP. For further generalizations the reader may consult Karlin [5, Vol. 2]
and Karon [4].

The study of boundary-value problems based on TP considerations
requires a precise knowledge of when strict inequality will hold in the system
of determinants (1.2). For a deeper analysis, it is essential to extend the notion
of TP to allow for coincidences among the points occurring in (1.2). The
appropriate concept here—extended total positivity (ETP)-—was introduced
in Karlin [3, Chap. 2], see also Karlin [5]. The concept of ETP has proven
essential in analyzing certain problems in the theory of inequalities and in
generalized convexity theory as well as in the study of boundary-value
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PERIODIC BOUNDARY-VALUE PROBLEMS 375

problems, disconjugacy problems, and multiple-knot spline approximation
problems.

Motivated by the studies above and the observation that numerous
vibrating physical systems admit mathematical descriptions as boundary-
value problems with periodic boundary conditions, it is natural to ask
whether the Green’s functions arising from periodic boundary-value problems
share the total positivity properties exhibited in the one-sided case. It is
intrinsic to the periodic case that the Green’s function cannot be TP;
however, some sign regularity is preserved and we shall present a class of
differential operators together with boundary conditions of periodic type for
which the Green’s functions are cyclic totally positive (CTP), see Definitition
1.3. Moreover, with an eye to the applications, we give precise conditions
under which the determinants associated with these Green’s functions are
positive.

The main theorems of this paper (Theorems 1.2-1.4) have immediate
application to the theory of periodic splines (see §3) and to the spectral
analysis of the boundary-value problems described by equations (1.7-1.8).
These spectral properties will appear in a separate paper by the second author.
Still anether application with a physical flavor is included at the end of §1.

1. TermiNoLoGY AND Mamn ResuLts

We review briefly several definitions of total positivity theory. The reader
may refer to Karlin {3] for further elaboration of these concepts and their
interrelationships.

To begin with let X and S be linearly ordered sets and G(, s) a real func-
tion defined on X x S. The p-dimensional (open) simplex in
X? =X x X X -+ X X (p copies of X) is denoted 4,(X):

AAX) = {x = (% gy Xp) | 20, < -» < %, , %, € X}
The (relative) closure of this simplex is 4,(X):
AUX) ={x = (g yoey 20) | 2 < oo K 2, , 2,6 X

When X = S we abbreviate 4,,(X) to 4, (and 4,(X) to 4,). The determinant
function

Grifx, 5) = G (7777 %) — det || Glas, 5l (L1)

1 sty Op

defined on 4,(X) x 4,(S) is called the compound kernel of order p induced
by G{(x, s).
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DrrmviTion 1.1. In the above context, G(x, s) is called totally positive
of order n (TP, if
Gip(x,8) = 0 (1.2)

for p =1, 2,..., n and for all
(%, s) e 4(X) X 4,S). (1.3)

To define extended total positivity, we assume that X and S are (real)
intervals and the G(, s) is smooth enough to allow the operations performed
below. Notice, incidentally, that (1.1} would not serve as a useful definition
for Gp,(x, s) if either x or s were boundary points of their respective
simplicies because then Gpi(x, s) = O trivially. If x € 4,(X) and s e 4,(S)
we shall write

Gz, s) = G* (71 %)

S yeees Sp
for the determinant defined as in (1.1) but with the following modifications:

0 Max,; <x,= - =2xp5 3 <& we replace the (£ + v)th row
of the determinant (1.1) by

o o
[ Gy s 5 Gl s))| (= 1,200k — 1)
() if s, 4 <sp = ' = sp3y < Sy we make a similar substitution
in the columns of (1.1) this time introducing partial derivatives 9/0s;
(iil) if coincidences occur in both x,s and s’s we perform both
substitutions.

Derinrrion 1.2, Continuing in the context above, Gx,s) is called
extended totally positive of order n (ETP,) if

Gii(x,s) > 0 (strict inequality)

whenever
(x, s) e 4 (X)) x 4,(S5).

We turn next to the concept of cyclic total positivity and justify the state-
ment made earlier that a Green’s function, G(x, s), associated with a boundary-
value problem of periodic type cannot be TP in the usual sense. Indeed,
suppose for simplicity that the associated differential operator has constant
coefficients so the G{(x, s) = g(x — s) is, in fact, a translation kernel, where g
is a 2m-periodic function of its argument. For convenience we shall deal
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exclusively with 2#-periodic functions; however, any other period would
serve equally well. In this context it is natural to view g as defined on the
circumference of the unit circle and view the system of points

sxl < v <l &y <x1+27'r?
(31 <L v ] 5y <5y -+ 27Ts

as invariant under rotations, i.e., as equivalent to the system

fop < vor <<y <<%y A 20 < v < gy + 2m)
sy < voe <§p < 8§ +2m < - < Sy -+ 2}

for all choices of £ and m. In order to define a notion of “total positivity”
which is compatible with the periodic structure of g, we must impose the
conditions

() g e 2 a0

S1 yeeny Sy Si veees Spy §3 F 27, Spq 2

on the compounds of G. A simple calculation reduces the right side of (1.4) to

(1 ),

51 yees Sp

Clearly then (1.4} is automatically satisfied by all the odd-order compounds
of G and by none of the even order compounds (except in the trivial case when
they vanish identically.) These observations show that the periodic nature of
£ is compatible with a ““total positivity” structure on its compounds only when
the positivity conditions are imposed only on the odd order compounds. This
situation justifies

DerivrrioN 1.3, A function G(x, s) defined on [a, 8) X [a, b) (and which
may be regarded as extended periodically in each variable) is called cyckic
totally positive of order 24 + 1 (CTP,,,) if all the odd-order compounds

Gi(x,8) =0 (p=13,..,2/4+1)
for x, s €4,([2, b)).

Remark 1.1. If G{x, s) = g(x — s)and [a, b)) = [0, 2=) and the conditions
of Definition 1.3 are met it is customary (following Schoenberg) to call g(x)
a cyclic Pélya frequency function of order 2/ - 1.

Remark 1.2. If G(x, s) is TP, (or CTP,) for all n = 1, 2,..., we say that
G(x, 5) is TP, (or CTP,) or simply TP (or CTP).
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The class of periodic boundary-value problems we shall discuss is defined
as follows: Let

Y2(®)s Y2(%)yees vi()

be real functions defined on [0, 2#] which are of continuity class C7[0, 2]
and satisfy

| i" VR A0 (= L) (1.5)
Define
D, =D+l
DF=—D+yl (i=1lu,r;D=ddx (1.6)
Dy =Dy =1

and let D, be either a D; or a D;*. Define an rth order differential operator
L, by
Lu=D,D,_ - Du (1.7

and associate to it the generalized periodic boundary conditions (BC)
D, - DDu0) = B, -+ D,Byg(2m) (1.8)

where j = 0, 1,...,7 — 1. We denote these BC by 4, . It is also convenient
to let 4, stand for the class of all C'[0, 2x]-functions satisfying the BC &, ,
and to take &, for the domain of the operator I, .

Remark 1.3. If all the y,’s are periodic, the generalized BC 4, are equiv-
alent to the purely periodic ones:

#(0) = u(2w),..., u(0) = u-1(2x).
Theorem 1.1 confirms that the BVP determined by (1.7)~(1.8) has a
Green’s function which we denote by G,(#, s).
TueoreMm 1.1. Ifue B, and Lu = O then u = 0.
Proof. ‘The proof follows easily from the standard factorizations,
D; = D + yl = ;' Do,
D#* = —D + y,] = — w;Dw;*

where

odw) = exp ([ 0 yi(t) di). (1.10)



PERIODIC BOUNDARY-VALUE PROBLEMS 379

Simply write Zu in factored form and integrate L,u = O step-by-step
using the BC &, and the basic assumption (1.5) to show that all integration
constants vanish. The last integration gives # = 0. ||

Theorerns 1.2-1.4 delimit the precise TP properties of G(x, s). Their
proofs are presented in §2. Let 4, = 4,([0, 27)) for the remainder of this

paper.

TuroreM 1.2. The Green's function G(x,s) for the BVP (1.7)~(1.8) is
CTP, i.e.

Glm(x8) =0 (p=135..) (1.11)
for all x, s € 4,, . Moreover, (1.11) implies
Glaxs) =0 (p=1,35,.) (1.117)

for all x, s € 4, for which (G (%, 8) is defined (see Remark 1.4).

It is crucial for the applications to determine precisely when strict inequality
holds in (1.11) and (1.11"). Based on the results in the one-sided case (Karlin
[3, Chap. 10, Sec. 8]), one expects the determinants in question to be positive
only if the points ¥, ,..., X, , §; ,..., §, “interlace” properly. In the periodic
case, this “interlacing” must be interpreted in a rotationally invariant way.
An appropriate “cyclic” interlacing may be defined as follows: Let
X = (% yeuey ¥5), S = (81,50, 5,) €4, and assume temporarily that
{x;} N {s;} == &. Regard x, and s, as distributed on the circumference of the
unit circle, 0U. Let A(x, s) be the finite set of all closed subarcs of 0U whose
end points lie in {x;} U {s;}.

DermvitioN 1.4. If o€ d(x, s) is a closed subarc of 06U we define

21~21};

€0 sj;Eca

#w) =

that is, #(«) is the difference between the number of #’s and s’s which lie in .

Dermurion 1.5, In the preceeding context,

A(x, s) = Jmax #(e). (1.12)
In short, 4(x, s) is the largest number obtainable when one counts all possible
blocks of #’s and s’s on U attributing opposite signs (4-1) to the &’s and ¢'s
respectively. Clearly 4(x, s) is a rotationally invariant “measure” of the inter-
lacing of the coordinates of x and s.
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To relax the restriction {x;} N {s;} = ¢ suppose
Xp= " =X === "" =5, (1 A = 0).

We perturb these &’s and §°s slightly separating them all but not disturbing
their location on éU relative to the remaining coordinates of x and s, and
repeat this procedure for any other coincidence points (such as ). Formation
of all possible perturbations of this sort leads to, say, M different configura-
tions

xm = {xmp | stm = {sim}¥ | (m = 1,..., M)
with corresponding A™s for which
A(X('m), S(m)) — max #(a(m))

Alm)

is already defined.
DerIntTION 1.6, In the setting above, if x, s, €4, we define
— (m) glm)
A(x, s) = 1$1aéMA(x , ™),

In effect, Definition 1.6 says that we count coincident x;’s and s;’s so as to
permit as little “interlacing” as possible.

We are now in a position to state two sharp extensions of Theorem 1.2
whose proofs are considerably deeper.

TueoreMm 1.3. The Green's function G,(x,s) for the BVP (1.7)«(1.8) is
CTP,, . Moreover,

(G (%,8) >0  ifandonlyif A(x,s) <r (1.13)
where x,s€d,, p =1, 3, 5,..., and r is the order of L, .

TuroreM 1.4. Let G(x, s) be the Green’s function for the BVP (1.7)-(1.8)
and let the points X = (Xy yy Xp), S = (51,0 Sp) €A (P = 1,3, 5,...) be
subject to the restrictions:

(2) Whenever o of the x;’s coincide with B of the s;’s we require o + 8 <7 - 1.

(b) No more than v consecutive x’s or §’s coincide.

Then (G,)*1,1 (x, 8) = 0 and moreover

(GIia(x,s) >0 ifand only if A4(x,s) <r (1.14)
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Remark 1.4. The conditions (a) and (b) are minimal requirements
guaranteeing that the entries of the determinant in (1.14) have a meaning.
Whenever an (r — [)th derivative occurs it is taken as a right derivative with
respect to x and a left derivative with respect to s.

Theorems 1.1-1.4 for the periodic BVP (1.7)-(1.8) have analogs for the
“o0dd” periodic BVP when the differential operator (1.7) is assigned the BC

D, D,Dgu(0) == —D, - B, D27y  (j =0, 1,7 — 1) (1.8)

instead of the BC (1.8). In this case the even order determinants of G (x, s)
maintain fixed signs and the conclusions of Theorems 1.2-1.4 hold by simply
replacing “p = 1,3, 5,...7 by “p = 2,4,6,...”. The proofs for the odd
periodic case are omitted being slight variants on those for the periodic case.
Arguments hinging on the periodicity of G,(x,s) in the periodic case are
replaced by arguments hinging on the intermediate-value theorem in conjuc-
tion with (1.8") in the odd case. In particular, the restrictions (1.5) necessary
for the existance of G (x, 5) in the periodic case become superfluous in the odd
periodic case.

We close this section with the physical application mentioned in §0.
Consider a physical segment—which we conceive of as the interval [0, 27]—
upon which directed forces of magnitudes and directions f; are impressed at
the points 5; (7 = 1, 2,..., 24 + 1). We assume the resulting displacement
function y(x) satisfies the differential equation I,y — dF and the BC 4,
where dF =} f8; and §; is the §~measure concentrating at 5; . An interesting
question emerges: Is it possible to find a set of forces {f;} which when applied
at the points {5;} produce arbitrarily prescribed displacements {y,} at a given
set of points {x;} ( = 1, 2,..., 2 + 1)? The answer is yes if and only if
A(x, s) < 7. This result is physically satisfying for it reveals that a set of
forces { f;} will exist if and only if the points of application {s;} and the points
of interpolation {x,} are sufficiently intersperced. The proof of our assertion
follows easily from Theorem 1.3 and the standard representation for the
displacement

26+1

W) = ¥ Glw )i

2. ProOOFS

The proofs of Theorems 1.2-1.4 present difficulties not encountered in the
corresponding proofs for the TP case. Sylvester’s determinant identity which
proves so useful in the TP case is of only marginal value here because the
even order compounds in the CTP case do not maintain fixed signs. The
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two cases are similar to the extent that both employ frequent forward and
backward induction arguments coupled with certain perturbation arguments.

We begin with the proof of Theorem 1.2 which will be done by induction
on 7, the order of L, . If 7 = 1, (1.7)~(1.8) is either

D¥u = —u' 4 yu

(2.1)
u(0) = u(2r)
or
Dy = + yu
) ! Q.1
#(0) = u(2m)
Using the notation of (1.9) the BVP (2.1) has the Green’s function
i ] explwy(®) — an(s)) 2 <s
Gy, s) = {* 2.2)

L esplon(n) —ans)) 5 <

where o = exp(w;(27)) > 1, and the BVP (2.1") has the Green’s function
obtained by interchanging x and s in (2.2).

Lemma 2.1, The Green's function for the BVP’s (2.1) and (2.1') are CTP,, .
Moreover,

G (x,8) >0 ifandonlyif A(x,s) <1
p=1,35... 2.3)

This result is an immediate corollary of Lemma 2.2.

LemMa 2.2. Let

a x<s

Ko =l ¢<x

(2.4)

with a, be R. Then for x,s€d, and p = 1,2, 3,...,

ala —B)? 2 if x sy < e <y <8y
Ki(x,8) = {b(d —a)?t if s < < - <5, <, 2.5)
0 otherwise

Proof. Evidently, except under the special cases stated, either a pair of
rows or columns of K,(x, s) agree and hence Kj,i(x, s) = 0. In the special



PERIODIC BOUNDARY-VALUE PROBLEMS 383

cases, the determinants in question are easily computed and the lemma
confirmed. ||
From (2.2) we see that Gy(x, 5) has the form

Gy, 5) = f (%) g(s) K, 5)

where f, £>0, ¢ =af(a —1) >0, and & = 1f(a — 1) > 0. Clearly,
G, (x, s) will be CTP,, if and only if K(x, 5) is and examination of (2.5) reveals
that this occurs if and only if 2 > 0 and b > @ which is the case here.

Remark 2.1. Tt is interesting to note that the kernel in (2.4) will be TP,,
if and only if it is triangular with a > 0, b = O or vice versa.

The induction step in proving Theorem 1.2 is advanced by applying the
basic composition formula (BCF) to the convolution formula (2.10) below.
Recall the BCF states: If K(x, ), L(x, 2), and M(z,y) are Borel functions
satisfying

K(x, y) = f Lz, %) M(,y) do(2) (2.6)

where xe X, ye Y, ze Z; X, Y, and Z are linearly ordered subsets of R;
and do(2) is a sigma-finite measure on Z, then

Kia(oy) = [ Lii(s, ) Mia(z ) dofz) 2.7)

F

where do(z) = do(2,;) -+~ do(z,). A proof of this formula appears in Karlin
[3, page 17].
We associate with the BVP (1.7)-(1.8) two related problems:

L,u=D, - Du

M I (2.8)
D, - D,Du(0) = D, - D Dgu(2x)  (j =0, 1y, 7 — 2)

with Green’s function G,_,(x, s) and

L{T)u = Du
D,_u(0) = D,_yu(2w)

with Green’s function G{'(, s). Making a standard interpretation we have
the convolution formula

G = | G, (%, &) CY(E, 5) dt. (2.10)
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There is a companion relation to (2.10) which we will need later. Let
L, = D, - D, and associate to it the BC #,_, based on the r — 2 operators

D,_4 ,...; Dy and denote its Green’s function by G,_,(#, s). Let G;(x, ) be the
Green’s function for the BVP L, , #, . Then

Gz, s) = Jz" G, &) G, y(&, 5) dE. (2.10')

Assume now that (1.11) of Theorem 1.2 holds for all Green’s functions
associated with differential operators of type (1.7)~(1.8) whose orders are <.
Then both Green’s functions on the right side of (2.10) are CTP,, and hence
by the BCF the same is true of G,(x, 5). This establishes (1.11) of Theorem
1.2 since the case 7 = 1 holds by Lemma 2.1. The final conclusion of
Theorem 1.2, namely, (1.11°) follows directly from (1.11) and a standard
argument of total positivity theory (consult Karlin [3], Chapter 2 Theorem 2.2
and its proof).

A similar induction argument in conjunction with the following general
result proves (1.13) of Theorem 1.3 and hence establishes that theorem.

TueoreM 2.1. Let K(x, &) and L(, 5) be sign-consistent of order p (SC,);
that is, there are signs €,(K) (41 or —1) and €,(L) so that

(K) Ki5(x, €) = 0, (L) Liyi(E, s) =0
Jor all x, &, s € 4, . Assume further that

AK)Kipi(x, §) >0 ifandonlyif Ax <1  (<r—1)
D Lpi5 ) >0  ifandonlyif A% s)<r—1 (<)

Then
Mx,5) = | :” K(x, &) L(£, 5) d¢.
is SC, with e,(M) = e,(K) e,(L) and

My(x,8) >0  ifandonlyif Ad(x,s) <r {2.11)

Proof. 'The BCF

M s) = | Kiax ® Lia(5s) 4 212)

shows at once that M(x, s) is SC,, and that e, (M) = €,(K) ,(L). Only (2.11)
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requires discussion. Suppose M,(x, s) > 0. By (2.12) and our hypothesis
there is a point § € 4, such that

Az, ) <1 and A, s)<<r —1 (2.13)
However, the definition of A(, -) readily yields the transitivity relation
4(a, b) < 4(a, c) + A{c, b)

and hence 4(x, s) < 7 in view of (2.13).

Conversely, suppose 4A(x, s} < 7. If, in fact, 4(x, s) << r — 1 the set

(E=(&, &) la —c<&<x+e(=1.,p)

has positive p-dimensional Lebesgue measure and for e > 0 suitably small
4(x, §) <1 and 4(g,s) <# — 1 so by (2.12) My(x, s8) > 0. The extreme
case A(x, s} = 7 requires a more delicate argument. In this case we can find an
arc op € A(x, s), oy = [s;, %] which contains an excess of s over x’s
with points distributed as indicated in the following figure:

tewr—1 7 r—1 v v—1 7 = v—1 7 r—1 »—2
| T s | | | ! i I
| | I ] 1 | I | I i !

$i Sk Sp Xy Skre Xy Spas U Xfgrez Seqe Xbje2 Kb

Perturbing %, to x/,..., Xz, t0 X ., With
Spit < xé+t < Syt (t = 0,..., K - 1)

and leaving the remaining x,’s fixed, we secure a new sequence x’ with the
properties: The arcs a € 4 = A(x, s) are in an obvious correspondence with
the arcs o' € A’ = A(x', s) so that

(@) #) <rforall e A,

(i) aed, o) <7 — 1 = #H)<r — 1,

(i) of Moy 7%= 0 = o'y <r — 1 1e if the arc o overlaps the (fixed)
arc oy, then #a) <v — 1.

Properties (i)(iii) imply that we may reduce step-by-step the number of
arcs on 0U where #(x) = 7 in such a way that we finally secure a point
x"ed,:

(@) #(") <r —1lforalla" e 4" = A(x", 8),

(b) A(x,x") < 1,

¢) x” is gotten from x by “perturbations” as indicated above.
g Y P
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Thus the set of positive measure

{(E=({1,m &) 0] —e < & <)+ ¢

satisfies A(x, &) <1 and 4(§,s) <<r — 1 for small e > 0. As before the
BCF shows that Myi(x,s) > 0. ||

Theorems 1.2 & 1.3 are now established and will be used to prove
Theorem 1.4. Only relation (1.14) remains in doubt:

(Gita(x,8) >0 ifand only if A(x,s) <r (1.14)

Proof of Theorem 1.4.

That (G’,.)[p] (x, 8) > 0 = A(x, s) < r is easily established: Indeed, in the
contrary situation, we could find x, sed, with 4(x,s)>r + 1 and
(G,)m (%, 8) > 2a > 0. By the standard process of “separating knots”
could then find %', s’ € 4, which are perturbations of x, se€ 4, and satlbfy
Gm(x,8) = a > 0. Also exercising a little care in the separation process,
we may select X" and s’ so that A(x’, s") 2> # + 1. This situation is now incom-
patible with Theorem 1.3.

The reverse implication in (1.14) (ie., 4(x,s) <7 = (G,,)E"p](x, s) > 0)
requires an elaborate series of induction arguments which we proceed to
outline: For » = 1, (1.14) is true by Theorem 1.3. We assume by induction
that (1.14) is true for all Green’s functions corresponding to differential
operators of the type considered in Theorem 1.4 with orders <r — 1. We
prove (1.14) for L,’s as follows. For such differential operators of order r and
for p = 1 (1.14) is true (by the induction hypothesis for orders <r — I and
(2.10)). We assume by a further induction that (1.14) is true for all odd
p<2/—1 (> 1) and prove that (1.14) holds for p == 2£ -4 1. This last
step is accomplished by a final induction; namely, let

p = (X, s) = the number of distinct points in {x;} U {s;}.

For the case p = 2/ -+ 1, if p = 2(2¢ + 1) then (1.14) is certainly true by
Theorem 1.3. We assume by induction that (1.14) holds for p = A (A = 2)
and prove (1.14) holds for p > X — 1. Once this is done the proof will be
complete.

In order for our proof to have substance there must be either repeated x’s
or §’s. (Otherwise, the proof is easy with the aid of the BCF and (2.10).)
Assume for definiteness that repeated s’s occur. The induction argument on u
is rather involved and is presented in a series of lemmas.
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Lemma 2.2, Let

]’I(S) — G* (‘xl 3emes Xjm s Xj 5 Xjpg 3eees x2t‘+1)
$1 seees Sj1 5 S5 $igg sees Sopuy

where s; is the last number of some repeated s group with v >> 2 elements.
Suppose u(x,8) = A — 1. Then

2/41 2041
h(s) = Y aGx;,s) and Y a?>0. (2.14)
=1 i=1

CONVENTION. We shall write G for G, in the rest of this article.
Equation (2.14) is simply the expansion of G*(:::) by its jth column. For
example if a; = x, = x,, for ease of notation, we have written

@,G(x; , 8) -+ @Gz, 8) + a3G(x5 , 5) - =+

in place of
oG 2G
a,G(x, , 5) + a2a—(x1 »8) + ‘136357 (% ,8) =

and so forth.

Remark 2.2. In the following proof we adopt the notational convention
that if

h(s) = Gy(x, 5)

we shall write A(%) for A(x, s) and p(k) for u(x, s).

Proof. For s close enough to s; the (%, s)-sequence associated with A(s)
satisfies A{%) <7 and p(h) = A if 5 # 5; . By the induction hypotheses for
such s we have

\

G* (xl yeees Biog 5 Xj 5 Kjag 5ees -”-2!+1) ~0
5 soves Sig 5 Sy Si41 peres Saty1

Removing x;, < 5;_; = §; < %3y, from the original x, s sequence leaves two
new sequences X', s’ (say) of length 27 — 1 with 4(x’, s") <{ r. Thus, also

G* (xl soery Kt 5 Xppp2 5eems x25+1) >0
Sy serey Sio s Sjp 9eers Sofyg

505/8/2-13
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By Sylvester’s determinant identity (see Karlin [3, p. 3]), with s close to s; as
prescribed above and if x, <Ts;; = 55 < Wy,

0 < G* (xl seeey Xjq 5 Xj s Xjyg 5eens x2£+1) G* (x‘l ooy X1 5 X2 9eees x2»’+1)

§1 yeeey S55 9 8 g 5o Sopqa §9 seeer Sjg 5 Sig1 9oy Softa

— G* (xl very Xpp sy Xy geersy x2[+1) G* (x1 seony i3 s Xppipq seees x2[+1)

Sl gaony sj—l y Sj+1 gaeey s2[+1 Sl yeooy sj'_z 3y S,..., 32[+1

_G* (x]_ yeony Xp—g 3 Kpppyg yeres x2{+1) G* (xl yeory Xy X2 yevey x2;+1)
Sl goray Sj_l Py SJ-+1 yreey 32{_*_1 Sl yroey Sj_z ] S,..., 32{_,_1

20+
= @ ,G*(:t) — ¢, GH¥(:2). =) ¢,G(x;, 5)

i=1

It follows that @;% + 4%,, > 0 as was to be proved. ||
The observation (2.14) will be used repeatedly during our induction on p.
Suppose we could find x9, s° € 4,,,, as follows:

A, s%) <7
px’s%) =2a—1 ™

Glori(x", ) = 0

We shall show that (*) leads to a contradiction; and hence that the induction
step on u may be advanced.

Levma 2.4, Suppose that both x° and s® contain repeated elements. Then
(*) is untenable.

Proof. Choose k and p such that &} , = x;0 and % | = 5,0 where x,0
and 5,9 are the last members of their respective coincidences. Consider

0 0 A0 0
hs) = G (xl",..., Hig 2 T30y Koy semy xztﬂ)

0 0 0 0
510y Spe1 5 85 Spiq seees Soreq
and

° 0 = .0 0
g(s) = G* ( 10000y Xi—1 9 X » Xppg 9veey 2l+1)

0 0 0
510 ey Spoy s 85 Spiq seees Sppyy

where %, =~ x,0 is a fixed value near enough to ;% so that 4 < 7 prevails for
the sequences {s3} and {{x%},..;, , #}.

g = A for these sequences if we also make {&,} N ({x%} U {s7}) = 0. By the
induction hypothesis and (*), A(s) vanishes to a higher order at s,° than g(s)
does. (In the extreme case where 5,0 equals some %, and a +8 =17+ 1
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—see the conditions (g, b) of Theorem 1.4—our convention for evaluating
01 gxo1 9571 shows that A(s) vanishes to a higher order than g{s) to the
left of s,0.) Moreover, g(s) and A(s) exhibit the same sign for s smaller than,
but sufficiently close to, 5,° provided of course &, is near to x,% Thus,

F(s) = h(s) — <g(s)

vanishes at least once at s,* <C 5,0 but arbitrarily near 5, for € > 0 suitably
small. Then f(s) vanishes at least at the points

2£-
{7t = {51%-0 s(z)r—l s S s‘1)o+1 yeves Sor41he

Explicitly,
o641
f(s) = 2 a;,G(x2, 5) + a[G(x®, 5) — G(&,, 5)] (2.16)
ik
where

] 0 0 9
a; = G* (‘xl yeevs Xi1 s xi+1 3T x2{+1) .

o 0 0 0
S50 Sp1 5 Spaa vees S2end

0 0 O ~ (i}
e G (B0 Fica s Fiag yeres B peves Xy
€ ) 0 0 o
S1avees Sp1 5 Spyy 5eee » Sa£41)
for { == k and
o 0 0 )
@ — (1 - E) G* X1 seees X1 5 Fad 5oeer ¥aprn
k 5%y S04, 82 9
190y Sp-1 s Yptl acrey 9241

By Lemma 2.3 not all the ¢’s can vanish if € > 0 is suitably small. Equation
(2.16) gives 2¢ -+ 1 linear equations f(s;*) = 0 for the a;s. The determinant
of this system

G+ (xlﬂ,,.., xQ,H) e (xli,..., R yeres xg;ﬂ) 0 2.17)

% * *
S1 7 ey Sop4a $1750eey $at41

provided e <C 1 because

X *
$1% 0wy ot §3 Freeey Sopiy

[ 0 [ = ]
0 =/(s,") = G* (” x2;+1) — G* (’“ o e "ff“) (2.18)

and clearly (2.18) coupled with the fact that both determinants in (2.18) are
nonzero (by the induction hypothesis) imply that inequality must hold in
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(2.17). The nonvanishing of (2.17) together with Y a2 > 0 is a
contradiction, ||

Lemma 2.4 allows us to assume (without loss of generality) that the x,%’s
are distinct. Reasoning almost as above, we could also prove

Lemma 2.5. If {25 O {s,%} = 0 then (*) is untenable.
In review, the preceeding lemmas allow us to augment (¥*) with the
additional assumptions:

0 < <a® <o < alpyy < 2m
{s,%} and {x,%} are disjoint

The disjoint condition is used repeatedly below, without explicit mention,
to guarantee that the differentiations performed on the Green’s function
G(x, 5) are permissible.

The remainder of the proof rests on a careful examination of zeros of
certain functions, the most important one being

0 0
h(s) = G* ("10 ”2’“) (2.19)

0 0 0
510 ey Soir1 s Sy Sgyrid seees Safid

where §2,, = - = s, (7 <) is a repeated s-value.

LemMmA 2.6. k(s) has an isolated zero at sy with multiplicity >t + 1;
in particular,

(s9,q) = - = h(s2,y) = 0.

Proof. Since 7 <r and no &, equals s2.,, A(s), #'(s),..., A7(s) are all
continuous near s7,,; . Trivially by (*), A(s2,,) = - = A(s?;) = 0 and
by the induction hypothesis 52, is an isolated zero of A(s). If s increases through
s2,1, A(s) changes sign from (—1)™* to +1 because G(x, ) is CTP. Thus if
is odd, A(s) does not change sign at s7; and this requires A(s),;) = 0
precisely because 7 is odd. Similarly, we deduce if = is even that (2, ) = 0. ]|

For ease of exposition the rest of the proof is presented in three cases.

Case 1. There are at least two distinct repeated s-values.
For argument’s sake suppose

0 0 0 _ O
Sor = °°7 = Soqr < Set1 = 77 T Soqs 77/8 > 2)
are two repeated s-values and that x,° is defined by

.- 0 ¢ __ 0 0
Xy < Sqr1 = Sasg < Xyl
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Choose points s/, and 57 in the interval (max(s,®, x,), s2,,) and consider

g0 =" (3 e

0 U} 0 0 o ” 0 (] 0 L]
S 0000y Sotr—10 $5 Sourrise s Sa s Sat1s Sty Satreons Sorg g SaaBt1r-es St

which satisfies 4(g(s)) <7 for s near s2 ; and p(g(s)) > X + L. Let k(s) be
the function defined by (2.19), then by Lemma 2.6 and the induction hypo-
thesis /(s) vanishes to higher order at 52, than g(s) and sgn A(s) = sgn g(s)
near so,, . Thus for € > 0 and small

f(s) = h(s) — <gls)

must vanish at least at
* 0 0 *
Soi1 < Se11 = " = Sga < Sair-1 (220)

where s}, and 5., may be made arbitrarily near s),, if  is small enough.
A little reflection shows that

A(gs) <r ifand only if A(k(s)) <7

indeed that 4(g(s)) = 4(k(s)) for any s. Consequently, f(s) must vanish at

* O .. O *
Sx51 < Sy = = Sytg—2 < SutB—2 (221)

where §%,1(s%, 5_5) may be made arbitrarily near sJ,;(s,_,).
Finally f(s) has the obvious zeros

sP(jEo+ Lo+t La,a+8—2) (2.22)

In total then f(s) vanishes at least 2¢ - 2 times and by (2.20)-(2.22) we can
select a subset of 2/ +- 1 of these zeros, say s* = {s;*}2+%, such that

f5=0{(=1..,22+1), A4x°s*) <7, andp(x’s*) = A

The linear system

241

f5% =Y a6, 5% =0 (j=1,.,2/-+1)

=1

has positive determinant Gjy,, (% s*) (by the induction hypothesis), while,
at the same time, not all the a,’s vanish as can be seen by their explicit
representations in terms of G*(:::) as in the proof of Lemma 2.4. This
contradiction establishes that Case I and (*) are incompatible.
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Case I1. There is only one repeated s-value,

0 .=
So+1 = = So4r

and at least two further simple s-values.

(2) Suppose

] 0
xyO < sp(l P Soqq = Tt == Sy < eee <sw0 < x I

Define
0 0 0 0
( — G* X1 geeey Xyq 5 X yoee yeery Xapiq
g(s) = 0 0 0 0 ()} 0 0 0
51 5000y so—l y Spt1 reees sa+r—-1 » S Sotrtl 900 sm—-l ’ sw-l—] 3°eey Szl+1

One verifies easily that 4(g(s)) <r for se(x,% 2,,), that k(s) vanishes to
higher order at s),; than g(s) does, and that sgn g(s) = sgn A(s) near s_; .
It follows, then, as before that the function f(s) = A(s) — <g(s) must vanish for

* 0 0 *
Sorl < Soqr = 0 T Sy < Sotrm (2.23)

with $3,,(s%,,_0) near s9,4(s2,, ;). Furthermore since g(s) does not vanish at
5,0 or 5,0 while A(s) vanishes simply there, we can find two zeros s,* and
s, near 5,0 and 5,0 Using these zeros with the ones s9(j 3£ p, w, ¢ + 1,...,
¢ + 7) and an appropriate selection of all but one of the zeros from (2.23)
we reach a contradiction as in Case L.

(b) Suppose
0 0 0 L= 0 50 0 0
xv < sp < < so+1 - - sc+‘r < x‘y+1 < < xi\ < su+‘r+l
and define A(s) as in (a) and
0 9 0 o o
g(s) — G* (xloy"'s Xoy—1 5 Xyt 5-e0r ¥pg 5 X)41 seees x2¢’+l)
= 0 0 0 0
530 ey So1 s Spad seees Sor—1 2 53 Soprss seees Safyl
Just as in (a) we can find zeros of f(s) = k(s) — eg(s):
* 0 e 0 *
Sor1 LSoq1 = 77 = Soqg <o
s,* mnear s
One sees readily that A(g(s)) <C A(A(s)) for any s; hence, if A(s) == O near
50, .41 then the same is true of g(s) and we reach a contradiction as in (a).

In case A(s) = O near 52, , it must vanish identically in [x3,,, s, 1]
for some 2 <j <A — y with A(x),, — %) > 0 for small > 0: Indeed the
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A(h(s)) values are constant on the intervals (x3,;, 5%,;.,) and one easily
confirms that 4(h(x),; -+ 7)) < 7 for small 5 > 0. Since sgn g(s) == sgn k(s)
in [, , s2,,.4], it follows that f(s) must have a zero }.,; in (&5, 89 rer)
for small ¢ > 0. Because s}, 5 € (%), , s0,,4) it is easily confirmed that

o 0
4 ( 1o cie g K e o X (23l+1) <7
$1 5o Sopr+1 Sof41

and we reach a contradiction as in Case I.

@QIf sl<axl< - <xd<sdy=-r=s, < <sI<al, we
can proceed in a similar fashion to (b).

(d) Ifs 0 <0<+ <0 <l y=-- (,+,<x'y+1< c<xd<s
we can proceed as in (c) to get s,* and as in (b) to get 55,5 -

The cases (a}-{(d) are exhaustive and thus the contradiction involved shows
that Case II is incompatible with (*).

Case III. 'There is only one repeated s-value, s, = -~ =52, and at
most one further s-value.

Under these circumstances, we may assume that 2 1 <r — 1; this
results from

Lemma 2.7. Suppose x° and s® are such thai there exists an interval
[%° x3.;] which contains a repeated s-value which appears r — 1 times in s°.
Then (*) is untenable.

Proof. Let s +1 = = =38 . be such a repeated s-value in [x9, 22 ,].
By Lemma 2.6 52 ; is an isolated zero of A(s) of multiplicity at least . But on
[%9, 22, ], A(s) is a solution of (L,k)(s) = O—while L, is a differential operator
of type W of Pélya—and so can have at most r — I zeros counting
multiplicities (cf. Karlin [3, Ch. 6 §4]) unless it vanishes indentically.
Thus A(s) = 0 on [x;, x,,;] and this contradicts the induction assumption
since u(k(s)) = A for s near s, . |

In view of I.emma 2.7, we may assume = <{7 — 2 so that 2/+ 1 <
7+ 1 <{» — 1. This inequality quarantees that the compound kernels of
order 27 - 1 appearing in the BCF applied to (2.10") are all well defined and
that

(Grfren(6 89 >0 forall Eedy,.
Since (Gy)papeag (X% ) > 0 on the set

X0 < & <Xy (%or4 = 2m; i = 1,.., 20+ 1),
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it follows that (G,)*5z.1) (x% 8% > 0 which contradicts (*). Thus (*) is also
incompatible with Case III.

Since Cases I-III are exhaustive, (*) itself must be false and hence the
backward induction step of p is advanced and Theorem 1.4 is thereby

established. ||

3. PeRIODIC SPLINES

Theorems 1.3 and 1.4 allow the solution of several spline interpolation
problems. We restrict the discussion here to splines with simple knots
(hence only Theorem 1.3 will be used) but the obvious generalizations to
multiple-knot splines are easily established using Theorem 1.4. The theory
outlined here is similar to that in Karlin [3], (see also references therein), so
all proofs are omitted.

DeriNiTion 3.1, A function p(x) is called a cyclic generalized spline (CGS)
with knots s = {s;)34' € 4,,, provided
@) (Lp)(x) =0 on [5;,5,5](=0,1,...., 20+ 1, 53=0, spp = 2m)
(i) p(x) e C™20, 2]
(iii) p(x) satisfies the BC &, .
Briefly, p(x) is a piecewise solution of the differential equation L,u — 0

whose derivatives of (» — 1)th orders may jump at the knots.
A standard argument proves

Lemma 3.1, Any CGS p(x) is of the form

2¢-+1

p) = Y a,G(x,s)

=1
Jor certain constants a; .
This lemma yields in turn the following important interpolation result.

TuroreMm 3.1. Let {xY51 e A, satisfy A({x;}, {s;}) < r and let {y, )24} be
any set of real (or complex) numbers. Then there exists a unique CGS p(x) with
knots {s;} interpolating the {y;} at {x;}: p(x)=y; (G =1,2,..,20 + 1).

If the differential operator defining the CGS’s is self-adjoint a number of
special optimality results obtain. Henceforth we assume that p(x) is a CGS
arising from the self-adjoint BVP.

Myu = Dy* - D,*D, - Dyu

Dj;* «+ D,*D, ++- D,Dgi(0) = D;* -+ D,*D, +++ D;Dgu(2) (j =20y 7)
Dy, -+ Du(0) = Dy, -+ Dou(2m) (k=r,r—1,..0)
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whose BC are denoted #,%, . We also set
L.=D, D

and denote its natural BC by %, . The optimality properties of these CGS
result from the orthogonality relation of

Levva 3.2. Let fe BB, and let p be the unique CGS having the knots
{s;} that interpolates f on {s;}. Then p is orthogonal to f — p in the sense that

[ s — o v = o,

Remark 3.1. Itisimportant to emphasize that the knots {s;} and the points
of interpolation {x;} agree in Lemma 3.2. The orthogonality relation crucially
requires this. On the other hand, the basic interpolation result {Theorem 3.1)
permits the points of interpolation and the knots to differ.

As a consequence of Lemma 3.2, we have the following optimality theorems.

TueoreM 3.2. Let fe #,9%, and let p be the unique CGS interpolating f on
{s;}. Then

27
[

[T s < [T b

and equality holds iff p = f.

Remark 3.2. Observe that p depends only on the values of f on {5;} and
in no other way on f. Therefore, we can express the result in the form

i, [ as = [ e ds

where the minimum is over all functions g € C™%[0, 2=] which interpolate f
on {s;} and satisfy the BC #,%, .

TueorEM 3.3. Suppose the hypothesis of Theorem 3.2 prevails. Let p
be the unique CGS interpolating f on {s;}. If q is any other CGS with knots
confined to {s;}, then

[T~ e < [T — oy

with equality holding iff g = p.
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Remark 3.3. The preceeding results on optimality also hold if the
number of knots is ewen. Indeed, Theorem 3.1 holds for the differential
operatot M,, in the special case {x;} = {s;} (7, j = 1, 2,..., 2¢): Let G,(x, 5)
be the Green’s function for the boundary-value problem L,, %, and let
Gjf(x, s) be the Green’s function for the adjoint boundary-value problem
Lf, #F . If G,(x,s) is the Green’s function for the self-adjoint problem
M, = L¥L,, #*%,, then

Gl ) = [ GF(5, &) Gl o) de.

Thus, the determinant of the relevant system of linear equations involved
in the proof of Theorem 3.1 is

Gl ®) = [ (G DGl %)

which is easily seen to be positive (the computation at the top of page 388
shows that (G,)[z,](g, X) £ 0). In particular, in the self-adjoint case, the
Green’s function G,,(x, s) is positive definite as well as CTP,, .
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