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INTRODUCTION 

Arguing from a few evident oscillatory characteristics shared by numerous 
vibrating physical systems, Gantmacher and Krein [l] showed that the 
influence functions of many of these systems were totally positive (TP), 
see Definition 1 .l. Subsequently, they supplied formal proofs establishing 
that the Green’s functions associated with several standard boundary-value 
problems (BVP) of Sturm-Liouville type were TP. This discovery then served 
as a keystone for the elucidation and clarification of much of the classical 
theory of these boundary-value problems. The work of Krein and Gant- 
macher, which also includes discussions of some special 4th order equations 
as well as the 2nd order Sturm-Liouville theory, has undergone several exten- 
sions and refinements. For intance, in Karlin [3], a family of 2Kth order 
linear differential operators is presented together with an appropriate set of 
separate boundary conditions for which the associated Green’s functions 
are TP. For further generalizations the reader may consult Karlin [5, Vol. 21 
and Karon [4]. 

The study of boundary-value problems based on TP considerations 
requires a precise knowledge of when strict inequality will hold in the system 
of determinants (1.2). For a deeper analysis, it is essential to extend the notion 
of TP to allow for coincidences among the points occurring in (1.2). The 
appropriate concept here-extended total positivity (ETP)-was introduced 
in Karlin [3, Chap. 21, see also Karlin [S]. The concept of ETP has proven 
essential in analyzing certain problems in the theory of inequalities and in 
generalized convexity theory as well as in the study of boundary-value 
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problems, disconjugacy problems, and multiple-knot spiine approximation 
problems. 

Motivated by the studies above and the observation that numerous 
vibrating physical systems admit mathematical descriptions as boundary- 
value problems with periodic boundary conditions, it is natural to ask 
whether the Green’s functions arising from periodic boundary-value problems 
share the total positivity properties exhibited in the one-sided case. It is 
intrinsic to the periodic case that the Green’s function cannot be TP; 
however, some sign regularity is preserved and we shall present a class of 
differential operators together with boundary conditions of periodic type for 
which the Green’s functions are cyclic totally positive (CTP), see Definitition 
1.3. Moreover, with an eye to the applications, we give precise conditions 
under which the determinants associated with these Green’s functions are 
positive. 

The main theorems of this paper (Theorems 1.2-1.4) have immediate 
application to the theory of periodic splines (see $3) and to the spectral 
analysis of the boundary-value problems described by equations (1.7-1.8). 
These spectral properties will appear in a separate paper by the second author. 
Still another application with a physical flavor is included at the end of $1. 

1. TERMINOLOGY AND MAIN RESULTS 

We review briefly several definitions of total positivity theory. The reader 
may refer to Karlin [3] for further elaboration of these concepts and their 
interrelationships. 

To begin with let X and S be linearly ordered sets and G(x, s) a real func- 
tion defined on X x S. The p-dimensional (open) simplex in 
XP=JyXXX -‘* x X (p copies of X) is denoted d,(X): 

d.(X) = {x = (x1 )..., XJ 1 x1 < *-* < x2, , xi E Xl. 

The (relative) closure of this simplex is d,(X): 

L3@(X) = (x = (x1 ,..., ix,) / x1 < ... < lg ) xi E x>. 

When X = S we abbreviate d,(X) to A, (and d,(X) to zD). The determinant 
function 

Gdx, s) = G (2 1:::: 7) = det I] G(xi , sJ[&=r (l-1) 
P 

defined on A,(X) x A,(S) is called the compound kernel of order p induced 
by G(x, s). 
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DEFINITION 1.1. In the above context, G(.lc, s) is called totally positive 
of o&r n (TP,) if 

GM(x, s) 3 0 (1.2) 

for p = 1, 2,..., n and for all 

(x, s> E 4X) x 4(S). (1.3) 

To define extended total positivity, we assume that X and S are (real) 
intervals and the G(x, s) is smooth enough to allow the operations performed 
below. Notice, incidentally, that (1 .l) would not serve as a useful definition 
for G~,l(x, s) if either x or s were boundary points of their respective 
simplicies because then G[&x, s) = 0 trivially. If x EAJX) and s Ebb 
we shall write 

G&,(x, s) = G* cf :“” “‘) 
. ..) SD 

for the determinant defined as in (1.1) but with the following modifications: 

(i) If x8-l < SQ = --* = ~re+~-r < x~+~ we replace the (8 + y)th row 
of the determinant (1.1) by 

[ $ G(-Q , &., & Gt.re ,szJ I (v = 1, 2,..., K - 1); 
I 

(ii) if stpl < se = ... = se+*-1 < s!+~ we make a similar substitution 
in the columns of (1.1) this time introducing partial derivatives a/as; 

(iii) if coincidences occur in both xi’s and sj’s we perform both 
substitutions. 

DEFINITION 1.2. Continuing in the context above, G(x, s) is called 
extended totally positive of order n (ETP,,) if 

whenever 

G&(x, s) > 0 (strict inequality) 

(x, s) ELii> x d&q. 

We turn next to the concept of cyclic total positivity and justify the state- 
ment made earlier that a Green’s function, G(x, s), associated with a boundary- 
value problem of periodic type cannot be TP in the usual sense. Indeed, 
suppose for simplicity that the associated differential operator has constant 
coefficients so the G(x, s) = g(x - ) s is, in fact, a translation kernel, where g 
is a 2rr-periodic function of its argument. For convenience we shall deal 
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exclusively with 2a-periodic functions; however, any other period would 
serve equally well. In this context it is natural to view g as defined on the 
circumference of the unit circle and view the system of points 

(“1 < --- < x, < x1 + 2Tr) 

b1 < *-- < s, < s1 + 23-j 

as invariant under rotations, i.e., as equivalent to the system 

for all choices of C and m. In order to define a notion of “total positivity” 
which is compatible with the periodic structure of g, we must impose the 
conditions 

G (; ::-:: 7) = G (: “**’ ‘D ’ : ++ 2;:::: 2: 1 g) (1.4) 
9 m ,..-> s, I 1 I 

on the compounds of G. A simple calculation reduces the right side of (1.4) to 

(-I),+1 G r; ;:-:; ;;), 
, 

Clearly then (1.4) is automatically satisfied by all the odd-order compounds 
of G and by none of the eaen order compounds (escept in the trivial case when 
they vanish identically.) These observations show that the periodic nature of 
g is compatible with a “total positivity” structure on its compounds only when 
the positivity conditions are imposed only on the odd order compaunds. This 
situation justifies 

DEFINITION 1.3. A function G(x, s) defined on [a, b) x [a, b) (and which 
may be regarded as extended periodically in each variable) is called cyclic 
tota& positive of order 2d + 1 (CTPap+r) if all the odd-order compounds 

G[,,(x, sj >, 0 (p = 1, 3,..., 28 + 1) 

for x, s ~d,([a, b)j. 

Remark 1.1. If G(x, s) = g(x - s) and [a, b) = [0,2~) and the conditions 
of Definition 1.3 are met it is customary (following Schoenberg) to call g(u) 
a cyclic Pdlya frequency function of order 2d + 1. 

Remark 1.2. If G(x, s) is TP, (or CTP,) for all n = 1, 2,..., we say that 
G(x, s) is TP, (or CTP,) or simply TP (or CTP). 
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The class of periodic boundary-value problems we shall discuss is defined 
as follows: Let 

n(x), Y&L Y&4 

be real functions defined on [0, 2~~1 which are of continuity class C?[O, 27;] 
and satisfy 

Define 

I 

P?r 
Y&) dx # 0 (i = l,..., Y) (1.5) o 

Di = D + yJ 

Di* = -D + y+l (i = l,..., r; D = dldx) (1.6) 

D,, = D,* = I 

and let Bi be either a Di or a Di*. Define an rth order differential operator 

Er by 

L,p = iJD,-, . .’ D,zl (1.7) 

and associate to it the generalized periodic boundary conditions (BC) 

Bj **. B&(O) = Dj -*- D,~,,u(24 (l-f9 

wherej = 0, I,..., r - 1. We denote these BC by dr . It is also convenient 
to let &r stand for the class of all F[O, 2?r]-functions satisfying the BC 8, , 
and to take gV for the domain of the operatorl,r . 

Remark 1.3. If all the yi’s are periodic, the generalized BC 6@? are equiv- 
alent to the purely periodic ones: 

u(0) = 42n),..., u(~--l)(O) = .(‘-y&r). 

Theorem 1 .l confirms that the BVP determined by (1.7)-(1 .S) has a 
Green’s function which we denote by eT(x, s). 

THEOREM 1.1. If urz@r and&u = 0 then u = 0. 

Proof. The proof follows easily from the standard factorizations, 

Di = D + yiI = c$Diu< 
(i = l,..., r) U-9) 

Di” = -D -j- y,I = - wdDc$ 

where 

wi(x) = exp (1,” r<(t) dt)- (1.10) 
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Simply write &u in factored form and integrate &u = 0 step-by-step 
using the BC 8, and the basic assumption (1.5) to show that all integration 
constants vanish. The last integration gives u = 0. /j 

Theorems 1.2-1.4 delimit the precise TP properties of cr(x, s). Their 
proofs are presented in 92. Let A, = OJ[O, 2,)) for the remainder of this 
paper. 

THEOREM 1.2. The Green’s function e&, s) fur the BVP (1.7)-(1.8) is 
CTP, i.e. 

@%&~ s) 2 0 (p = 1, 3, 5,...) 

for all x, s E A, . Moreover, (1.11) implies 

(G)~l(X, s) >, 0 (P = I,% 5,...) 

for all x, s Ed, for which (Gp)& (x, s) is dejined (see Remark 1.4). 

(1.11’) 

It is crucial for the applications to determine precisely when strict inequality 
holds in (1.11) and (1.11’). B ase d on the results in the one-sided case (Karlin 
[3, Chap. 10, Sec. S]), one expects the determinants in question to be positive 
only if the points x1 ,..., X, , si ,..., s, “interlace” properly. In the periodic 
case, this “interlacing” must be interpreted in a rotationally invariant way. 
iln appropriate “cyclic” interlacing may be defined as follows: Let 

x = (Xl ,-.-> xp), s = (sl ,...) S$) E 4, and assume temporarily that 
{xi> n (sj) = $. Regard xi and sj as distributed on the circumference of the 
unit circle, 8U. Let A(x, s) be the finite set of all closed subarcs of aU whose 
end points lie in (xi> u {sj}. 

DEFINITION 1.4. If 01 E A(x, s) is a closed subarc of 8U we define 

?%I = 1 c 1 - s;e 11; 
zp 3 

that is, #(a) is the difference between the number of x% and s’s which lie in LY. 

DEFINITION 1.5. In the preceeding context, 

(1.12) 

In short, A(x, s) is the largest number obtainable when one counts all possible 
blocks of X’S and s’s on ZJU attributing opposite signs (&l) to the x’s and s’s 
respectively. Clearly 4(x, s) is a rotationally invariant “measure” of the inter- 
lacing of the coordinates of x and s. 
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To relax the restriction {q> n {s& = 4 suppose 

Xk = .-- zxz Xkfh = f = St zcz -a. = se+u (P, x 2 0). 

We perturb these X’S and s’s slightly separating them all but not disturbing 
their location on i?U relative to the remaining coordinates of x and s, and 
repeat this procedure for any other coincidence points (such as <). Formation 
of all possible perturbations of this sort leads to, say, M different configura- 
tions 

x(m) = {xy};=, , d”) = (s;?~‘};zj”=l (Pa = I,..., nd-) 

with corresponding Acrn)‘s for which 

A(x(“), sy = In;; #(cP)) 

is already defined. 

DEFINITION 1.6. In the setting above, if x, s, ~2~ we define 

A(x, s) = lp.yM A(x(“), sLm)). 
., 

In effect, Definition 1.6 says that we count coincident JC~‘s and Sj’s so as to 
permit as little “interlacing” as possible. 

We are now in a position to state two sharp extensions of Theorem 1.2 
whose proofs are considerably deeper. 

THEOREM 1.3. The Green’s function C?.f(x, s) for the BVP (1.7)-(1.8) is 
CTP, . Moreover, 

G)bl (x9 s) > 0 if and only if A(x, s) < Y (1.13) 

where x, s E A, , p = 1, 3, 5 ,..., and Y is the order of ET . 

THEOREM 1.4. Let eT(x, s) be the Green’s function for the BVP (1.7)-(1.8) 
and let the points x = (q ,..., N& s = (si ,..., sp) ~a,(p = 1, 3, 5 ,...) be 
subject to the restrictions: 

(a) Whenever LII of the xi’s coincide with t9 of the si’s we require 01 + /3 < T + 1. 

(b) No moly than Y consecutive x’s or s’s coincide. 

Tlzen (G,.)*[Pl (x, s) > 0 and moreover 

(cY)&(x, s) > 0 if and only if A(x, s) < Y (1.14) 



PERIODIC BOUNDARY-VALUE l'ROBLBMS 381 

Remark 1.4. The conditions (a) and (b) are minimal requirements 
guaranteeing that the entries of the determinant in (1.14) have a meaning. 
Whenever an (r - 1)th derivative occurs it is taken as a right derivative with 
respect to x and a left derivative with respect to s. 

Theorems 1.1-1.4 for the periodic BVP (1.7)-(1.8) have analogs for the 
“odd” periodic BVP when the differential operator (1.7) is assigned the BC 

Dj ... D$,u(O) == 4, -.. D,D,z1(2n) (j = 0, I,..., T - 1) (1.8’) 

instead of the BC (1.8). In this case the eve?1 order determinants of e,.(x, s) 
maintain fixed signs and the conclusions of Theorems 1.2-l .4 hold by simply 
replacing “p = 1, 3, 5 ,...” by “p = 2,4, 6 ,... “. The proofs for the odd 
periodic case are omitted being slight variants on those for the periodic case. 
Arguments hinging on the periodicity of er(x, s) in the periodic case are 
replaced by arguments hinging on the intermediate-value theorem in conjuc- 
tion with (1.8’) in the odd case. In particular, the restrictions (1.5) necessary 
for the existance of (?((x, s) in the periodic case become superfluous in the odd 
periodic case. 

We close this section with the physical application mentioned in 30. 
Consider a physical segment-which we conceive of as the interval [O, 27i- 
upon which directed forces of magnitudes and directions fi are impressed at 
the points sj (i = 1, 2,..., 2& + 1). We assume the resulting displacement 
function y(x) satisfies the differential equation e,, = dF and the BC .@, 
where d.8’ = C fjSj and Sj is the S-measure concentrating at sj . An interesting 
question emerges: Is it possible to find a set of forces (J’j> which when applied 
at the points {sj} produce arbitrarily prescribed displacements {)I~) at a given 
set of points {xi> (i = 1,2,..., 26 + 1) ? The answer is yes if and only if 
d(x, s) < Y. This result is physically satisfying for it reveals that a set of 
forces (fj> will exist if and only if the points of application {sj] and the points 
of interpolation (x3 are sufficiently intersperced. The proof of our assertion 
follows easily from Theorem 1.3 and the standard representation for the 
displacement 

2. PROOFS 

The proofs of Theorems 1.2-1.4 present difficulties not encountered in the 
corresponding proofs for the TP case. Sylvester’s determinant identity which 
proves so useful in the TP case is of only marginal value here because the 
even order compounds in the CTP case do not maintain fixed signs. The 
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two cases are similar to the extent that both employ frequent forward and 
backward induction arguments coupled with certain perturbation arguments. 

We begin with the proof of Theorem 1.2 which will be done by induction 
on r, the order of&. . If Y = 1, (1.7)-(1.8) is either 

or 

D*lu = -u’ + ylu 

u(0) = Zl(27r) 

Dlu = u’ + ylzd 

u(0) = $279 

(2.1) 

(2.1’) 

Using the notation of (1.9) the BVP (2.1) has the Green’s function 

where ot = exp(or(2z)) > 1, and the BVP (2.1’) has the Green’s function 
obtained by interchanging A: and s in (2.2). 

LEMMA 2.1. The Green’sfunctionfor the BVP’s (2.1) and (2.1’) are CTP, . 
Moreover, 

GhDl (XI 4 > 0 if and only if d(x, s) < 1 

p = 1, 3, 5 )... . (2.3) 

This result is an immediate corollary of Lemma 2.2. 

LEMMA 2.2. Let 

IL-(x, s) = f; : 2: (2.4) 

with a, b E 08. Therl for x, s E A, and p = 1, 2, 3 ,..., 

I a(a - b)p-l if .x1 < s1 < a-* < x, < sy, 
K&x, s) = b(b - a)~-~ if s, < x1 < mm- < s, < xz, (2.5) 

0 otherwise 

Proof. Evidently, except under the special cases stated, either a pair of 
rows or columns of S&(x, s) agree and hence &,1(x, s) = 0. In the special 
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cases, the determinants in question are easily computed and the lemma 
confirmed. jj 

From (2.2) we see that el(,<x, s) has the form 

where f, g > 0, a = cx/(a - 1) > 0, and b = l/(a - 1 j > 0. Clearly, 
G1(x, s) will be CTP, if and only if K(x, s) is and examination of (2.5) reveals 
that this occurs if and only if n > 0 and b > 0 which is the case here. 

Remark 2.1. It is interesting to note that the kernel in (2.4) will be TP, 
if and only if it is triangular with a > 0, b = 0 or vice versa. 

The induction step in proving Theorem 1.2 is advanced by applying the 
btic composition formula (BCF) to the convolution formula (2.10) below. 
Recall the BCF states: If K(x, y), L(. , ), 2: x and M(x, y) are Bore1 functions 

satisfying 

where x E X, y E Y, x E Z; X, Y, and Z are linearly ordered subsets of iw; 
and do(z) is a si,ma-finite measure on 2, then 

(2.7) 

where da(z) = &~(.zi) .*- &(z,). -4 proof of this formula appears in Karlin 

13, page 171. 
We associate with the BVP (1.7)-(1.8) two related problems: 

with Green’s function c&x, s) and 

with Green’s function cr)(x, s). Making a standard interpretation we have 
the convolution formula 
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There is a companion relation to (2.10) which we will need later. Let 
& = D’, +I* B, and associate to it the BC @r-r based on the Y - 2 operators 

Q-1 ,..., Da and denote its Green’s function by e+,(x, s). Let cr(x, s) be the 
Green’s function for the BVP E, , &r . Then 

Assume now that (1.11) of Theorem 1.2 holds for all Green’s functions 
associated with differential operators of type (1.7)-(1.8) whose orders are <r. 
Then both Green’s functions on the right side of (2.10) are CTP, and hence 
by the BCF the same is true of gY(x, s). This establishes (1.11) of Theorem 
1.2 since the case 7’ = 1 holds by Lemma 2.1. The final conclusion of 
Theorem 1.2, namely, (1.11’) follows directly from (1.11) and a standard 
argument of total positivity theory (consult Karlin [3], Chapter 2 Theorem 2.2 
and its proof). 

A similar induction argument in conjunction with the following general 
result proves (1.13) of Theorem 1.3 and hence establishes that theorem. 

THEOREM 2.1. Let K(x, f) and L([, s) be sign-consistent of order p (SC,); 
that is, there are s&s E,(K) (+ 1 or - 1) and E,(L) so that 

Q(K) &d(x, 5) 2 0, $(L)L[pI(S, 4 > 0 

for all x, 5, s E A, . Assume further that 

Es(K) &&, s> I==- 0 if and only if A(x, S) < 1 (a - 1) 

4LPdK 4 > 0 if and only if A(S, s) < Y - 1 (<l). 

Then 

M(x, 4 = 1; W, O-W, 4 d5. 

is SC, with E,(M) = E,(K) E,(L) and 

%& s> > 0 if and only zy A(x, s) < I- (2.11) 

Proof. The BCF 

%d(x, s> = .r,, JGPleG 5) kdw 4 (2.12) 

shows at once that &2(x, s) is SC, and that E,(M) = E,(K) e,(L). Only (2.11) 
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requires discussion. Suppose M~~l(x, s) > 0. By (2.12) and our hypothesis 
there is a point 5 E A, such that 

4% s> < 1 and 4, s) < r - 1 (2.13) 

However, the definition of A(., *) readily yields the transitivity relation 

d(a, b) < Ja, c) + 4~ b) 

and hence d(x, s) < Y in view of (2.13). 

Conversely, suppose d(x, s) < 7. If, in fact, d(x, s) < Y - 1 the set 

(5 = (!cl ,--.> f,) j xi - E < & < xi + E (i = l,..*,p)j 

has positive p-dimensional Lebesgue measure and for E > 0 suitably small 
d(x, g) < 1 and O(S, s) < Y - 1 so by (2.12) Mt.,l(x, s) > 0. The extreme 
case A(x, s) = Y requires a more delicate argument. In this case we can find an 
arc 01~ E d(x, s), 01~ = [si , x,,,] which contains an excess of s’s over x’s 
with points distributed as indicated in the following figure: 

Perturbing xe to x~‘,..., x8+x-r to A$+~-~ with 

‘k+t < *&t ( Sk+t+l (t = o,..., K + 1) 

and leaving the remaining xi’s fixed, we secure a new sequence X’ with the 
properties: The arcs 01 E A = A(x, s) are in an obvious correspondence with 
the arcs a’ E A’ = ,4(x’, s) so that 

(i) #(a’) < r for all 01’ E A’, 

(ii) ~EA,#(~))T-1 *#(a’)<~--1, 

(iii) DL’ n 01~ + B * #(a’) < r - 1 i.e. if the arc a’ overlaps the (fixed) 
arc a0 , then #(a’) < Y - 1. 

Properties (i j(iii) imply that we may reduce step-by-step the number of 
arcs on al7 where #(01) = r in such a way that we finally secure a point 
x”EA,: 

(a) #(d) < r - 1 for all 01’ E fl” = A(x’, s), 

lb) 4x, x”) < 1, 

(c) x” is gotten from x by “perturbations” as indicated above. 
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Thus the set of positive measure 

satisfies d(x, <) < 1 and d(g, s) < r - 1 for small E > 0. As before the 
BCF shows that ML&X, s) > 0. (1 

Theorems 1.2 & 1.3 are now established and will be used to prove 
Theorem 1.4. Only relation (1.14) remains in doubt: 

(er)&(x, s) > 0 if and only if B(x, s) < Y (1.14) 

Proof of Theorem 1.4. 

That ((%:T)&, 6,s) > 0 * d(x, s) < r is easily established: Indeed, in the 
contrary situation, we could find x, s E 3, with A(x, s) 3 r + 1 and 
(G,r)&, (x, s) > 2a > 0. By the standard process of “separating knots” we 
could then find x’, s’ E A, which are perturbations of x, s E aD and satisfy 

(Ghl(X’, 4 3 a > 0. Al so, exercising a little care in the separation process, 
we may select x’ and s’ so that A(x’, s’) > I’ + 1. This situation is now incom- 
patible with Theorem 1.3. 

The reverse implication in (1.14) (i.e., A(x, s) < r 3 (e,)$,(x, s) > 0) 
requires an elaborate series of induction arguments which we proceed to 
outline: For Y = 1, (1.14) is true by Theorem 1.3. We assume by induction 
that (1.14) is true for all Green’s functions corresponding to differential 
operators of the type considered in Theorem 1.4 with orders <r - 1. We 
prove (1.14) for &.‘s as follows. For such differential operators of order Y and 
for p = 1 (1.14) is true (by the induction hypothesis for orders <r - 1 and 
(2.10)). We assume by a further induction that (1.14) is true for all odd 
p<2{--l(/>l)andp rove that (1.14) holds for p = 28 + 1. This last 
step is accomplished by a final induction; namely, let 

p = ~(x, s) = the number of distinct points in {xi} u {sj}. 

For the case p = 2J’ + 1, if p = 2(2L + 1) then (1.14) is certainly true by 
Theorem 1.3. We assume by induction that (1.14) holds for p > h (h 3 2) 
and prove (1.14) holds for p > h - 1. Once this is done the proof will be 
complete. 

In order for our proof to have substance there must be either repeated x’s 
or s’s. (Otherwise, the proof is easy with the aid of the BCF and (2.10).) 
Assume for definiteness that repeated s’s occur, The induction argument on p 
is rather involved and is presented in a series of lemmas. 
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LEMMA 2.2. Let 

q-1 ,*j ,xj+17**-, .v2t+1 h(s) = G* rs;,::., sjwl , s, sj*l )..., s2t+l 1 

where sj is the last nzmber of some repeated s group with 7 > 2 elements. 
Suppose ~(x, s) > X - 1. Then 

2d+1 

h(s) = C aiG(q , s) 
2P+1 

and C ai > 0. (2.14) 

CONTENTION. We shall write G for G+. in the rest of this article. 
Equation (2.14) is simply the expansion of G*(:::) by its jth column. For 

example if x1 = xa = x3 , for ease of notation, we have written 

in place of 

a,G(x, , s> + ~2 g (~1, 4 + a3a31, iFG (xl,s) + --* 

and so forth. 

Remark 2.2. In the following proof we adopt the notational convention 
that if 

44 = Ghb, 4 

we shall write d(h) for d(x, s) and p(h) for ,u(x, s). 

Proof. For s close enough to sj the (x, s)-sequence associated with h(s) 
satisfies d(h) < r and p(h) 2 h if s # sj . By the induction hypotheses for 
such s we have 

Removing xk < sj-r = sj < xk+r from the original x, s sequence leaves two 
new sequences x’, s’ (say) of length 26 - 1 with d(x’, s’) < T. Thus, also 
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By Sylvester’s determinant identity (see Karlin [3, p. 3]), with s close to sj as 
prescribed above and if xk < si-r = si < xkfl , 

= a,+,G*(:::) - lZ,G*(:::). = c ciG(x,, s) 

61 

It fOllOWS that ak2 + UK1 > 0 as was to be proved. 11 
The observation (2.14) will be used repeatedly during our induction on p. 

Suppose we could find x0, s’J E A2t+, as follows: 

A(xO, so) ,< r 

p(x0, SO) = x - 1 (*I 

G&e+dx”, soI = 0 

We shall show that (*) leads to a contradiction; and hence that the induction 
step on p may be advanced. 

LEMMA 2.4. Suppose that both x0 and so contain repeated elements. Then 
(*) is wtenable. 

Proof. Choose k and p such that xt-, = xfio and s”+r = sPo where xko 
and s,O are the last members of their respective coincidences. Consider 

and 

where f, # xko is a fixed value near enough to xko so that A < r prevails for 
the sequences ($1 and {(x:)+~ , as}. 

,U > h for these sequences if we also make {L&) n ({x!} u (sf>) = 0. By the 
induction hypothesis and (*), h(s) vanishes to a higher order at sDo than g(s) 
does. (In the extreme case where s,” equals some xpo and 01 + /3 = r + 1 
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-see the conditions (a, b) of Theorem 1.4-our convention for evaluating 
8-1!&~-~ W-1 shows that h(s) vanishes to a higher order than g(s) to the 
left of ~~0.) Moreover, g(s) and h(s) exhibit the same sign for s smaller than, 
but sufficiently close to, spa provided of course Zk is near to xkO. Thus, 

vanishes at least once at s,* < sPo but arbitrarily near s,O for l > 0 suitably 
small. Then f(s) vanishes at least at the points 

Explicitly, 

f(s) = 1 a,G(xi", s> + a,[G(xko, s) - G(R, , s)] 
i=l 
i#k 

(2.16) 

where 

for i f k and 

0 0 

uR = (1 - e) G* 
,*--I +rk-l , %k+l >'**, 

,..., s;-l , s>,l ,... 7 

By Lemma 2.3 not all the a’s can vanish if E > 0 is suitably small. Equation 
(2.16) gives 28 -+ 1 linear equations f(sj*) = 0 for the a(‘~. The determinant 
of this system 

provided E < 1 because 

and clearly (2.18) coupled with the fact that both determinants in (2.18) are 
nonzero (by the induction hypothesis) imply that inequality must hold in 



390 KARLIN AND LEE 

(2.17). The nonvanishing of (2.17) together with C ui2 > 0 is a 
contradiction. /I 

Lemma 2.4 allows us to assume (without loss of generality) that the xIo’s 
are distinct. Reasoning almost as above, we could also prove 

LEMMA 2.5. If {a$} n {SF} # 0 thmz (*) is untenable. 
In review, the preceeding lemmas allow us to augment (*) with the 

additional assumptions: 

(~~0) and {xi”} are disjoint 

The disjoint condition is used repeatedly below, without explicit mention, 
to guarantee that the differentiations performed on the Green’s function 
G(x, s) are permissible. 

The remainder of the proof rests on a careful examination of zeros of 
certain functions, the most important one being 

(2.19) 

where .$,I = ..* = s:+~ (T < Y) is a repeated s-value. 

LEMMA 2.6. ?z(s) has an isolated zero at $+I with multiplicity >r -1 1; 
in particular, 

h(S,O+l) = -*- = h”‘(s:+,) = 0. 

Proof. Since 7 < r and no xi0 equals s:+~, h(s), h’(s),..., h(‘)(s) are all 
continuous near sz+1 . Trivially by (*), h(sz+J = a** = h(T-l)(sL1) = 0 and 
by the induction hypothesis s:+~ is an isolated zero of h(s). Ifs increases through 

SB,l 9 h(s) changes sign from (-l)‘-l to +l because G(x, s) is CTP. Thus if 7 
is odd, h(s) does not change sign at s:+~ and this requires h(7)(sz+l) = 0 
precisely because 7 is odd. Similarly, we deduce if 7 is even that h(T)(sz+,) = 0. )( 

For ease of exposition the rest of the proof is presented in three cases. 

Case I. There are at least two distinct repeated s-values. 
For argument’s sake suppose 

s8+1 = -es = s:+, < s:+1 = a-- = s:+e 7, B 3 2) 

are two repeated s-values and that x,” is defined by 

.q,o < sz+1 = s,“+c < x:+1 . 
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Choose points s:,~ and s,“+i in the interval (max(s,O, x,O), t+r) and consider 

g(s) = G” ($,‘-’ o 
. . . &+1 o 

“., &+,-1, s, $+,+1,..., &O,$+1, ~~+l~~:+l~..., 4+p-~r4+a+lv.., 4, 1 

which satisfies 4(g(s)) < r for s near sf+r and p(g(s)) > h + 1. Let h(s) be 
the function defined by (2.19), then by Lemma 2.6 and the induction hypo- 
thesis h(s) vanishes to higher order at $,I than g(s) and sgn h(s) = sgng(s) 
near sz,, . Thus for E > 0 and small 

f(s) = w - %ds) 

must vanish at least at 

where s:+~ and sz+,-i may be made arbitrarily near sz+r if E is small enough. 
A little reflection shows that 

4m G p if and only if 4(/z(s)) < r 

indeed that d(g(s)) = d(h(s)) f or any s. Consequently, f(s) must vanish at 

s:+l < s”,+1 = --* = s:++p--g < s& (2.21) 

where s~+~(s~+~-~) may b e made arbitrarily near s~+,(s~+a-a). 
Finally f(s) has the obvious zeros 

sjo (j p u + l)...) (3 + 7; 01 + I)...) a: + p - 2) (2.22) 

In total thenf( s vanishes at least 2/ + 2 times and by (2.20)-(2.22) we can ) 
select a subset of 26 + 1 of these zeros, say s* = {s,*j~~~‘, such that 

f(Si*) = 0 (j = l,..., 21 + l), 4(x0, s*> < r, and ,w(xO, s*) > h. 

The linear system 

f(sj*) = C a,G(xio, sj*) = 0 (j = l,..., 21” $ 1) 
i=l 

has positive determinant G&,+,,( x0, s*) (by the induction hypothesis), while, 
at the same time, not all the ai’s vanish as can be seen by their explicit 
representations in terms of G*( :::) as in the proof of Lemma 2.4. This 
contradiction establishes that Case I and (*) are incompatible. 
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Case II. There is only one repeated s-value, 

&J - . . . = SO 
H-1 - otr 

and at least two further simple s-values. 

(9) Suppose 

Define 

One verifies easily that d(g(s)) < r for s E (x:, A&~), that h(s) vanishes to 
higher order at sz+r than g(s) does, and that sgng(s) = sgn h(s) near $,I . 
It follows, then, as before that the functionf(s) = k(s) - cg(s) must vanish for 

with sZ+~(SZ+,,> near sZ+&!+~-~ ). Furthermore since g(s) does not vanish at 

so0 or s,O while A(s) vanishes simply there, we can find two zeros sp* and 
s,*. near s,O ands,O. Using these zeros with the ones sjO(j # p, w, (T + l,..., 
o + 7) and an appropriate selection of all but one of the zeros from (2.23) 
we reach a contradiction as in Case I. 

(b) Suppose 

and define h(s) as in (a) and 

Just as in (a) we can find zeros off(s) = h(s) - Eg(s): 

ST+1 < A-,“,, = -*- = sf+,-l < s&l 

S* I, near s,O 

One sees readily that d(g(s)) < L@(S)) for any s; hence, if h(s) + 0 near 
&+r then the same is true of g(s) and we reach a contradiction as in (a). 

In case h(s) = 0 near sE+~+~ , it must vanish identically in [x:+~, sZ+~+~] 
for some 2 <j < X - y with &L& - 7) > 0 for small q > 0: Indeed the 
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d@(s)) values are constant on the intervals (A& ) N!+~+~) and one easily 
confirms that d(h(xF+, + 7)) < r for small 7 > 0. Since sgng(s) = sgn h(s) 

in b:+T > SF+,+1 ] it follows that f(s) must have a zero s:+,~ in (z!+~ ’ 3 P C+7+1 ) 

for small E > 0. Because s:+~+~ E (x& , sE+,+J it is easily confirmed that 

and we reach a contradiction as in Case I. 

(C)If S~<XpO<~~~<xyO<s~+l=~~~=s~+s<~~~<s~o<x~~l we 
can proceed in a similar fashion to (b). 

(d) Ifs,o<x,o<~~~<x,~<s~+,=~~~=s~~,<x~~~<~~~<x,~<s~,,~~ 
we can proceed as in (c) to gets,* and as in (b) to get s:+,+~ . 

The cases (a)-(d) are exhaustive and thus the contradiction involved shows 
that Case II is incompatible with (*). 

Case III. There is only one repeated s-value, sz+r = .-. = sz+? , and at 
most one further s-value. 

Under these circumstances, we may assume that 28 + 1 < r - 1; this 
results from 

LEMMA 2.7. Suppose x0 and so are such that there exists an interval 
[xi*, x:+1] which contains a repeated s-value which appears r - 1 times in so. 
Then (*) is untenable. 

Proof. Let s:+~ = ... = s& be such a repeated s-value in [riot XL,]. 

By Lemma 2.6 ~2,~ is an isolated zero of h(s) of multiplicity at least Y. But on 
[xi”, x!+J~ h(s) is a solution of (&h)(s) = &while e, is a differential operator 
of type W of Pblya-and so can have at most r - 1 zeros counting 
multipIicities (cf. Karlin [3, Ch. 6 Q 41) unless it vanishes indentically. 
Thus h(s) = 0 on [xi , xi+J and this contradicts the induction assumption 
since p@(s)) > h for s near sz+,, . /I 

In view of Lemma 2.7, we may assume T < r - 2 so that 28 + 1 < 
T + 1 < r - 1. This inequality quarantees that the compound kernels of 
order 26 + 1 appearing in the BCF applied to (2.10’) are all well defined and 
that 

Since (~l)[2t+l~ (x0, 5) > 0 on the set 

xi* < & < x:+1 (x~~,, = 2~; i = l,..., 28 f 1), 
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it follows that (er)* 12/+rl (x0, so) > 0 which contradicts (*). Thus (*) is also 
incompatible with Case III. 

Since Cases I-III are exhaustive, (*) itself must be false and hence the 
backward induction step of p is advanced and Theorem 1.4 is thereby 
established. 11 

3. PERIODIC SPLINES 

Theorems 1.3 and 1.4 allow the solution of several spline interpolation 
problems. We restrict the discussion here to splines with simple knots 
(hence only Theorem 1.3 will be used) but the obvious generalizations to 
multiple-knot splines are easily established using Theorem 1.4. The theory 
outlined here is similar to that in Karlin [3], ( see also references therein), so 
all proofs are omitted. 

DEFINITION 3.1. A function p(x) is called a cyclic generalized spline (CGS) 
with knots s = {~.}a:+~ E d 33 1 aft1 provided 

(i) &p)(X) = 0 on [si , si+J(i = 0, l,..., 2L + 1, so = 0, sze+a = 2~) 

(ii) p(X) E Cr-2[0, 2~1 

(iii) p(x) satisfies the BC & . 

Briefly, P(X) is a piecewise solution of the differential equation e,.u = 0 
whose derivatives of (Y - 1)th orders may jump at the knots. 

A standard argument proves 

LEMMA 3.1. Any CGS p(x) is of the form 

2e+1 

p(x) = 1 qG(x, sj) 

i=l 

for certain constants a, . 
This lemma yields in turn the following important interpolation result. 

THEOREM 3.1. Let {xi}fi::” E 4, satisfr 4((xi}, {sj}) < Y and let {yk}EL<’ be 
any set of real (or complex) numbers. Then there exists a unique CGS p(x) with 
kots {sj} intmpolating the {yk} at {xi>: p(x,) = yi (i = 1, 2,..., 28 + 1). 

If the differential operator defining the CGS’s is self-adjoint a number of 
special optimality results obtain. Henceforth we assume that p(x) is a CGS 
arising from the self-adjoint BVP. 

n.f+ = Dl* ... D,*D, ... D,u 

Dj* .a. D,r*D,r -.- D,D,u(O) = Dj” -.. D,*D, a.. DlDou(2~) (j = 2,..., r) 
Dk --- D,u(O) = D, ... D,u(27r) (h = r, r - I,..., 0) 
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whose BC are denoted 9?$4?$ . We also set 

L, = D, ..’ D, 

and denote its natural BC by 98,. . The optimality properties of these CGS 
result from the orthogonal&y relation of 

LEMMA 3.2. Let f E.@,.B~ and let p be the unique CGS having the knots 
(sj) that interpolates f on (sJ. Then p is orthogonal to f-p in the sense that 

s 

2n 

(L,.PcWr(f - Pm) dy = 0. 
0 

Remark 3. I. It is important to emphasize that the knots {sj> and the points 
of interpolation {xi> agree in Lemma 3.2. The orthogonality relation crucially 
requires this. On the other hand, the basic interpolation result (Theorem 3.1) 
permits the points of interpolation and the knots to differ. 

As a consequence of Lemma 3.2, we have the following optimality theorems. 

THEOREM 3.2. Let f E g,.%? and let p be the unique CGS interpolating f on 
(sj). Then 

j2” [(L,.P)(x)]~ dx < 1”” [(L,f)(x)]” dx 
0 *0 

and equality holds ifl p = f. 

Remark 3.2. Observe that p depends only on the values off on {s,} and 
in no other way on f. Therefore, we can express the result in the form 

min 5”” [L,( g)(x)12 dx = 1’” [(L,.P)(x)]~ dx 
Se3giJJfl o 0 

where the minimum is over all functions g E CT-“[O, 27r] which interpolate f 
on (~$1 and satisfy the BC 33, . 

THEOREM 3.3. suppose the hypothesis of Theorem 3.2 prevails. Let p 
be the unique CGS interpolating f on {Q}. If q is any other CGS with knots 
confined to (sjj, then 

sr [L,(f - p)(412 dx < sl” [L,(f - q&91” dx 

zuith equality holding ;fJ q = p. 
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Remark 3.3. The preceeding results on optimality also hold if the 
number of knots is even. Indeed, Theorem 3.1 holds for the differential 
operator Ms,. in the special case (xi} = {sj> (i, j = 1,2,..., 28): Let Gl(x, s) 
be the Green’s function for the boundary-value problem L, , .Br and let 
G$(x, S) be the Green’s function for the adjoint boundary-value problem 
L$, a: . If G&X, S) is the G reen’s function for the self-adjoint problem 
M2, = L:L,f , B:g,, then 

G& 4 = fn G,*(x, 0 G(5,s) @. 
0 

Thus, the determinant of the relevant system of linear equations involved 
in the proof of Theorem 3.1 is 

which is easily seen to be positive (the computation at the top of page 388 
shows that (G,.)&<, 2) f 0). In p ar KU ar, t’ 1 in the self-adjoint case, the 
Green’s function G&X, S) is positive definite as well as CTP, . 
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