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In this work we shall study a definition of subunit ball for non-negative symbols
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straightened, by means of a canonical transformation, to contain and be contained
in boxes of certain sizes, which we give in terms of the size of the symbol. After
microlocalizing the symbol, in Section 3 we define classes of subunit symbols and
study some of their basic properties. Then we define the subunit ball. In the last
section the main structure theorems, in the (n + n)-dimensional elliptic case and in
the (1 + 1)- and (2 + 2)-dimensional nonelliptic-nondegenerate cases are stated and
proved.  © 1997 Academic Press

1. INTRODUCTION

As discovered by Stein ez al. in [14-16, 19], a subelliptic operator

U 0? U 0
L=- ) a”(x)m—f- Y bi(x) 0xi+c(x)

i j=1 i=1

(a”=a’, b', ¢ real and smooth; the matrix (a’(x)), ;>0) is governed by a
family of “non-Euclidean” balls B,(x, p). For instance, the fundamental
solution K(x, y) for L is comparable to J(x, y)?/Vol(x, y), where

o(x, y)=inf{ p; ye B.(x, p)}
and

Vol(x, y)= Vol B,(x, p) with p=4d(x, y)

357
0001-8708/97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82046679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

358 ALBERTO PARMEGGIANI

(see Nagel et al. [16], Sanchez-Calle [20], and Fefferman and Sanchez-
Calle [ 13]). The number of eigenvalues of L up to size 4 is comparable to

f dp(x)
mu(By(x, A7)

(in the case M is a compact manifold without boundary and x is a smooth
measure on M) (see Fefferman and Phong [6]), and the sharp subelliptic
estimate

¢ el B,y < N Lt + [fual)?
is equivalent to the geometric condition
BE(X’ ,0) < BL(X’ Cpa)

(here C>0 is a universal constant and By is the Euclidean ball). (See
Fefferman and Phong [6].) See also Christ [1], Fefferman and Kohn
[8, 9], Fefferman et al. [ 10], and Nagel et al. [ 17] for applications to CR
manifolds.

The non-Euclidean ball B,(x, p) may be defined as the set of points that
can be reached in time p by a “subunit path” starting at x. A subunit path
is one whose velocity vector (y', ..., y") satisfies the matrix inequality:

(Viyj)ij< (aij)gr

The fundamental geometric fact about B, (x, p) is that it is comparable to
a rectangular box after a suitable change of variables.

The purpose of this paper is to associate non-Euclidean balls in phase-
space, B,, to a subelliptic pseudodifferential operator (i do) with non-
negative symbol p(x, &). We hope these balls will play for the y do’s a role
more or less analogous to that of the now-standard non-Euclidean balls for
differential operators. In particular, we believe that they are closely related
to the “testing boxes” of Fefferman [2].

Our ball Bp((xo, &9), p) is defined as the set of points in phase-space that
can be reached in time 1 by a “subunit path” for p?p. A path in phase-space
will be called a subunit for a symbol p >0 if its velocity vector at each
time agrees with a Hamiltonian vector field generated by a symbol ¢ that
satisfies the lst-order estimates

(i) 10%0%q(x, OI<(L+1ED' 1 for o +]pl<2
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and the inequality

(i) g(x, &)*<p(x, &).

In (i) it is essential to restrict the formula to |o| + |f] < 2.

We begin to study the geometrical properties of the non-Euclidean balls
in phase-space by studying the  do’s on R” for n =1, 2. For n=1 and for
classes of, for example, n=2, we gain a complete understanding of the
non-Euclidean balls, which are comparable to rectangular boxes after a
suitable canonical transformation. However, in n =2, we give an example
which exhibits a new phenomenon, “stratification,” with no analogue
for the familiar differential operator case. For a fixed (x, &), the ball
B,((x, &), p) looks like a rectangular box unless p is comparable to one of
a bounded number of critical radii p,, p,, .., px. If p= p; then B,((x, &), p)
no longer looks like a box, and moreover B,((x, <), 4p) is very large
compared to B,((x, £), p/4). We conjecture that such behavior holds in the
general case, with N bounded a priori.

We shall formulate the results, and prove them, for symbols in the class
S?(1 x M) (see Fefferman and Phong [4] and Fefferman [2]).

In the next section we shall recall some facts about that class, the
Calderon—Zygmund (C.Z.) decomposition, and the subelliptic hypotheses.

Afterwards we shall proceed by defining the subunit symbols, estab-
lishing some basic properties, and defining the subunit ball. We shall
also need some properties of algebraic functions for which we will only
recall the statements of some of them, and will simply refer the reader to
Fefferman and Narasimhan [11, 12] and Parmeggiani [18] for the
statements and proofs. Algebraic functions arise naturally since the sub-
elliptic hypothesis will enable us to suppose that the symbol p (suitably
localized) is a polynomial of an a priori fixed degree (depending on
the subellipticity), this being done when constructing subunit balls of
sufficiently small radius p (to be specified below) and considering the
Taylor polynomial of p (in the chosen localization block). The mistake will
be seen to be negligible.

In the last two sections the (1 +1)- and (2 + 2)-dimensional results will
be stated and proved.

A final remark is in order: one might expect, since we are dealing with
2nd order symbols, orders of magnitude of the size of the subunit ball
behaving strictly like squares or square-roots. This is not true. In fact,
suppose we have in R”x R”, p(x, &) =7+ M?c on a block of sizes 1 x M,
¢ being >0 but not “too small” (so small as to prevent subellipticity). We
will see that, given (x°, &%) el x M,

B((x%, &) 1) & vy =28 S 1) x (|6 —x%| S ¥4} x {[& — &) S M),
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1/4

The “anomalous” presence of ¢ is completely natural: in computing B,,,

one has to perform (as we will see) a C.Z. decomposition of 1 x M for the
“potential” M>c. The relative blocks Q; will have sizes J; x Md; and M?c
will be elliptic there, i.e.,

M?c~ M35},
ie, d; ~c'

Since the subunit symbols for M?2c will have strength (i.e., size of their
Vi) ~(0;, MJ)) this will also be the optimal displacement (i.e., size J, in
the x-direction, size MJ; in the ¢-direction) given by subunit symbols
related to the M?c part of p (the other being ¢7 which implies a displace-
ment of order 1 in the x, variable) when travelling on a subunit path up
to time 1.

2. REDUCTION TO S?(1 x M) CLASSES AND MAIN HYPOTHESES

Let R"xR"~ T*R" and pe C*(R" x R") be a real, non-negative symbol
of order 2, ie.,

0502 p(x, I S Cop( 1+ [EN>1, Va, B, ¥(x, &) eR"xR.

The corresponding v do is

(p(x, D) u)(x) =J e p(x, &) a(g)de,  ue CF(R").

R"

Here & denotes the Fourier transform of w.

Let now {Q,} be a partition of the phase space R” x R" into blocks of
various sizes diam, Q,xdiam,. Q,, centered at various points (x’, "),
satisfying

diam, Q, =1, diam; Q, ~ |&"]
when |£¥| > 1, and
diam, Q,=1, diam; 0, =1

otherwise (for instance, for &Y =1,

. , 1 -

N

Then, when |&"| > 1,

10505 p 0,1 < Crp 1€7127 17,
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hence, if M is a fixed number > 1, |£"| ~ M, we have
|a§a§P\Q\,| <Coc/$’M2_|ﬁ|7 (1)

ie., p o, €S*(1x M), with new constants C,.

It is important to notice that the seminorms C,; do not depend on M.

Let us now change notations in the following way: our basic block will
be denoted by Q, its sizes by 1 x M, and we suppose that Q,= Q, denoting
by O* (for now) the usual dilate of Q by 10”. (We denote by Q** = (Q*)*
the “double-dilate” of Q, by 1 Q its “middle-half”, and by 2Q its “double.”)

We now localize p to Q, by means of a family of cutoff functions,
{¢.(x, &)}, where the ¢, are constructed by the appropriate dilate and
translate of a fixed cutoff function, such that:

0<¢v<1’ ¢\’El on Q\ik*
supp ¢, = QF**.

(Hence {¢,(x, &)} belong uniformly to S°.)
Moreover, we can choose the partition {Q,} to satisfy

Y A< C

(ie., the uniformly bounded number of overlappings, y,, being the charac-
teristic function of the set Q).
Write

i, &) =¢.(x, &) p(x, &).

We formulate at this point the

MAIN HYPOTHESIS 1. p g« satisfies a subelliptic estimate: Jee (0, 1],
de, >0 such that

(s..) max ppu(x, &)= M7, VB testing box = Q**.
(x,&)eB

Let us recall the definition of a testing box (see Fefferman [2]):

DerFiNITION 2.1. Let @:(z,{)—(x, ) be a canonical transformation
mapping {|z|, |{| < M?} into R* and satisfying the estimates

02 x| <CM Lol < CyM 0
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for |af, [Bl=1. If 05, ={(x,&)eR™; |x;| <L, |&|<]1,j=1,..,n} is the
unit cube in R?, then

B=®(03,)
is called a testing box.

In view of the Calderon-Zygmund decomposition we will have to
perform, it is convenient to extend p, to all of R” x R”, preserving (1) and
(s.e.). We then construct from ¢, the function ¢, satisfying the following
properties:

0<¢,<1, 4,=1 onQ*  suppd, cQF*

Consider then

P'(x &) =p(x, )+ (1—-9,(x, <)) Me,.

Then 0 < p’ € S*(M), i.e., it satisfies (1) V(x, &) e R" xR”, p’ = p on Q*, and
also it satisfies (s.e.) VB< R” x R”, B the testing box.
In fact, let us first note the following fact:

Given a(x), b(x) =0, two bounded functions, then trivially
1(sup a +sup b) <sup(a +b) <sup a+sup b.
Thus:

(1) VB testing boxes such that B< Q**,

max p'(x, &) > H{max(p(x, &) ¢,(x, &) + M, max(l —d,(x, &)}

(x.&)eB
(since ¢, =1 on Q**)

2 % max p(x$ é) > %CL'MI;
(x,&)eB

in view of the above fact.
(ii) VB testing boxes such that B (R” x R"™\Q**) # (¥,

max p'(x,&)=Lte, MPmax (1—¢,)=1Lc, M*
(x,l)eB B

Hence,

(s.e.l) max p'(x,¢&)=c M*® VB testing boxes

(x,8)eB

with a new constant c,.
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We call this extension p’ or p by p again.

Let us summarize our present situation: We are dealing with 0<
p(x, &)e C*(R"xR"), a symbol in the class S*(M), ie.,

0% 02 p(x, )| < CopM>~ V1, Va, B,V(x, &) eR" xR

(C,p independent of M > 1, M to be fixed later on), satisfying the condition:
dee(0, 1], 3¢, >0 such that

max p(x,&)=c, M*® VB testing box

(x,¢)eB

(we refer to this condition, from now on, as condition (s.c.)).

We are interested in analyzing p on a basic block Q of size 1 x M.

Remark 2.2. We chose to extend p, in this way, ie., by adding a
term ~ M*® for max{|x—x"|, (1/M) |£—¢&"|} :=dist((x, &), (x", ")) = 10,
because we are interested in applications of the kind “Theorem SAK”
(see Fefferman [2, p. 199]), so allowing error terms, microlocally in size
1 x M, of magnitude ~ (const) M? |ul|,2, for u microlocalized to such a
size.

We shall have to make further assumptions. Before doing that, we
wish to recall the Calderon-Zygmund decomposition, mentioned above,
introduced by Fefferman and Phong in [3, 4, 7], and to describe the
consequences that will be used over and over in this work.

Let O be our basic block in R”xR”" of sizes 1x M. Then p, € S*(Q)
(see Fefferman [2]). Divide Q into 2" equal parts, divide each part in the
same manner, etc., and retain the blocks Q, which fail to satisfy one of the
following conditions:

max max [0%04p(x, &) <A(MS2)* 6, M(Ms,) " 2)

jal + 151 <3 (%, ) €20,
Vol(Q,) :=10,[>1 (3)

where we have denoted the sizes of Q, by J,=diam, Q, and Mo, =
diam; Q,. Here A0, is the dilate of Q, by a fixed constant 4; 4, 4 to be
chosen later. From now on we will also denote by Q* the double of Q and
by Q' the dilate of Q by a suitable constant k(1) depending on A. Note the
following important fact:

Inequality (2) for |o| +|f] =4 is a trivial consequence of the fact that
p€S*(Q). Hence, for each Q,, p|o, € S*0,).
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DEerFINITION 2.3 (Fefferman and Phong [4]). (i) peS*Q,) is said to
be elliptic if

Ip(x, O =c(Md3)?, (x,8)eQ,, ¢>0.
(ii) peS*Q,) is said to be non-degenerate on Q, if

max  max [0%94p(x, &) oM(MS )™ (M) 2=C

lx| +18l=2 (x,&)eQy

C> Cmax {C’, Y. max [0%0%p(x, &)| 6)(Mo,) (M&f)z}

ll +181=3 <

where C, C’ are large positive constants. (Note that when (x, )€ Q,,
peSHQ,), denoting ¥=(x—x")/d,, &=(£—E&")/Md, with (x', &)=
center(Q,), then

1 = v z v ~ 7
(Mé%)z p(évx'i_x > Mévé +é ) =P()C, f)
is a smooth function—(i.e., its derivatives of any order are bounded
uniformly in M, §,)—on Q°.)

One has the following

LemMA 2.4 (Fefferman and Phong [4]). The blocks {Q,} can be divided
into three classes R, R,, R, with the following properties:

(1) p is elliptic on Q, if Q, € A,;
(ii) p is non-degenerate on Q, if Q, € R,;

(iit) [Q,[~1if Q, €.

It follows from the proof of the above lemma that a good choice of 4 is:
A =k(n) C42%, where C,>max,, , 4 -4 C,s and k(n) is another a priori
constant depending on the dimension.

Therefore we still have the freedom of choosing A.

The main property of a non-degenerate symbol is contained in the
following lemma.

LemMMA 2.5 (Fefferman and Phong [4]). Let p be non-degenerate on a
block Q centered at (0, 0) of size 1 x M. Then either p is elliptic on Q, or else
by a linear symplectic transformation T we may bring about

(peT)y,n)=e(y, ), — 0y, n')> +b(y.n') (4)
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in a dilate of Q. Here eeS°Q) is elliptic and positive, 0 S'(Q) and
be SXQ) are real symbols with b=0. T may be taken to satisfy |y|+
M=yl ~ x|+ M7

Remark 2.6. By picking A=/, fixed a priori, depending on the dimen-
sion and the C, ; (given a priori, as we have seen), T can be chosen to be
either the identity or a canonical permutation of variables at scale 1 x M, i.e.,
a map of the kind

O (X1 ey Xiy ooy Xy 1y ooy iy oenn E41)

-¢,
— wes X1y wees X MXjy ey Eqy ooy &
< g X1 X M &y €

or of the kind

O-; (xls ey Xy weey Xy éla i) é[a e fﬂ)
’_)(xia e S T xn’ 0% é])“'; én)

The idea behind the above lemma is that p >0 and non-degenerate implies
o0 O/gp‘gv are large for either |o| + || =0 or 2.

The case |a|+|f| =0 is the elliptic case, and the case |«|+ |f|=2
implies that 0% 825 Pio,» la|+[Bl =2, dominate the derivatives of order
|| + | B] =3, allowing the use of the Implicit Function Theorem in studying
the set (we suppose that, say, 0*(poT)/0n7 is as large as possible)

o(peT
2={(y,f7); (gnl )=0},

which actually is, in the |a| + || =2 case, a manifold, as stated by the
above lemma.

DerFINITION 2.7 (Fefferman [2]). Suppose @: (p,7)—(x, &) is a
canonical transformation defined on Q (whose center is, say, (1% #°)).
Denote by i the map i: (y,5)+— (y— »°, M ~'(y —#°)) which carries O to
0°, the unit cube (we drop the subscript 2n when there is no risk of confu-
sion). Define (x°, &%) = @(°, »°). We say that @ satisfies natural estimates
if io®@oi~!' is a C* map with derivatives of all orders bounded inde-
pendent of M.! More generally, let Q,, Q, be blocks in R” x R" and, for a

! Note that io@®+i~!is a C* difffomorphism,
W=io®oi~': Q"> R"xR",
Im ¥ = CQ°, some fixed dilate of Q°.
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fixed constant C >0, let @: Q, — CQ, (the dilate of Q, by C) be a canoni-
cal transformation. Let ip: Q) — 0° j=1, 2, be the natural rescaling maps
carrying Q; to Q°. We say that @ is a tame canonical transformation if

ig,o®Poiy': Q> R"xXR"
is a C~-diffeomorphism with derivatives of all orders bounded uniformly in
diam, Q; and diam; Q,, for j=1, 2.
We have the following well-known lemma:
LEMMA 2.8.  Under the hypotheses of Lemma 2.5, suppose p is in the non-

degenerate non-elliptic form (4) on Q". There exists a canonical trans-
formation

D:(y, )= (x,¢Q), P Q"> Q"

such that on Q" we have

(po®)(y,n)=p(y,m) =&y, n)n?+b(y,n) (5)

with &, b having the same properties of e, b respectively. ® satisfies natural
estimates. By picking 2 (larger than an a priori fixed number) the associated
C*-map ¥ is a small perturbation of the identity in C*(Q°), k> 1 (k fixed
as large as we wish). Moreover, ¥(x°, £°) e Q, by picking A, we can suppose

& 1(x°, &% e0*  the double of 0. (6)

Remark 2.9. Given a symbol pe S*(M), one can relate its properties
with a P.D.E.’s properties by means of the Beals—Fefferman Calculus (see
Fefferman and Phong [4, p. 291] or Fefferman [2, p. 187]).

We now summarize the properties of Fefferman and Phong’s Calderon—
Zygmund microlocalization which will be used here.

The basic block Q 1 x M will be dyadically cut into smaller blocks {Q,}
such that

(1) either p gy is elliptic;
(CZ1): (ii) or pu is nonelliptic-nondegenerate;
(iii) or|Q,|~1.

Moreover, {Q,} has the property

(iv) QVnQ/#B=9d,~0,.
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In (CZ1, ii) p is then written in the normal form (through a “nice” canonical
transformation)

px, &) =e(x, &) &3+ pi(x, &) (7)
on Q] (with ee S°(d, x Md,), >0, elliptic, 0< p, € S* (5, x M4 ))).

Remark 2.10. The condition (s.e.l) rules out (CZl, iii). In fact, on Q,
with |Q,[~1, p o, is just bounded by a priori constants. This would
therefore violate (s.e.1) (M being >1).

Remark 2.11. Remarks 2.2 and 2.10 make it possible for us to assume
the following:

(te.)) min p>=1.
R % RN

This can be achieved by adding a Oth order positive elliptic symbol
belonging to S°(R”"xR") to the original symbol considered in the
beginning. This hypothesis will allow us to Taylor-expand the symbol
(suitably microlocalized on certain C.Z. blocks) so that it will be possible
to assume that it is a polynomial of degree d (d depending on ¢). Hence,
given 0 < pe S* (M), we shall consider = p+ 1 and call it p again.

Note that 1eS*(R”xR")n S*M). Moreover, it is important to note
that the C.Z. decomposition for j is the same as that for p, since the addi-
tion of 1 doesn’t affect either (s.e.1) or the ellipticity or the non-degeneracy
(since 0% 8?1 =0, Vo, ff, || +|f]>0). Another property which will be
used is stated by the following lemma. (See Fefferman [2, p. 189] and
Parmeggiani [ 18, p. 23].)

LeEMMA 2.12.  Consider 0< peS*(M) on a block Q of sizes 1xM
centered at (0, 0) such that p|, is microlocally subelliptic (i.e., (s.e.l) holds)
and p is in the form

p\Q”(x7 é) = é% + pl(xa i’)a

where p, is a polynomial in x, of degree d. Take an interval Icr . (Q") (the
x,-projection of Q') such that |I| ~1. Then p\(x', <) =(Av,, . p)(x, &)
satisfies a (s.e.) condition, i.e., Ic. >0 such that

max p(x', ') = e, M* (8)
P

VB' testing box contained in R"~'xR" "'z . - (0").

Remark 2.13. The fact that p, is a polynomial in x, is no restriction
(by Remark 2.11).
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The foregoing Lemma offers the opportunity of giving some examples of
symbols which do not satisfy condition (s.e.):

ExAMPLE 2.14. Let O={(x, £)eR*xR?; |x|<1, || <M}. Then p o(x, &)=
(i) E24x2E2 =& 4 M*x3x32
(i) &7+& =&+ M°x3
don’t satisfy condition (s.e.).

Here ~ means that there exists a tame canonical transformation ¢
under which the two symbols are equivalent.
In fact, in both cases (i) and (ii), ¢: (y, )+ (x, &) is defined by

1
X1=D)1» xzziT/[fz

E1="11, =My,
Let us now set up testing boxes for which (s.e.) doesn’t hold for p.
In the case p|o(x, &) =&7+ M x7x3, we can consider (with 0 <&’ <e)
&'/2

2 M
B={(X, ¢)eR®xR?; |M|<W, |f]|<cel/2T,

4 , c ,
&l <—M' 7, |x2|<8M81}-
c, 4

Hence max  p(x, &) <ic,M* and (s.e.) doesn’t hold.
In the case po(x, &) =&7 + &3, we can consider

ME/ZCI,/Z
B={<x, R xR x|, |xal < : }

<
&, 162 <=

M{:/ZC 1‘/2’
Again max g p(x, &) <3c,M? and (s.e.) doesn’t hold.

In order to state the final set of hypotheses, we have first to establish
some facts.

Fact 1. Given p as above, satisfying (s.e.l) on a basic block 1 x M, Q,
we have that p| o, satisfies (s.e.v), where Q, is a block arising from the C.Z.
decomposition of Q:

(sev) max p,g=c(MJ)),
(x,&)eB

VB testing box < Q.
In fact, 0<d,<1, 6,=diam, Q,.
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Call M,= M3&2. By (s.e.1) we also have §, > M ~ ' Now, on Q,, either
D)o, is elliptic or it is non-degenerate. In the latter case we hence suppose”

Pro(x. &) =e(x, &) &1+ py(x, &) +1

(and actually for (x, &) e large dilate of Q, = Q7).

We shall have to consider p?p(x, &), where 0 <p <1 is a number on
which we shall impose some conditions.

In order to understand pp, o, We have to carry out a further C.Z. decom-
position of Q) (keeping the same parameters 4, A of the C.Z. decomposi-
tion giving rise to Q,).

Let us call Q,, the C.Z. blocks arising from this further decomposition.
Hence 4, :=diam_ Q,,. Since

p2p|Q,,(xa é) ze(x9 é)(pél)z—i_pzpl(xa é’) +p25

we note—(recalling that the ellipticity constant of e is related to the non-
degeneracy constant in Definition 2.3 (see Lemma 3.3 in Fefferman and
Phong [4])—that now the following is true, in view of Remark 2.11, (we
write p,,, but everything we say is still true on a large dilate of Q,, as
usual):

min /’2P\Qr >p?,
and in particular,
rrgn {p7pi(x, &) +p7} = p°.

In the construction of the subunit ball, we shall see that if 0< p,, i=1, 2,
are symbols in S*(Q) such that p, ~p, on Q (ie., 3¢, ¢, >0 such that
on Q, ¢;py < p,<cypy), then

B B, cB

c1p1 apl

(B, is the phase-space subunit ball related to p to be defined in the next

sections). Hence, since
pzp\ Q,v(xa é) = e(x’ é) pzé% + pzpl(x9 é,) + ,02

2In so writing we suppose Q, is centered at (0, 0) and diam, Q,=1, diam; Q,= M,. This
can be achieved by means of the symplectic dilation

SEn aE=a)=n

v

where (x”, £") is the former center of Q,.
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(see Remark 2.11) and ¢ <e(x, &) < C, ¢, C depending only on a priori con-
stants (i.e., a number of seminorms of the original p, A, and A which are
fixed a priori), we can consider (dropping the p? term added in the above
formula)

PPiofX &)= pPE 4 pPpi(x. &) )
satisfying

(te.p) minp’p o =p°

Remark 2.15. In so doing, we preserve the fact that 8; Do, is the
largest among 0% 625 Dion lal + Bl =2; ie., &, is still the “fastest” variable
among the x, & Note also that in (s.e.v) we have to change ¢, by a ¢, that
is new but still fixed, depending on a priori constants.

Having p?p in the form (9), we note that when we perform the C.Z.
cutting procedure of Q, we shall stop at blocks of size at least ~p x M, p,
ie, d,, ~p. In fact, 02 (p°p o) =2p> (see the nondegeneracy condition in
Definition 2.3).

Hence 1 R 0,, R p and it follows that the normal form will occur on blocks
of size ~px M ,p. (See Remark 2.15.)

FAacT 2. Suppose p°p o (x,&)=p*E1+p°pi(x, &), O, of sizes 1xM,.
Decompose Q, into C.Z. blocks {Q,,} relative to p°p,,,. Suppose Q€{0,,}
is a block such that ppiois nonelliptic-nondegenerate. Then diam, Q ~ p
and &, = (center(Q)) is such that either |&,| S M, p or |E|~M, p.

Proof. In view of the choice (9), we have 0 (p’p) =2p” throughout Q,.
The non-degeneracy condition in Definition 2.3 says that

max mgx 0% 0%(p?p)(x, &)| (diam, Q)" (diam. Q)

lol + 181 =2

x (diam, Q diam. Q) *>C.
Hence, with diam, Q=6, a=0, f=2,
2p%0(M,0) P (M ,6%) 2 =2p*MP=26"2=2p%"2>C,

ie., p 26 and the cutting procedure can stop when ¢ ~ p.
Suppose now |, | > M, p. It follows then that p>¢7 is elliptic on Q, which
contradicts the fact that, on Q, p?p is non-elliptic. ||

We now want to have M, p*>> 1, so it must be p> M ;'
We make the following main assumptions:
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(A1) (s.e.l)holds with ¢ (0, 1]:

we then set

& 1 &2

81 T 30—

Then 0 <égy<ée, <3 and M <M ®. Hence we take
(A2v) M "<p<M ™
(A3v) M, >M .,

where M, depends on ¢, ¢,, and the bounds of a finite number N, fixed
a priori, of seminorms C,;

(Ad) (te.p)holds.

Conditions (A2v), (A3v), and (t.e.p) will allow us to take the Taylor expan-
sion of p to make it possible to consider a polynomial symbol of (a priori)
bounded degree.

We now state some consequences of the main assumptions (Al)-(A4).

We suppose p o (x, &) =&+ pi(x, &), O, of sizes 1 x M, centered at
(0,0). Consider p°p o (x, &) =p*T+p’pi(x, ). Cut Q, into a family of
dyadic blocks {Q,,}, a C.Z. decomposition relative to p°p,,. Let 0€{0,,}
of size p x M, p be such that p°p,, is nonelliptic-nondegenerate. It follows
from Fact 2 that diam, Q ~ p, and that

0% 05(p°p1(x, ENI S Cop(M, p?)? (M, p) P p =", Vo, B (10)

We have the following

CONSEQUENCE 1.  p°py o(x, &') can be Taylor-expanded on 4Q". More
precisely, there exists a polynomial P(x,¢"), deg Py =d<D (an a priori
fixed constant), and universal constants c,, ¢, >0, such that

Clpzpl(xo < P(x, )<, pzpl(xa &', V(x, &) edQ".

Proof. 1f &, en (center(Q)), it follows from Fact 2 that |&,| S M, p.
Moreover, &, en:(Q) =& —&, | <M, p, so that also |&,| S M, p.
We can hence consider the symplectic scaling y: (x, &) +—(y, ),

- 1
péi=m,  p&=<) =7, ;(x—f)=y (11)
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where center(Q) = (x, ). (Note that  is globally defined.) Then

O=y(0), a block of sizes 1 x M, p?, W(x, &) =(0; p&,, 0).
Let us consider pp,(x, &'). From p, € S*(1 x 1 x M,), it follows that

(i) 10%05(p°pi(x, ENIS Cop( M3 p?) MV,
and from the C.Z. localization, it follows that
(i) 102 05(p%1 ) 0l ENI< Caf M, ) (M, p) =¥ =P,

But for |o| +|B] =2,

M2 p2 < M2 P20 WA 2= 418D — (A p2)2 M 1B p =l + 1D,

which is on the right-hand side of estimate (ii) above. Write 7' =
(1/M, p*) #' and consider the function

1 , 1 1 .
5 — = M 2( 2 &~ ’ .
S i) UNEEeL <X+py, P <p;7 +M‘,p2£ >>

f1is then a smooth function on the unit cube in R” x R" . For |a| + |B] =2
we have

10505 f(, 77)| < Copp!™ 1712

We can therefore choose d=|a| + || a priori sufficiently large (depending
on &y; the C,4’s are a priori constants depending on the original y do) so
that, if

1 - _
Py(x, &)=}, !ﬂla 0L pp (X, &) (x —X)* (&' = &)
ol + 181 <a *

is the Taylor polynomial of p?p, at (X, &) of degree d, we have, because of
(A2v), (A3v), (A4),

1p7p1(x, &) = Py(x, &) g M7V 5p% VX, £) €40

"

By (te.p) we can then consider on Q
¢, p°p1 < Py <c,p’p,) symbol

the equivalent (in the sense

pzé%-"_Pl(xa é/)’ (12)
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which we shall write again as p?&3 + p(x, &), so that (Al)-(A4) are still
satisfied (with new a priori constants). ||

Remark. Consequence 1 will be used to replace p?p, by its d-degree
Taylor polynomial in such a way that the subunit balls relative to p?p and
to p?¢1+ P, will be equivalent, as explained in Lemma 3.12 below (see
Section 3).

Hence p?p, can be supposed to be a polynomial P, of bounded degree
such that

PSP, <C(M, p?)?, P eS*(pxM,p).

CONSEQUENCE 2. Suppose the C.Z. cutting procedure stops at Q of sizes
~pxM,p. Then pzp‘Q satisfies a (s.e.) condition.

Proof.

max p’po(x, &) =c, p>M5 = c (M, p*)*2,

(x,8)eB

since M?? p?~9>1 by (A2v). (In fact, p? *> M P97 = pf el >
M) 1

We shall have to consider a C.Z. localization for Av,, ., ( p°p1 o) Where
I,cn (Q'), |I,| ~p (which is the same as considering Av,, ,(P(y,7"))
for (y,n') e block of sizes 1 x M, p?).

Since p°p, |, is a polynomial, we note that if 7,, I are intervals con-
tained in 7, (Q') with 1| ~|I}|~p, I, 0 I # &, then

A Ylel(ppl) A xlel(ppl)

(see Fefferman [2, p. 146]).

Consider (p?po)(y, n) where  is defined in (11). Then we can suppose
pp(y,n)=ni+pi(y.n') on a block of sizes 1x M, p* with p, a non-
negative polynomial of bounded degree. We now apply Lemma 2.12 to
obtain the

CONSEQUENCE 3. p((y',n')=(Av,, ., p)(}',5') satisfies (s.e.).

Here [ is an interval corresponding to /, above through the symplectic
scaling .
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3. DEFINITION OF THE SUBUNIT BALL B,

3.1. Subunit Symbols

Let 0< peS*(1x M), Q be a basic block of sizes 1 x M, = R"xR". Set
0% to be the dilate of Q by 4.

DEerFINITION 3.1. Let ge C*(Q**, R), supp ¢ = int Q** be such that
(i) 10%0%q(x, OIS CoypM' 1P o +|BI<2;
(ii) q(x, &)’ <p(x, &) V(x, &) e Q**
q is said to be a subunit symbol for p on Q (or a subordinate symbol).

We denote the set of subunit symbols for p on Q by

Z(p, 0, 2n).

Note that to check conditions (i) it suffices to check them for |o| + |f] =0
and |o|+|f| =2, the remaining estimates following by interpolation
(rescaling matters to the unit cube and scaling things back).?

Since, given 1> ¢ >0,

qeJ(p, Q,2n)<=cqe F(p, Q. 2n),

we decide to normalize subunit symbols in such a way that

max  y  Cu<lL
OSKS2 10 411 =k

Denote by

L (p, O, 2n)

the subset of Z(p, Q, 2n) of the so-normalized subunit symbols.

3 We recall here one of the interpolation inequalities used several times in the following:
given e C?, f: R"— R, suppose || f| .« <P, Dal=2 ID*f | 1= < Q. Then

Y DSl < e(n) /PO,

o =1

with ¢(n) >0 a universal constant independent of f and depending only on the dimension 7.
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Remark 3.2. We shall deal with p and p?p. By picking the constants 4,
A in the C.Z. decomposition in an a priori way, we can make it possible to
always be in the following situation:

vQ, C.Z. block, QFx** Q.
Remark 3.3. We shall have to localize further subunit symbols. To do
that we fix ye Cy°(int Q9,), 0<y <1, and define various cut-off functions
(related to C.Z. subblocks of various sizes) as the translates and dilates by

a priori constants of y (occasionally denoted again by y), so their derivatives
are bounded by a priori constants.

Subunit symbols can be /localized and extended, as explained in the
following proposition.

PrOPOSITION 3.4. Given Qs < Q of size 0 x Mo, 0 <o <1, we have

qe‘y(pa Qa 2n)7 p|Q(')-<C(Méz)zbque‘y(plQ,;a Qdazn) (1)

for some a priori ¢ >0, cutoff x, supp y cint QF*, 0<y <1, y=1 on QF;
conversely,

Py < CMS*)?,  qe S (pig, Qs 2n)=q€ S (p, O, 2n). (2)

Proof. We just prove the statements for the set .7, since the case &
follows by normalization (c is a priori; see Remark 3.3).

(1) From (ii) in Definition 3.1, it follows that
q(x, &)’ < p(x, &) SCM?),  V(x, &) e QF,
so that also
(x(x, &) q(x, &))< plx, &) < C(Md?)?
on QF*. Since |07 0%¢(x, &)| <M'~ "l and, for |a| +|B| =2,
M = (M%) 519 ( M)~ 1A,
it follows that g,y satisfies the estimates (i) and (ii) at scale J x MJ of
Definition 3.1, the estimates for |a| + |f] =1 following by interpolation.

Now,

0% 02 x(x, I < Copf(MO) =101, Va, .
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By Leibniz rule we have

10 0%(x(x, &) q(x, €))|
y <a><§> (0777087 y(x, E))(97.0%¢(x, &)

(o) <(x ) \7

< >< > g (M)l gl
(/ {7)< B 7.
)

x (M32)(M)~17 917

:{ Y <><ﬁ>cl . }Mlﬁ|52(la+lﬂ)
o= \V/NG) T

= Cy(MO*) (M)~ o1, Vo] + | <2, (13)

ie., yqge Z( Dios» Os, 2n). Note that the C,;’s above are a priori constants.
(2) Tt follows trivially from ¢(x, £)>< p(x, &) on QF*, the support

condition (being int QF* —int Q**), and the fact that 0 <d <1 and, Vo, f5,
|| + Bl <2, that
(M) (M) =P § =1l = ppt = 1B g2 = 418D < ppt =11,
Hence ge ¥ (p, O, 2n). |
Subunit symbols behave well under tame canonical transformations. Let

Os={x;|x;—x7| <0, j=1,.,n} x{&; |&,—=E) | < M6, j=1, .., n}

and

Q&Z{yﬁ |y/_yjo|<1a]:1=an} X{”a |77]_77j0|<M52,]:1,,n}

(from now on we shall drop the index j when defining blocks of the above
kind). Let ¢: 0y — Q" be a smooth, tame canonical transformation.
Define

1
i (%n)H(y—y“,Méz(n—n“)):(yi i)

i (o (=) g5 (6= )= (3.0
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so that
=l 5 > (1,0 5 5,0 2
iy ()= (yn) ="+ J,n° + Moi)
i (% &) (x, &) = (% + x°, MO +¢&°).
Consider also the symplectic scaling

5: 05— 05=1{(2,0); 121 <9, |{| < M0}

1
s(y,m) = <5(y— »°), 5 (77—77°)> =(z ().

For arbitrary (z° ¢°), the canonical transformation

V(034 (209" - 0F

Y1z, O (os (z—2% L")
is then tame, where ng (2% ) ={(z,0);1z—2° <4, |{ -’ < MJ}. In
fact, denoting by Q3:= 09+ (2" (°), by i; the natural rescaling of Q3 to

the unit cube Q° and by T, the translation (z, {) — (z —z° ¢ — (%), we have
that

boyeiy i =(iyodeiy )o(iyos e Tyeis ).

We then use the fact that ¢ is tame and that

ipos 'oTyoiy " (5 0) > (20402, (04 MOC) — (02, MY)

- <y0 +%, n°+ M525> (2, Q).
Suppose
POF*) = (Q))** (14)
so that
Y05+ (2% (°)**) = (Q5)**

holds and vice versa (since i is obtained from ¢ through an affine symplec-
tic transformation and vice versa).

Here Q5= {(x, &); |[x—x°| < (6, | —&°| < CMS}, C>0 depending only
on ¢. Then
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PROPOSITION 3.5. Given 0 < pe S*(J x M),

(i) qeS(p,Q))=clqo$)e S (p-¢, 0,)

and equivalently

(i) ge(p, Q5)=clgoyp)eS (poih, 05+ (=" %)
¢>0 is an a priori constant depending on ¢ (equiv., on ).

Proof. (1)< (i) since ¢ and Y are equivalent under an affine sym-
plectic transformation. We shall henceforth prove only (i). In view of (14),
we just need to check (i) and (ii) in Definition 3.1.

(i1) s trivial (since the symbol p behaves well under tame canonical
transformations of the above kind). To check (i), it suffices to check it for
|| + | B =0, 2, the intermediate cases following by interpolation.

Write
qo¢:qoi2_1 o(i20¢oil_])oil ::(qoiz_l)o@oil
with
|a§ a’?¢('x9 f)| g Co(/)’a Va, ﬂ

Given functions f, g, write by Df, Dg their Jacobian matrices and by
D?*f, D?g their Hessian matrices. Then the chain rule takes the form
D(f-g)=Df Dg whence, with 1= fog,

D*h = D?*f Dg® Dg + Df D*g.
By Df|, we shall mean the y-column of Df. Using an (n + n)-block nota-

tion, we have

Di, =diag(I D%, =0.

oy 0n
(M6%)~'1,,.,) = diag(y ’7>,

oy’ oy

For |a| =
02qois ) =X c(ps v, s 1)(0g) 015 ) DT x, 0T,
+ZC(%ﬁ lla' * ja j+1,~ ’ij+k)

X ((8708q)ois 1) 09X, - 0%x, B0, - 0%E,

i+l X Ptk
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with, in the first sum,
lo |+ - +lol=lal, o[>0, VL [yl=j<2=]af
and, in the second sum,

lo [+ - +lol + il + -+l =lal, oyl v >0, VI,
IyI=Jj. 1Bl=k, 0<j k<L

Hence
10%(gois )&, &) < (Md?) 6~ "6 £ Mo?

since 03¢, =0.
For || =2,

08(qoiy W ) = ey, ir, o i)(01q) 0y ') DFE, -+ 0D,
(since 0%x; =0) with
Yl=7i<2loi[+loa|+ - +lo;l =B, [o,|>0 VL
Hence
|0%(qoiy ")E, O S (MS*)(MS)~ " (M6) " £ M&™.
For |af = [p| =1,

0%0%(qois W% &) =X ey, s iy, )((0),0%q) iy ") 0%x, 0%,

with
j=WI=1  lul=I=k  lol=laf=1,  pl=[f]=1
since
0%, =0%x,=0%x;=0%:¢,; =0.
Hence

10302(q0i~")(%, )| £ (M%) 671 (M3)~" 6(MJ) = M&”

and this is true Va, B, o] + |f] <2.
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We know that |D®|, |D?®| are bounded uniformly in MJ and 6.
Now,

ageis") 5(q0i21)>
ox T

0% ox

oy o

o& o

oy on

Digeiz )=
DD =

For |a| =2,
03(q°¢)(y,n)=D*q-i, ')(D® Diy|,)® (DD Diy )
+D(q-iy ') D°® Di,|, ®Di, |,

whence [0%(q > ¢)(y, n)| S M&> + M6* ~ M>.
For |f| =2,

05(qe @)y, n)=D*(q-i; ")(DP Di,|,)® (DP Diy ,)
+D(q-iy ') D*® Di, |, ® Di,,

whence [0)(q°¢)(y, n)| £ MO*(M0?) "2 + MO*(M6?) > ~ (M6?) ™
For |af =[f] =1,

050%(q°¢)(y.n)=D*q-iy ')(D® Di,|,)® (DP Diy ,)
+D(qoiy ') D*® Diy |, @ Diy,

whence |02 0%(q > ¢)(y, n)| S MO*(MS*) ™" + MS*(M*) ' ~ 1

The case ||+ |f| =0 being trivial, we have, for ¢ >0, a universal con-
stant,

105 0(q =)y, mI < Cop(MO*)' 1, o + | B <2

and c(qgod)e S (pod, Os). 1

Suppose now ¢: Oy — Q' as above. Suppose ¢(QF*)c QL** and
¢~ '(QL**) = Ql** with QL** = Q7". Combining Propositions 3.4 and 3.5
gives

COROLLARY 3.6.

g€ (p. Q5)=clgod)e L (po¢, 0})
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and

(gep)e S (ped, O5)=ciqe S (p, Q)

for universal constants c, ¢, > 0. Under similar natural assumptions on \, the
same holds for q and q-.

Corollary 3.6 is crucial since it says that subunit geometry is preserved
under tame canonical transformations. (Remark that subunit geometry is
preserved by definition under affine canonical transformations like the
symplectic scaling s and s~'oT,.)

Another property which will be crucial in the next sections is the
following:

Lemma 3.7. Let Q be one of either our basic blocks or a block arising
from a C.Z. decomposition, centered at (0, 0), and let

p\Q’(xa &) :ff +pi(x, &)
Yqe S (q, Q, 2n), q can be written in the form

q(X, é) = ql(xa é) + qZ(xa é)n (15)

where cq, € (&3, Q', 2n), cq, € ¥(p,, O, 2n), with 0<c<1 a universal
constant. Here Q' is a block, whose sizes are comparable to those of Q,
center(Q') = center(Q), such that

QCQl CQl**ZQ***,

In particular,

quQ**ey( %DQ)a 42|Q**€5p(l71;Q)~

Proof. From q(x, &)< &3+ pi(x, &) it follows that

q(x, 0, &) =q(x, &), _o < (. &).

By Taylor’s formula we have

q(x, &) =0(x,¢) &1 +4(x,0,) (16)

with

00 &)= (0 a)(x. 16, e
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Takenow y € CP(R"xR"),0< y <1, y=10n Q** osupp ¢, supp y = Q***
(so that y satisfies the natural estimates associated with Q, as in Remark 3.3).
Then

1%, &) q(x, <) = 4q(x, <)
:X(X’ é) Q(.X, é) él +X(X, é) Q(Xa 0’ é,)
= ql(x’ é) + C]z(xa é)

Clearly ¢; € C?, i=1, 2, and, by normalization, they belong to ¥ (&7, Q'),
F(p,, Q") respectively. |

COROLLARY 3.8. Under the above hypotheses, suppose further, in R* x R?,
Dio(x, &)= ETte(x, E)(EL—0(xy, x2))> + V(xy, x3)

with 0<c<e<C; e, V,0 real; V=0; and ec S°(Q), 0 SY(Q), VeS*Q).
Then for Q, such that Qif* = Q***, center(Q,) = center(Q), and size(Q,) ~
size(Q),

q2(xa é) = qé(xa é) + q%(xz 6)
where
cgy €S (e(&,=0)%01),  cq3eS(V, Q)
for 0 <c <1 a universal constant.
Proof. Tt follows immediately from the fact that
Gz 0w €S (e(Ey— 0)>+V,Q),
and by Taylor expanding with respect to

E={(x&):&=0(x,,x)). 1

Denote now by H, the Hamiltonian vector field associated with the
Hamiltonian ¢(x, &), where g is subordinate to p on Q, where Q is a block
of sizes & x M, centered at (0, 0) (for simplicity).

Let (x° £% e Q and let (1) =exp(tH,)(x°, £°%).

Lemma 3.9. V(x° ¢%eQ, Vie[0, 1], y(t) e O*.
Proof. The Hamilton’s equations are:

{X(t) =(0:q)(x, &), x(0)=x°
&)= —(0.q)(x, &), &(0)=¢&"
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By Taylor’s formula and g€ ¥ (p, Q), it follows that
[x(1) =x°I< el o, |&(1) =& < Jt] Mo
so that

W) =(x(2),&(n) e Q¥  Vee[0.1]. 1

Remark 3.10. Since ge L (p, Q)<= —qe L (p, Q), we can flow forwards
and backwards along exp(7H,) and consider only trajectories defined for
tel0,1].

3.2. The Definition of the Subunit Ball B,((x°, £°), 1)

We now define the subunit ball associated with a non-negative 2nd order
symbol 0 < p defined on a suitable dilate of a basic block Q of sizes 1 x M,
centered for simplicity, at (0, 0). Consider a C.Z. decomposition of Q into
subblocks Q, of various sizes d, x Md, (as always, centered at various
points (x", £")).

Given (x° &%) e Q, then (x° &%) e Q;, for a certain 6.

DerFiNITION 3.11.  Define by

T(p, Q5)={r:[0,11>R"xR"; 3ge S (p, 0F), j(1) = H,(y(1))} ~ (17)

the set of subunit trajectories. Define by I(¢; x°, °) a subunit broken path
starting at (x°, &%) if 3{z,} r_,, a partition of [0,1], 7,=0, 7, =1, and
{76} k21> 7 € T(p, Q;) such that y,(7;) =y, 4(¢;) and

k=0,..L—1.

F|[’k~ 411 = Y+ 110 40010

The p-subunit ball centered at (x° &°) of radius 1 is the set of (x, &)e
R”x R" such that (x, £) can be reached through a broken subunit trajec-
tory starting at (x°, &°):

B,((x° &%, 1) ={(x, &) eR”xR"; 3I" subunit broken path with
(x, &) =1(1;x"% &%)} (18)
Define the p-subunit ball of radius p, 0 <p <1, to be

B,((x°, &%), p) 1= B3, ((x", &), 1). (19)

The reasons for such a choice of Bp((xo, &9, p) will be clear when we
discuss the case in which p, is elliptic.
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Suppose now 0< p,, p, € S*(Q) with p, ~ p,, then we immediately have
the following

Lemma 3.12. ge F(p,, Q)=cqe L (p,, Q), and qeF(p,, Q)=¢Cq€
SL(pi1, Q), for universal constants ¢, ¢ >0. Hence, if ¢, p,(x, &) < p,(x, &)<
e pi(x, &) V(x, &) e Q™ then

B.,<B, B
2

1P Pyt
Remark 3.13. We want to comment about the definition of the subunit
ball of radius p. If L is a 2nd-order differential operator, one has that

BL(xa p) ~ szL(x’ 1)

On the other hand, a definition of a phase-case subunit ball of radius p by
means of broken paths defined on the interval [0, p] is not the right one
(see also Fefferman [2]).

In fact, in the case p,, is elliptic, we expect the subunit ball to have sizes
comparable to those of Q. We will see that this is not the case, according
to a definition which uses trajectories defined on [0, p].

Moreover, we want to have that {(y,#);7=0} nB,((x,0), p) is essen-
tially B,(x, p) when p(x, {) =3 a’™(x) ¢y, e, in the differential operator
case. In that case we can suppose, after a C.Z. localization in the base space
(see Fefferman [2, p. 182, Lemma 2] and the following pages)

px, O =e(x) &+ Y a(xy, x) &l

n=j, k=2

i.e., p is in non-degenerate normal form (the factor e is elliptic).

When considering B »,( (x°,0), 1), we perform a C.Z. decomposition of O
in R” xR" relative to p’p. For blocks Q, for which Q) n {&=0} # &, it
will then be true that J, ~ p, because of non-degeneracy. At this scale, for
differential operators, the usual subunit analysis and the pseudodifferential
one, will agree, when & =0.

Denote by B,((x° &°), t=p) the subunit ball defined through broken
paths parametrized by [0, p]. Then consider, for some point y, € Q and

Qe (p, Q), the path
V(t):exp(th)(Vo)a [6[09 p]’ O<p<1

Then ¢ =sp with s€ [0, 1], and we can write

W(2) =a(s) =exp(sH ,,)(7o)-
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Now, (pq)> < p?p and, on Q that we suppose to be of sizes 1 x M,
107 0%(pq)(x, E) < CopM' V1, ol + || < 2.

It follows that pge & (p*p, O).
Suppose now that p ,, Q of size 1 x M, is elliptic, i.e.,

Je>0, p(x, &) =cM?, Y(x, &) e some dilate of Q.

Take (x°, &%) € Q and consider a C.Z. decomposition of Q relative to pp,,.
Since p2p(x, &) = cp*M? on Q, ellipticity will occur on blocks Q(;, whose
sizes 0; x M6, are such that 1=0, ~ p'? (see Definition 2.3).

Say that (x &% e Q;, one of these blocks. It will be seen that

szp((xoa 50)’ 1)z {|X—XO| éé} X {lé_éol é Mé}
while
BP((XO, 50), t:P) z{|-x_x0| ép} X {lé_éo| éMp} :C:BCP((-XO; 60)’ P)

It might then seem that a scaling factor p* when considering p*p, would
be the right one. This is not true, since it would contradict what was said
above in the case p is a differential operator.

We conclude the section with the following immediate corollary of the
proof of Lemma 3.9:

Lemma 3.14. Let (x° &% e Q and let I(t;x° &°) be a subunit broken
path starting at (x°, &°). Then

I'(t; x°% &% e 0%, Vte[0,1].

Remark 3.15. TI(t,x° &°) is Lipschitz-continuous. This follows from the
definition of I" and the fact that Vge ¥ (p, Q), Q of size | x M,

! |qu|s |V§CI| < 1

4. SOME PROPERTIES OF SMOOTH FUNCTIONS

We shall have to use a number of properties of smooth functions and
functions defined as solutions to polynomial equations.* We will make use
of them simply by referring the reader to Parmeggiani [ 18] for precise

4 In the following, every constant C, ¢, c(n, d), ¢,, €2, €3, €4, ¢s5, C,, is a universal constant.
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statements and proofs. For the convenience of the reader we just recall in
this section three of the properties and state two fundamental theorems
proved by Fefferman and Narasimhan in [ 11, 12].

The following lemma shows how to construct cut-off functions having
“controlled” gradient:

LemmA 4.1. Suppose 0 <6 <1; ¢y, c;>0. There exists Y € Cy(R) such
that supp = (—c,6"4, ¢,6'%),

Y2<es, B (x) =6 = ey oM (20)

€2
for xe[ —1c, 64 5c,6'4],
02| < CoMD =, 0<as. (1)

We shall need bounds in the following situation: suppose we have func-
tions F(x, ¢), P(x, &) such that F?> < P pointwise. How big can 0, _F be?

LemMmA 4.2. Let Q be the unit cube in R*, centered at (0,0). Let
Fe Cl(int Q), 0< Pe C(Q), be such that

F(x, £)* < P(x, &), V(x,&)e 0,
and
0% 0EF(x, &) < Cop<1, | +|BI<2.

Then, with Q=1x1, I the unit cube centered at the origin in R", Vé°e I we
have

max |V F(x, £%)] < C(max P(x, 0))"* +]¢°), (22)

xel xel

C being a universal constant (i.e., also independent of &).

The next lemma is about smooth algebraic functions.

Lemma 4.3. Let Q= Q, x1I be the unit cube, centered at the origin, in
R" "', with coordinates (x, y)eR"xR. Let P(x,y) be a polynomial of a
priori bounded degree d, with |0,P|>C>0, Y(x, y)e Q*, and |P| =
<C,, for fixed constants C, C,>0. Let y= f(x) be the solution to
P(x, y)=0 on Q% with feC*(30%), I/l Lo, <2. Consider, for fixed
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y€eR, the polynomial in XeR, P (X)=(y—X)*, and the associate function
py(x)=(y—f(x))*. Then

AVerpy(X)Nmag py(x) (23)
and
HaxquL‘r(Q) C pr HLT(Q)B (24)

where C and the constants in the equivalence do not depend on y.
Furthermore, if x, — f(x,, X,) is a polynomial of a priori bounded degree
in x,, then the same holds truefor (y —(f(xl,xz)—(AV|xl|<1f)(x2)))2.

Suppose I'= {(x, f(x)) e R?% P(x, f(x)) =0}, P a polynomial (of a priori
bounded degree) as above. leen another polynomial (of a priori bounded
degree) V(x, y), we need properties of the above kind for the function
V(ix, f(x)). Looking at the above facts, one might conjecture that
V(x, f(x)) satisfies a Bernstein’s inequality. As proved in the paper of
Fefferman and Narasimhan [11], W(x, f(x)) does satisfy important
inequalities, among which is Bernstein’s inequality.

We now state the theorem about V(x, f(x)) (see [11]):

THEOREM 4.4. Let I'={(x, y)eR*; y=f(x) and |x| <1}, where P(x, f(x))
=0 for a polynomial P(x, y). Assume:
(i) lf()I<1  for |x|<L
(11) P(x, y) has degree at most D,
) P pI<C for x| [yI< 1
) 10,P(x, y)|Zc>0  for (x,p)el.

(iii
(iv

Then, with g(x) = V(x, f(x)), for a polynomial V(x, y) of degree d:

(a) max |g(x)| < C, max |g(x)[;
x| <1 x| <1/2
(b) max |g'(x)] < C, max |g(x)| (Bernstein's inequality);
|x[<1 x| <1
1
(c) max |g(x)| <C, | |g(x)] dx.

with C, depending only on d, D, C, c.

Thus, g behaves like a polynomial of one variable. Note that if f(x,, x,)
is a smooth algebraic function, polynomial of bounded degree in x,,
and solution to P(x;, x,, f(x;,Xx,))=0 (P satisfying hypotheses like in
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Lemma 4.3), and V(x,, x,, y) is another polynomial (as above), the same
conclusions of Theorem 4.4 hold for g(x,, x,) = V(x,, x5, f(x;, Xx,)) (g 1s
actually a polynomial in x,) where g’ is substituted by Vg and f‘_l lg| is
now the average of g in x,, x,.

All this will be crucial when studying the subunit geometry of the symbol

P(X1, X2, &) = (& —0(xy, xz))2+ V(xy, x,)

(on a C.Z. block Q), where we can suppose 6 is a polynomial in x, and a
smooth algebraic function in x;, V(x,, x,) = p(x;, X, 0(x;, x,)), p a poly-
nomial symbol (by this, we mean that, when rescaling matters to the unit
cube in R?, the corresponding 0 and p are polynomials of bounded degree
and bounded maximum-norms, and algebraic functions, in the corre-
sponding rescaled variables). We shall refer to them as rescaled polynomials
and rescaled algebraic functions or simply as polynomials and algebraic
Sfunctions respectively.

Finally we have to know what happens to (0(x,, x,) —(Av,, 0)(x,))? in
the case # is an algebraic function in x,, x,, and not a polynomial in x,.
The right quantity to consider in this case is not the “continuous” average
in x,, but rather a discrete average on an a priori choice of N points
xl,..,xY. This is described below in a theorem of Fefferman and
Narasimhan proved in [12].

In order to state the theorem, we need to make some assumptions: we
let O be the unit cube centered at 0 in R”; let P, ..., P, be polynomials
on R” with real coefficients (1 <k <n). Assume the following:

(I) deg P,< D, mgx |P|<C for j=1,..k;
(IT) Py(0)=-.--=P(0)=0, and |det <<aP’> > =>c>0 at0.
ox; 1<i, j<k
Set
V={xeR"; Pi(x)=--- = P(x)=0}
and define
. V->R"F

the projection of (x, .., x,) to (X, .. Xx,). Let F be a polynomial of

degree <D on R” and let Q, be the cube of side p centered at 0 in R” %

THEOREM 4.4’ (Fefferman and Narasimhan [12]). There are constants
P> Cyu>0, depending only on n, C, D, ¢ above, with the following proper-
ties:
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(A) The local inverse n=": Q, — V is well defined and smooth.

(B) If fly)=Fon '(y) for yeQ,,, then we have the estimates
(Bernstein’s inequalities)

C
max |Vf| <—*max |f],
[ P 9

1
Vol 0,

1 .
= —— max N
J,, 111 g max 171

max |f] <C, max |f],
2p Q)

valid for 0 <p <3p,.

Theorem 4.4’ can be used in the case of discrete averages: let P(x, y, )
be a polynomial of degree <D in variables xeR”, yeR”, teR.
Assume |P(x, y,t)|<C and (0P/0t)(x, y,t)>c>0 on the unit cube
{xl. ol Il <1}

Assume 6O(x, y) satisfies |0(x, y)| <1, P(x, y, 8(x, y))=0 for |x|, |y| < L.
Let now xeR”, yeR", t,, t,, ..., ty € R be variables, and let y, ..., yy €R"
be fixed points with |y, < 5.

Define Py(x, y, to, ... ty) = P(x, y, to), P;(x, y, to, ... ty) = P(x, y;, t;) for
I<j<N.

Then det((0P;/0t;)¢<, j<n)>c >0 on the unit cube. The common zeros
of Py, ..., Py in the unit cube are

V= {(X, s t()a Rt Z‘N)’ t():e(xa y)’ [j:e(-x’ y/) for 1 <]<N}
If 7 (x, y, 2o, ... 1y) (X, y) projects V' to R"*", then
7[71: (x7 J’)'—’ (X, s H(xa y)a e(xa yl)a Rt e(x’ yN))

Thus, if F(x, y, ty, t,, ..., ty) is a polynomial of degree <D, then the above
theorem shows that

S Yiy1s e Yn) =For (X, Y571, s Vi)

:F()C, y> g(x’ y)’ H(X’ yl)’ batd 0(x7 yN))

satisfies Bernstein’s inequality with constants depending only on C, ¢, D, m,
n, N. Hence:
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COROLLARY. The function

1 N 2
FUx, 9,00, 1), ooy O, yN))=< v I e )

satisfies Bernstein’s inequalities of Theorem 4.4'.

5. DESCRIPTION OF B,((X°, ¢°), 1) FOR A SYMBOL p

5.1. The Elliptic (n + n)-Dimensional Case

We are now in a position to describe the subunit ball for a symbol
p(x, &)e S* (M) satisfying the Main Assumptions (Al) through (A4) of
Section 2. We therefore suppose 0< p(x, ¢)eS?(1x M), localized to a
basic block Q of sizes 1 x M, centered at the origin of R” x R”. Suppose
(x°, &9 e Q. By performing a C.Z. localization, we first consider the case in
which the restriction of p to a C.Z. block, at which the cutting procedure
stops, is elliptic and, calling that block Q;, of sizes & x MJ, (x°, &%) e Q5.
Note that, by Remark 2.10, the other case we have to consider is the
nonelliptic-nondegenerate case, i.e., after a tame canonical transformation,
p(x, &) can be written as 2+ p,(x, &').

Hence we now suppose

Pioy(x, &) ~ (Mo?)?

(the equivalence constants being a priori constants).

So, consider (x°, ¢% e Q;. Let ?;(%, é) =1, 2, .., 2n, be the functions
constructed in [ 18, Corollary 4.4], (X, &e ( 25, 25)2”.

Consider, for fixed (%, &) € Q¥, the subunit symbols, for j=1,2, ..., 2n,

i a1=evp, (x5, 555 (25)

That the ¢,’s are subunit symbols follows from the estimates in [18,
Corollary 4.4] (c serves to normalize the derivatives of the g;’s).
Hence, for j=1,2, .., 2n

q;(x, &) <e(M0?)* < pgy(x, &),
ax,»qj(xa f) = C3M5, ]: 1, ey 1,

ax,.qj’(xa é)Eaéiq]‘(X, é)Eaijqj'(xa $)=0, for i+#},
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and

55/_7”(11-()(, &) =c36, j=n+1,..,2n,

0: 4/(x. =0, qx.&)=0, q(x.&)=0. for i#}]
for

(x, &) € 04(%, &) = {(x, &) € 05 ; |x — | <0, |€ — E| < Md},
and we have
0% 02q;(x, &) < (M*) (M) 1o, 0< |+ <2, Vi

Consider then H 4 the associated Hamiltonian vector field.
It follows that V(x, &) e Qys(x°, £°) we can find subunit symbols ¢; as
above so that

2
H,(x,&)= —c,M§

—, =1, ..,n,
A

qu(xa 5)2645 j:n+1,, 271,

ox,_,’

J—n

thus allowing us to flow in all the coordinate directions, through broken
paths I(¢; x° &%) having the above H, q, S as velocity fields. We can there-
fore fill in, for t~ 1, a box of the kind

{(x, &) eR"xR"; |x —x°| £, | —<&°| S Mo},
whence we conclude
B, ={(x, ) eR"xR"; |x—x°| £0, | = &°| £ MJ} = B,((x° &%), 1).

We now want to show that the subunit ball is contained in a box B, whose
sizes are comparable to those of B;, with center(B,) = (x°, &%).

To do that we just note that if (x(¢), &(2)) =1I(t; x° &°), ie., a subunit
broken path starting at (x° &°) (see Definition 3.11), applying Lemma 3.9
(actually the corresponding Lemma 3.14 for subunit broken paths) to
IT(t; x° &°) gives that the best possible displacement along subunit paths is:

|x—=x°|<Co,  [E-EI<CMO
for a universal constant C > 0. Hence

BP((XO, 60)5 l)C {(X, é)ERnXRn; |X—XO| ééa |€"_50| éMé} :B2'
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We have therefore proved the

THEOREM 5.1. Suppose Qs is a C.Z. block, of sizes o x MJ, on which
p(x, &) is elliptic. Suppose (x°, £°) e Q. Then

B,((x" &%), D)~ {(x, ) eR"xR"; |x —x"| £ 6, [£ - &°| S MJ}.

(Note that the choice of A, the dilation parameter, and of the normaliza-
tion constants yields B,((x°, &°), 1) = 0j).

Theorem 5.1 agrees with the definition of B,, in the case p is elliptic,
given in Fefferman [2, pg. 203].

Using Theorem 5.1 we can now complete the argument in Remark 3.13.
In fact, we have the following

COROLLARY 5.2. Same hypotheses as in Theorem 5.1. Then, using the
notations of Remark 3.13,°

(1) B,((x% &%), p) = {(x, &) eR"xR"; [x = x°| £ p'?0,
| &% = p'2Mo},

(i) B,((x% &%, t=p)= {(x, &) eR"xR"; |x —x°| £ pJ,
& —¢&% = pMo}.

Proof. Point (ii) follows immediately from the construction in Theorem
5.1, for t ~ p.

About point (i), we have p ,(x, &)~ (Mo6%)>. Hence to understand
p’p o, We localize it to blocks of sizes p'?6 x Mp'?5. Call Q4p) the
one containing (x° &°). Then p°p o, (x, &) is elliptic, since its order of
magnitude is (M(p'?5)?)%

Repeating on Q4(p) the construction of Theorem 5.1 yields

B (X%, &%), D)= {(x, &); [x—x°| S p'0, |~ E°| = Mp'20},
thus proving the corollary and the conclusion of Remark 3.13. |

5.2. The Nonelliptic—-Nondegenerate (1 + 1)-Dimensional Case

We now describe the subunit ball in the nonelliptic-nondegenerate case.
We shall obtain the description in three steps:

5 Recall that B' ~ B for blocks B', B% when there exist constants C,, C, >0, independent
of the sizes of B' and B> such that By, = B> < By, B¢ being the dilate of B' by the constant
C>0.
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(1) First we will study B, for p(x, &) =&+ M>f(x), where 0< f'is a
polynomial of a priori bounded degree d.

(2) Next, we will examine B,, for p(x,&)=¢&>+ M*f(x). Now
0< feS?*(Q,). Choosing p suitably small, as specified in (A2v) (Section 2),
we will be able to Taylor expand f(x) (see Consequence 1, Section 2),
reducing matters henceforth to case (1) above.

(3) Finally, we have the general case:

p(x, &) =e(x, E)(E—0(x))* + Mf(x) ~ (&= 0(x))* + Mf(x).

We reduce this to case (2) above, through @, the tame canonical transfor-
mation of Lemma 2.8, and through Lemma 3.12. We shall have that
(see (ii) in Theorem 5.5 below)

((x é ) ) (B P22 +M2/()))( 71(X0, éo)a 1))
where @(y,n)=(x,&)=(y,n+0(y)). By  we mean that, denoting

B == ¢(BP2('72+ sz(y))(¢_l(x09 50)’ 1))5

and by B the box B dilated by the positive constant C, we have that there
exist universal constants C,;, C, >0 such that

B C, CB/)‘])(( 50)7 1) CBCZ'

We therefore suppose Q is a block of sizes 1 x M centered at the origin in
RxR, and, on 0", p(x, &) =&+ Mf(x)

So, suppose for now, 0 < f, a polynomial of a priori bounded degree d

(depending on the subellipticity exponent) on Q'

THEOREM 5.3. Let (x° &%) e Q and let 0< p satisfy assumptions (Al)
through (A4). Suppose, on Q', p(x, &)=E>+ M?*f(x) (a nonelliptic-non-
degenerate normal form), where 0< f is a polynomial of a priori bounded
degree d. Define o(f) :=Av,, <, f. We can suppose o(f)<1. Then

B,((x% &), )~ {xeR; [x—x°| S1} x {€eR; [E =& S |E°] + Ma(f)'*}.

Proof. We shall prove that B, = B, = B,, where B,, B, are boxes of
comparable size, centered at (x°, £%). We start with the inclusion B, = B,,.
Take y(x, &), ye CF(RxR), 0<y <1,

supp x = {(x, &); [x —x°| <2, [€ = &°| <2M,
x=lon {|x—x°| <1, [ =& <M} :=0(x°, &).
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Then Va, f5,
107 0% 5(x, &)l < CopM ~ 1P

(C,s being a priori constants).
Let

ql(xa é) = Céx(xa é)

Then ¢, € #(p,3Q), for an a priori suitable choice of ¢>0. (More
precisely, g, € ¥ (p, O(x°, £°)). Note that sizes(Q(x°, &%) ~ sizes(Q).)
In fact,

0i(x, &)? <&, )’ <&
and
102¢,(x, &) =c |ED2x(x, &) <M (choice of ¢),
102q1(x, ) = 10:x(x, &) +E D2 xp(x, &)
<M "4+ MM 2Cp) <M ™! (choice of ¢),
10%:q1(x, E) < (10, x(x, &) + 1€ 103 x(x, E))
<cl+MC, M "H<1 (choice of ¢).

We can therefore consider, for (x, &) e O(x° £°), the subunit vector field

0 0
H, (%, &) =0:q:(x, é) —0un(x ) e~ o

The same construction clearly holds true on blocks O(x!, &!), V(x!, &Y e

O(x° &°). Hence, V(x', &' e O(x°, &9), for ¢, ~ 1,
[—to+x', x" +1,]x {&'} = B,((x° &%), 1).

We now exploit the contribution of &°.
Let ye C/(RxR), 0<x <1,

Lo dist(x € (¥, €) <5 'ﬁ;'
206, &)= i (26)

0, dist((x, &), (x°, &%) > >§7
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(we recall that dist((x, &), (x% &%) =max{|x—x°|, M " |€—&°[}). Then

107 0% x(x, )] < C.y <'§;’) o

Consider
qa(x, &) = [E°] (x = x°) x(x, &).
Then supp ¢, = Q(x°, £%). We have

02
0 < 10P L 02 <g 1w 0 <

since, on supp yx,

€1 = 1€ = 1€ =& =510

About the derivatives of ¢,:

10342(x, ) = €] 10, x(x, &) + (x —x°) O3 x(x, &)

(M1 M >

|é|<|é°l M P S
102gx(x, &) = ¢ 1€°] [(x = x°) 82(x, &)
&)

Sclel 1M

103:92(x, ) = [€°] 10:x(x, &) + (x — x°) 0% x(x, &)

9 M
<C |éo| <|50|—1 |fwl |50|2>< 1

Hence ¢, is subordinate to p.
Consider

0 0
H,(x, &) =0:q2(x, &) 5= = 0.42(x, <) e~ ¢ 1£°] ?

in the middle half of supp y. (Note that |£°]| £ M, and, by normalization,
&< M).

Now, by means of y,(z;x°% &) =exp(tH,)(x° &), 1| <[to| ~1, we
reach a point X of maximum for f:

f(X)= max f(y(N)~Av g f =a(f/)~Av.o,f.  VLU|~1,

l1l < Izl
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since f'is a polynomial on Q'. Moreover, f being a polynomial, there exists
Ic[x°—1,x°+1], xel, |I| ~ 1, such that

min f(x) > 30(f).

xel

Hence f(x)~a(f), Yxel Using Lemma 4.1, we can then construct
@ e CF(R), supp ¢ = I, diam(supp @) ~ o(f)"* (< 1) with

p(x)*<ca(f), 0.0(x)=ca(f)"* Vx e middle half of supp ¢,
and
[0%p(x)| < Cpa(f) V2~ 0<a<2.

Take y e C(R), 0<y <1,y =1on {|x| <1}, supp ¢ = {|x]| <2}. We can
then construct ¢; € & (p, O(x°, &°)).
For a suitable a priori constant ¢ >0,

4a(x, &) = cMop(x) ¥ (5 - )

We have
q5(x, &> < MPa(f) < p(x, &)
on supp ¢gs;,

¢-¢°

102¢5(x, &) —LM¢< i > 1029(x)| < cMa( £)V2 =02 < M,

o200 &) = edt ot 02 (w (57

_z0
102,45, &) = M |0, 0(x)] \a (w (5 % ))]

<cMC, C2g(f)(1/2)—(1/4) M-l<l.

>>‘ <cCMo(f) 2 M 2< MY,

Then, we consider

0 o
Hq3(X, f) 0 Q3(X f) Xq3(x é) PE —MO'(f)IM%

V(x, &) e ssupp ¢ x {|&—E°| <M}, Let

ya(t; (1)) =exp(tH, )(y(1,)), 1, ~ 1.



SUBUNIT BALLS 397

By flowing along y,( +1), y5(£1¢), for £~ 1, we can fill in the region
{(x, &) eRxR; [x=x°| 51, [E= &1 £ Ma(f)"*}.
Let y,(t; x', fo)zexp(thz)(xl,fo). Thus, flow along y,(+1¢; x', &% and
nlxx, 8N, Ix'=x0 <1, [N =& <51E°, up to time 7, ~ 1, to fill in the
region
Ry ={lx—x"| S 1} x{|E=& £ 1&°}.

Then, V(x!, ') e R,, use y,(+1; x', &Y, y5(+1; X, EY) to fill in, for 1~ 1,

Bi={(x, &) eRxR; [x—x"| S 1, [£—&| S &% + Ma(f)"*}.
Hence

Bl CB])((XO; éo)a l)
To have the other inclusion, we first note that
p(x, &) SE+M?o(f)=p(x, &)  onQ.

Then, by Lemma 3.12, it suffices to prove the inclusion B, =B,. To
estimate the best displacement along subunit broken paths we need the
following

LemMMA 5.4. Let I'(t; x°, &%) be a subunit broken path, relative to a block
O cR"xR", starting at (x°, &%) e Q, for te[0, 1]. Denote

(x(t)’ é(t)) = (Fl(ta xoa éo)a FZ(ta xoa éo)) :F(ta x07 éo)
Suppose that 36 >0 such that, Vqe ¥ (p, Q),

10.q(I(1; x°, EM)| < Mo + | Iy(t; x°, &%) — 505 x°, E°)]. (27)
Then

[ 15(15 x°, &%) — I'5(05 x°, &%)| < eMo.
Proof. t— I(t;x° &% is an absolutely continuous function for tre

[0, 1]. By definition of the subunit broken path, there exists a partition
O=t,<t;<---<t,=10f[0,1], and subunit paths y,, k=0,1,.., L—1,

satisfying:

{V'k(t)Zqu(Vk(l))a 1€ty tieyr]
Velte) = (X, E) = i1 (20)s
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rs ey(pa Q)n k:Oa 19 ooy L— 1, and

I(t; x°, &%) = (1), Vielty, ty 1]

We then have, for I,=(t,, t,.,), te U2, I,
o1 x°, &%) = — Z 0. qi (115 x° &%)y, (2),

where y, is the characteristic function of the interval I, (recall that
0.q;eC} ) Then

(0530, €0) = T(03 2, €°)
= || e x €0 do

s L—1 JL—1

<Mo | s yart | T @150 ) =) de

<[ 11y 0, €0 ae
0

t
<Mat+f |T5(7; x°, &%) — &0 dh.
0

From Gronwall’s inequality it follows then that
|F5(1; x°, &%) — &% < Mate’,
whence
IT5(1;x% &% — &% <eMa. |1
In our case, estimate (27) follows from Lemma 4.2. In fact, for any
g€ (p, Q)
10.q(x, £ < C(IE° + Ma( /),
whence
[5(15 X%, &%) = &% < C(IE°] + Ma( f)'%).
Since for any subunit symbol we have
10:q(x, O <1,
we also have that

17y (1; %7 &%) —x? < L.



SUBUNIT BALLS 399

Hence
Bp((xoa 50)7 1) < {(x’ f)GRXR, |X*X0| < 1;
€=U<+ Ma()'"™)} 1

Having Theorem 5.1 and Theorem 5.3, we may now pass to the general
(1 4+ 1)-dimensional, nonelliptic-nondegenerate case. Hence let O, be a C.Z.
block of sizes 1x M,, centered at (0, 0), on which (actually, as always,

on Q)
p(z,0)=elz, O —0(2))> + M>T(z).

As explained at the end of Section 2, since ¢ <e(z {)<C and p(z, {)<
AM?, we have

Pz~ ((—=0(2)) + M7 V(z),

with [02V] <1, [V]| < 1.

Using @ Yz, {)=(y,n)=(z, { —0(z)), the tame canonical transforma-
tion of Lemma 2.8, we can consider (po®)(y,n)=n>*+M?*V(y) on Q,,
centered at (0, 0), such that @: Q" — Q" and ®(»°, #°) = (z°, {°), the center
of our ball.

Now M2VeS*Q,), V=0. In order to be able to Taylor expand, we
consider p?(po®). We shall hence state a theorem about the subunit ball
of radius p.

Recall from Section 2 that M “1<p<M %, so that p*(po®) still
satisfies (A1) through (A4).

We are therefore in the following situation: Q, is of size 1 x M, centered
at the origin in RxR, and p*(po®@)(y,n)=p’n*+ M2 p*V(y).

As already explained in Section 2, we perform a further C.Z. cutting
procedure in Q,, in order to understand p*(po@®). Then

0,=U0.. 0Q,ofsizesd, xM,J,.
"

On each Q,,, p*(p-®) will be either elliptic or nonelliptic-nondegenerate.
Also, 1R, R p (as shown in Section 2). Then (y°,7°)eQe{Q,,}. If
(¥°,1°) € Q on which p?(po @) is elliptic, we apply Theorem 5.1.
Suppose instead p*(po®) is nonelliptic-nondegenerate. It follows form
Fact 2 (Section 2) that J:=diam, Q ~p then, and 77=rn.(center(Q)) is
such that

pl=M,p or  |fl~M,p. (28)
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We can then apply Consequence 1 (Section 2) to conclude that we may
Taylor expand V(y) (on 2Q’). Let f(y) be its Taylor polynomial of
(a priori) bounded degree d. Note that now

M p*V(y) SM;p*,  yen(Q),

hence
My =p% yem(Q) (29)
Note that we also have
max V(y)~ max f(y). (30)
yen,(Q) yen, Q)

Hence on Q (containing (3°, #°)) we have:
PP @) ysn)~p’n*+ M pf(p).
By (28) we can use the symplectic scaling, with y =7 (center(Q)),

Vi (8, E=pn, x=%y.

Let O =y(Q). O is then a block of sizes 1 x M, p>,
(. 77) = (0, pif = &) = center(Q).
Call f(x) the polynomial (1/p>) 7( 7+ px). Then, on ',
pApe®@oyyN)(x, &)~ &+ M3 pif(x),
where f is a non-negative polynomial of a priori bounded degree d (note
that fe S°(1x M, p?)) and a(f) = AV, , g f <.
Theorem 5.3 gives then (taking care of the fact that now |E% S M, p?, so

we have to consider the function y in (26) defined now by means of
|€°]/CM, p?, C being a universal constant such that |£°| < CM, p?)

B,Lﬂ(pﬁd);x//*])((xoa fo), 1)

~{(x, ) eRxR; x—x| S L [E- & S [E° + M, pPa(f)"}.

Here (x°, &%) =y(»° n°).
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Therefore we get

Bpuqﬁ((yo> ]70)7 p)
RY(B,. oy 1((x°E°), p))
~{(y,n)eRxR; |y—=)°\ S p, In—n"| £ n°| + M, pa(f)"*}.

We have hence proved

THEOREM 5.5. Let p(x, &), satisfying (Al) through (A4), be in the form
p(x, &) =e(x, E)E—0(x))* + M V(x) ~ (&= 0(x))* + M V(x)

(almost in the sense specified above) on a C.Z. block Q, centered at
(0,0)eR xR, of sizes 1 xM,. Let (x° &% e Q,. Then:

(1) If @ '(x%E=0%n")eQ, an ellipticity C.Z. block of sizes
IX M, for p*(po@)(y,n)~p*(n>+M;V(y)), 1202 p, we have

B,((x% &), p)=@({(y,n)eRxR; |y —y°| S0, [n—n°| S M, 5}).

(i) If (¥° #°) € O, a nonellipticity-nondegeneracy C.Z. block of sizes
~pxXM,p for p*(po®)(y,n)~p*(n*+ M, V(y)), we have

B,((x° &%), p)
~P({(y,n)eRXR; |y =2 S p, In—n"| £ |n°| + M, pa(f)"*})
={(x, &) |lx=x"| S L [E=G(x)| S E°—0(x")|+ M, pa( /)",

where o(f) :=“size” of the (1/p?) d-Taylor polynomial of V defined above,
and G(x) :=0(x) — 0(x°) + &°.

Remark 5.6. Equation (30) implies max ¥ ~ a(f) = p®o(f), hence

M, pa(f)"=M,p"?a(f)"~M,p'*( max V)"
yen,(Q)

This is a natural order of magnitude (recall (29)).
In fact, suppose that, on Q, as above (Q, =R xR),
p(x, E)=E>+M?29, where 0<d<1, 6<p?

(but not “too” small).
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Consider p?p(x, &) = p?E* + M2 p?6 and, as above, suppose
(x°, €0,  mcenter(Q))=¢&, [E[~M,p or |[E|SM,p,

O the nonellipticity-nondegeneracy C.Z. block for p?p.
Then we can directly construct subunit symbols subordinate to M? p*5,
having “strength” ((p26)"*, M (p26)"*:

0 0
25\1/4 . 25)1/4
(p70) P and M (p~0) 2e

Note that (p25)Y*<p, so that we have the right order of magnitude
associated with size(Q)~p x M, p. Since pE? allows us to consider the
subunit vector field

we conclude that (noting that |£°| < CM, p)
B,((x% &%), p) = {(x, &); |x = x| < p, [E =1 < IE° 4+ M, p' 2014}

But M, p'?5'"* = M., p(3/p?). _
Here §/p*>< 1 and & plays the role of V (or f), and &/p? that of f.
Note that a subunit symbol for p? |£°)? is:

0

)t

X —

«n@=pm%<

(yeCy is the function (26), with M replaced by M,, and |E°|/M by
|€°]/CM,. Note that |E°|/CM,< p).
We have |x —x° < p on supp y and

0
Hy(x, &) ~c | Y

where y = 1. We shall again use this construction in the next subsections.

5.3. The (2 + 2)-Dimensional, Nonelliptic—-Nondegenerate Case

First of all, we show that Remark 5.6 may be generalized in n + n dimen-
sions to the following
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PROPOSITION 5.7.  Suppose p(x, &) has the form p(x, &)=E1+ M6 on a
C.Z. block Q centered at (0,0)eR"xR", of sizes 1 x M. Suppose p,, is
nonelliptic-nondegenerate. Set (x, &) = (x,, x', &1, &) eRxR" 7' xRxR" ™1,
Then, for (x° % e Q,

BP((XO, 60)9 l)z{(xa é)ERnXRn; |xl _x(l)| < 17
M X' = x| +1& =& < |E7] + Mo 4.

Proof (Part 1). We follow the proof of Theorem 5.5 and Remark 5.6.
We construct, using an (n + n)-dimensional analogue of the function (26)
(with |E°|/M now replaced by |£V|/M), subunit symbols (¢ is always a
positive universal constant < 1)

416, )= € 1801 (5= ) 24, €)
gronv. =St e v o),

i=1,2,..,n, giving rise to the vector fields

0

H,(x,{)~ —c¢ €9 575,
(S
qi+n(x’ é)NC M ax[’

i=1,2,..,n on the region on which y =1. Using &7 we get also the usual
subunit symbol

qo(x, &) = ¢y xo(x, €), (31)

where y,e€Cy, 0<yo<1, xo=1 for dist((x, &), (x%E%))<1, 0 for
dist((x, &), (x° %)) =2, and the associated vector field

0

qu(xa 9 ~ox.
1

on the region on which y, =1. Using [ 18, Corollary 4.4], we can consider
the subunit symbols (25)

. €)= b, (x -5 5 ).

for (%, &)e{(x,&); |x—x" <1, |E—E<M}, i=1,2,..,2n These are
subunits for the “potential part” of p:p . _o=M 20.
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Thus we have also the vector fields:

0
H,(x, &)~ _6M51/465 i=1,..n,

H,(x, &) ~co' i=n+1,..,2n,

ox,.

ti—n

when |x — x| <04, |E—¢&| < M4
From this, we conclude that

{(6, O eR" XR"; [x; = xS 1, M |X' —x"[+|E =& S |7 + Mo}
< B,((x% &%), 1).
(Part 2) We prove now the other inclusion.

Clearly, the best displacement at time 1 for x, is |x; —x%| < 1. Consider
qge & (p, Q). From Lemma 3.7 it follows that

q(xa 6) = ql(xa f) + qZ(xa é)
with ¢q, € (&7, @), ¢q, €L (Pie,=0s 0'), where Q= Q' = Q'** = Q***,

center(Q') = center( Q).
For cq, we have

IV.cqu(x, ) S 1€+ 16— &), (32)
0 _x0
Ve (. &) s S =] (33)

in fact, ¢,(x,0,&)=0 so that V q,(x,0,¢')=0 and V.q,(x,0,&)=0.
Therefore (32) and (33) follow.

Now consider a C.Z. decomposition of Q (ie. Q") relative to p; _o. O
is then cut up into subblocks Q, with sizes d, x MJ,. Since p\; _¢ =M 29,
Vv, 8, ~6"* then.

Let {¢i}«—o... .1 be subunit symbols giving rise to I, a subunit broken
path starting at (x° &°). Then ¢, =gq,, + ¢,, as above, and (32) and (33)
still hold for all the ¢,,.

For ¢,, we have:

gul(x, &)= Z Go(X, &),

v=1
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where ¢y, € L (p)¢,— 0> Q,), so that, by [18, Lemma 4.1],
|a\q2/»(r(ta x()’ éo))l
§ |£(l)| + max {I‘la)i |axq2kv(rl(l; xoa 50)3 05 éO,)| + |F2(t9 xO’ 60) _éols
v <
(34)

and, for i >2,

10z g (1725 x%, &%)

0 I t; XO, 0y _ £0
§@+max max |af qZkv(rl(t;xO’ éo)’ 09 éO,)|+ | 2( é ) é |
M vl <1 i M

(35)

Estimate (27) now reads
10, g (I11; x°, &%)
M |0 g (I11; x%, &%)

| S 1€V + M) + | Ia(2; x°, &%) = &,
| S (1€Y1 +Mo"™) + | Ma(1; x°, &%) = &°)

(i =2). Using also estimates (32) and (33), we conclude, for ¢ # ¢, ¢, ..., {;,
as in Lemma 5.4, that

M T (5 x° &) + [ 1y(25 X%, £°)]
SIEY+ MOVH) + M |T(15 x°, &%) — x| + | Ty(15 x°, &%) = &°).
By Gronwall’s inequality, it follows that

0
it ) —xv s s

|T(15 x°, &%) — & S |EY | + MoM2
Thus

B,((x% &%), 1) = {(x, &) eR"xR"; [x; —x{[ 21,
M |x —xY[+ =& 2 €0+ Moy I
We finally consider the (2 + 2)-dimensional case. Hence let Q = R? x R?
be a C.Z. block of sizes 1 x M, centered at (0, 0), such that on (a large

dilate of) Q the symbol p >0 (satisfying the assumptions of Section 2) has
(after the tame canonical transformation @ of Lemma 2.8) the form

p(xaé):é%-i_pl(xlaxZaéz)a P1652(1><M)a p1=0.
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Recall that, in view of our normalizations (see Section 2), we have
|aa1a€2822p1(x1ax2a52)|<M277a O(+ﬁ+y:4

Let (x° &%) = (x9, &9, x9, £9) be the center of our ball, and p (satisfying the
above hypotheses; see Section 2) its radius.

Given a block Q = R? x R?, we shall occasionally write it as Q= Q' x Q?,
with Q' = Tix, Q)(Q), 0= T (x,, (52)( 0).

Now let 1, =[x)—cop, x]+copl, where 0 <c,<j is an a priori fixed
constant (note that |I,| =2 times the best displacement given by p?¢7 at
time ¢,) and let

1

pp(x27 &) :2c0p Lle/,,pl(xl’ X5, &5) dxy.

Note that, by assumption on p, p; |, ,, may be Taylor expanded in x, in
such a way that (as in Section 2) we can suppose x; —p(x,, -,-), a
non-negative polynomial of a priori bounded degree, still satisfying all our
assumptions (possibly replacing the universal constants with other univer-
sal constants).

Moreover, since for a non-negative polynomial the average is equivalent
to the maximum, and since p°p, satisfies a (s.e.) condition,

(CZ1)(iii) does not occur in the C.Z. decomposition relative to p,(x,, &,).
(36)

Now apply a C.Z. decomposition of Q> associated with p, (note that we
now have the further freedom of a priori choosing the dilation factor 4,,
relative to py, p,).

Hence let Q;, of sizes 6, x MJ,, be one of these blocks. Thus, g, € S*( Q).
Since p, is supposed to be a polynomial in x,, we also have

pixy, -, )€ SAQT) (37)

with bounds uniform in x, €/,.
In fact,

pl(xla 9)<C(M5§)29 on IpXQEn
and p, € S*(1 x M) implies
0%, 5§2p1(>€1, 5K Co o f(MO3)?6,75(MS,) 7 on I,xQ;

for a + f > 4.
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By interpolation, the remaining estimates (1 <o+ f < 3) follow. Since p,
is a polynomial in x,, we have

0%, 0%, 0, pi(x1, %2, E)I < Copy p ™ (MID)? 0,77(M0,) " (38)

V(xy, x5, &) €1, x(03)", Yo, B,y (and C,p, <1, for a+p+y= 4) (Note
that, p, being a polynomial in x,, (38) holds also for x, € [x!—p, x+p]).
By (36), p, | o is either elliptic or nonelliptic-nondegenerate. We shall refer
to these cases as Case 1 and Case 2, respectively. Suppose we are in Case 2.
Let (x3,¢9) e Q) . We can suppose

02 py(x2, &) =co7,  on QOF,

vo?

¢ being a large positive constant. (See the assertion after Lemma 3.3 in
Fefferman and Phong [4].)

Because p, is a polynomial in x,, it follows that there exists J, =/, such
that

I, [~ 11

P

| and aézpl(xlrx(z)’ 62)20530 vxl e‘]/)' (39)
y (38), it follows that

0y SOZ, pilxy, x5, &) < CO), (40)

vo S Yo

V(xy, %3, E)ERy =, x {Ixy = x5 <9, ) x {|&, =& <M, }:=J, x
0(x9, &9, d,,). (We remark that it cannot be elther 02 pl(x 62)
CM?53 p~2 or |0, 6“28§2p1(x &) =CM?- ﬁé“o t B p =1, oc+[>’—1 for
otherw1se the same assertion after Lemma 3.3 in [4] would imply the ellip-
ticity of p,.) As in Lemma 2.5, the Implicit Function Theorem yields

agzpl(xla X5,&,)=0 for (x;,x,,&)€eR, =& =0(xy, x,) +fg
with, Ve, S,
0% 7,01, x3)| < Cp p M5, 5. (41)

Since p, is a polynomial in x,, x; — 0(x,,-) is an algebraic function for
any fixed x,. Hence we have

LEMMA 5.8.  There exists a region Ry c R xR xR, (x3, £9) € O(x9, £9,0,)
=T (x,. &,)(Ro), Of sizes px 3, x M9, such that, on Ry,

Pi(x1, X2, &) :5‘2/0@(3@ &)(E, _ég —0(x,, xz))2 + I~/(xl , X2),
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with ¢ <e< C satisfying, Yo, f5, y, the estimates
107 9% %e(x, E) < Capy p =70 A(MB, )
0 satisfying estimates (41), and V satisfying, Yo, f, the estimates

0%, 04 V(x,. x2)| < Cop p~(MO2)? 6,

Yo ‘o

Remark 5.8'. Let I), be the interval in x,[x{—p, x{+p]. Then I, =1,
and |I},| ~|I,|. Let

lj,l;(xz, &)= (AV.xlel},Pl)(Xza &2).
Then p, and p‘; have equivalent behavior.

In fact, let {Q}} be a C.Z. decomposition of Q relative to p) (same
parameters A and 4 of the C.Z. decomposition relative to p,). Denote by
J, the x,-size of the 0 containing (x93, £9), and by J the x,-size of the Q2

containing (x9, &9). Since pi(xy, -,)is a polynomial of a priori bounded
degree, it follows that p ~p, and also that p satlsﬁes (s.e.). p 2 can be
either elliptic or nonelhptlc nondegenerate and analogously for Ppig-

Suppose p, o2 Is elliptic, then p, '(x9, E9) ~ M?5*. On the other hand,
pplgz < M?6%, hence § £9,.

pr 12, is elliptic, it follows that 6 ~d, (ie., Q(; 03).

If p,, g is nonelliptic-nondegenerate, then 5<51 and Q2c Q2 5, and
aizpl(xz,é )~ M?6% or 82 pl(x3, £3) ~d3. On the other hand, 0<pp‘Qo_
S M2 ples¥l XM):pMQz)_GS (0xMo)=, for a+ =2,

0% 5’% 19, EN S (MS?)2 5~ H(MS) /= M>~ 15> < M>~ 53,

contradicting the nondegeneracy. Hence p ple must be elliptic. In par-
ticular, o ~9,.
Suppose now p,| o is nonelliptic-nondegenerate. If p p‘Qz were elliptic,

by a reasoning similar to the one above we would contradict the non-
degeneracy of p, 2. Hence also p ple is nonelliptic-nondegenerate and

0, ~ 0. In particular, we must have at least one of the estimates
02 px EN~ MG, 02 pi(xd, ED~ % I
Consider now

pzp(xa é):pzé%+p2pl(xlﬂx2’ 52)
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and

pzﬁp(XZ’ 62)

We make a C.Z. decomposition relative to p’p, of Q°. Let Qio be the
C.Z. block containing (x5, &3). Since also p°p (x,, &,) satisfies (s.e.), either
PP, o}, is elliptic (Case 2.1), or it is nonelliptic-nondegenerate (Case 2.2).

It is clear from (40) and (38) that Qio will have sizes pd, x Mpd,, .

Moreover, since 0 <p <1, p « 1, it follows that an a priori large dilate
of Qio is completely contained in Q(x3, &3, 0, ).

Remark 5.8". Suppose p°p,, | o2 is nonelliptic-nondegenerate because of
02 P (x5, E5) ~ 9% (See the notations above. We denoted 0; by 03, and
Qi by Q .) Then also p3p! »10% is nonelliptic-nondegenerate with
02 phx3, E) ~ o2

ThlS is trivial in case x, |—>6f pi(xy, x9,EY) is a non- negative polyno-
mial. Otherwise, there must be X, €I, at which 02 p;(X;, x5, £5) ~ — 0>
Estimate (38) (still valid with I, ! replacing I,) and the assertion after
Lemma 3.3 in [3] would then 1mp1y the existence of a region R, of size
pXOX MO, (X;,x5,E)€eR,, on which p(x,,x,,&,)~(M6*)> Hence
piﬁfljléb(xz,éz) would then be elliptic and the same would hold for
PPpo?

ps’

From Remark 5.8’ and Remark 5.8” it follows that it is no restriction to
consider the above I, for the a priori choice of ¢,. ¢, is chosen so that we
can move x,, in the construction of the subunit ball, to fill in a full-dimen-
sional region contained in the ball.

On J, x Qio (ie., on J, x( ﬂo)””), by estimates (41), # can be Taylor
expanded in x,. We summarize all of this in the following

LEMMA 5.9. Under the above hypotheses and Case 2, Case 2.2,

0(x,, xz)\.l/,inO

is essentially a polynomial in x,, algebraic function in x,. (By this, we mean
that we can replace 0 by an a priori suitable high-degree Taylor polynomial
of 0 making an error which can be absorbed by using assumption A4 of
Section 2.)

Next, we make a C.Z. decomposition of Q relative to p°p. We suppose
(x% &% € Q,, a nonellipticity-nondegeneracy C.Z. block, so that, as we
have already seen, size(Q,) ~ p x Mp and = (center(Q,)) =¢, is such that
either |&,| ~ Mp or |&,| S Mp.
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Remark than on Q, we can suppose p, a polynomial of a priori bounded
degree in (xy, x,, &,).
We have the following proposition:

PROPOSITION 5.10.  Suppose (x°,&°) € Q, and p°p,, is nonelliptic—non-
degenerate. In Case 1 we have:

B,((x% &%), p) = {(x, &) e R*x R?; [x = x| S p, [€ —°| S Mp}.

In Case 2.1 consider the derived symbol

it = () A ) (42)

Then there exists a block Q°, containing (x3, &3), on which p%, 5 is elliptic
of size ~ M?*6*. We have then

B,((x°, &%), p) = {(x, &) eR*xR?; |x; — x| S p,
M |x, —x5] + | =& S M4},
where
(i) 4=|EY M~" in case
171

0
500 or O~ [S1

5~ > 1
Com” PO CoM

~po,;
(i) 4=pd, M~" in case
(51
——<po, .
CoM P
(Here C, is a positive universal constant such that |E9|/(CoM) < p.)

Proof (Case 1). If p,(x,, &) is elliptic on O}, containing (x5, £9), then

DX, &) ~ (MO7)2
We localize p pp(xz, &,) to subblocks Q2 v OF 02, on which

pzﬁp(xza 62) ~ (M(pl/Z(SV)Z)Zj

with sizes of Q) ~p'?0, xMp'?5,. Let Q)
(x3, &3).

Hence p°p, | is elliptic on Q.

p; being a polynomial in x,, it follows that

v D¢ the one containing

X, el, such that  p2p,(X,, x5, &) = c(M(p'36,)?)%
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On the other hand, we suppose p*p(x, &) is nonelliptic-nondegenerate at
(x% &% €eQ,, a CZ block for p’p. Since |¥, — x| <p, it follows that

o(Mpo3)* < p?p(xy, X3, €1, &3) < C(Mp?),

ie, po2 S p’ie, d, Sp'”?
2

Hence ﬂ (x5, 52)( Q/)) ~ oV

51zes(Q v)~p X Mp).

Smce ‘at this scale p’p, is a polynomial in (x,, x,, &,), we apply the
Fact in Section 4 to conclude that 3, <1, |I,|~1,,30; c7n(,, :)(0,) of
size p x Mp, such that p?p, 1% 52 ~ M?p*.

Hence

(since both contain (x3, ¢9) and sizes (Q,) ~

pp(x, &)~ M?p*

V(x, &) e I, xn (07) x7:(Q,) x (D7) :=R,, and p’p(x,&) £ M°p*,
Y(x, é)er Using the subunit vector field pd/ox, (dI”lSlIlg from p?¢7),
Wthh allows us to move from (x° &°) to the region Rp, we apply the
methods of Part 1 and Part 2 of the Proof of Proposition 5.7 to conclude
that (note that |£%| £ Mp, so that |E9| +Mp ~ Mp)

B:={(x, &) eR*xR% [x —x°| S p, |E—&°| £ Mp} = B,((x", &°), p).
(Note that in this case B, = B is a trivial consequence of the estimates on

subunit symbols at scale p x Mp.)
We now pass to Case 2.1. In this case we consider the derived symbol

€01
CoM

p:(x2= 52)::< > M2+p2p_p(x2a 52)

(Here C, is a universal constant such that || < CyMp. We then have
1EV1/(CoMp) < 1.) Note that p¥ e S*(p x Mp).

We know that p pp‘Qz is elliptic ~ (Mpzéz)

Consider a C.Z. decomposmon relative to py (note that pX(x,, <5)
satisfies (s.e.), since p°p, does). The procedure will stop at Q; contamlng
(x93, £9), either because (|&|/CoMp)* (Mp?)? is elliptic or because p’p, is
elliptic or because of both conditions. This corresponds respectively to:

0 0 0
|§1|~5>p5, (if) |él|<p5 <o (i) Ll po, ~0.

(1) COM vy COM Vo COMN Vo
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For (i), we consider the subunit symbols

q:(x, &) = 1&7] (x; —x7) x(x, &), (43)

i+ nlX, f)—cﬁ(é &N x(x. &), (44)

i=1,2,.,n where yeCy, 0<y<l, x=1 when max{|x—x’|,
ME=EY <HIETN/CoM), =0 when max{|x—x°|, M | -&°|} >
21ET/CoM).

Let us check the estimates for ¢g; and ¢, ,:

(31

qi(x9 f)2<c2p2 |€?|2 C2M2 27

(x, £)2<pE3

on supp y, and

[+
4r(3 P < 1P A, €2 < 2 81 2, €2 <6
0
on supp yx.
For |o| =

10%q:(x, O < e 17 (10 x(x, O + [x;— x7 | 0% x(x, E))

(ML M ><
¢l |<|é°| M )=

1024111, é>|<c@|é £9] [0 x(x, )| S ¢

01 M2 _

REES
For || =
012
1
02, &) < 10 1x,— 01 10%r(x, ) S ¢ L Lkt
1
0841, M < e L (12— &0 08 €)1 + 0. £))
&)

sl ey ign = vien -~

M.



SUBUNIT BALLS 413
For |af =|B] =1,

50
07.024,x, ) < S (27(x, )1+ 13, =321 12081, €))

|é°|< o1 160 M>
<l e ~1
SIS VI

0
102024, &) < S o, ) 16— €01 107 0, )

0 M
<l |<M|é 1 1] |§0|2>~1.

Hence qi, qi+n e'g(pzpa Qp)a fOf 1 glgn
In particular, the best displacement given by subunit symbols belonging

to
ISR
# (o) wrr-0.)

coincides with the displacement given by the ¢;, ¢;,, i=1,2, .., n
We want to use the estimates (34) and (35) of Part 2 of the Proof of
Proposition 5.7. To this aim we consider
< Iéol}
0
(so |E71/Co ~ IET]).

Recall that the Q2 were the C.Z. blocks in R xR relative to p p ,- We
hence partition Q] into completlons in R>xR?> of the 07, into
blocks Qﬂ 0, ><Q2 with sizes(Q,) =sizes(Q;). Therefore smes(Qﬂ)—
s1§es(Q )—Slzes(Q ).—A xMA,. Note that, by construction, (Q/,l)”’
(0,,)" % B =4, ~4,,

Let

Iél

W) = {(x, &) v —x9) <

={0,; 0, " W(E) # D}

Then

6 eq 4 <8 I
Q,€%, ”zCOM or ”NCOM'
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Otherwise, if |£9|/CyM < 4,,, we would have

73]

I3
CoM

(Q#(])W N (Qﬂ)w ¢®:A‘u MA”(]Zpé‘,“ and <,05\/09

a contradiction, since we are considering case (i).
Therefore, using the same notation as (34) and (35),

10 g 125 x°, &%)
é |é(1)| -+ max max |axq2k\'(rl(l; XO’ éo)s 07 ég)| + |F2(Z’ XO’ 60) _60|

v o<1
SIEY +T5(15 x°, &) = &0

and, Vi>2,

L0 20V <
10z g2 (115 X7, )| = M

since
qey(pzpm:o, Qﬂ): 10:q)&, -0l < 1€91, 1046 ol §%, Viz2.

Hence,

M |3t X% &%) = x3] + [ T(15 x°, &%) — &0 S 1EY ).
Thus case (i) gives

B,((x% &%, p) = {(x, &) eR*xR*; |x; —x{| S p,

M |x, = x5+ =& 2 1E71}

For case (ii), we use case (1) to conclude immediately that

B,((x°, &%), p) = {(x, &)s [y = XTI S p. M |, = x5 + 1€ = S 1€Y1},

where now [&7| ~ Mpd, .
For case (iii), by the Fact in Section 4, we have that 31y <1,, |I3| ~
pd,,, and Q*(x3, &9, pd, ) < /240’ such that

pzpl(xl > X2, 62) 2 (M(pévo)z)z) V(xl, X2, 52) e1(1) X QZ(X(Z)a éga p(svo)'
Since |EV]/Cy M < pd.,,, we can reason as in Case 1 to conclude that

B,((x% &%), p) = {(x, &) eR*xR?; |x, —x{| S p,
M |x, —x5| + =& = Mpo,}. |
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5.4. The (2 +2)-Dimensional Case: An Intermediate Result

We now study an intermediate step toward the general (2 + 2)-dimen-
sional, nonelliptic-nondegenerate case. In order to do that, we need to
make some considerations and assumptions (to be justified in the general
case).

DerNITION.  We say that a symbol p = p(x,, x', ') belongs to the class
S™(pxdx MJ) if it satisfies the mth order estimates

0%, 0% 0% p(x1, ¥, &) < Cop(MO*)™ p=70~ VU MO) ™, Vo, B, y.

We hence consider p’p(x, &)=p*ET+p°pi(x, &) on a C.Z. block Q,,
centered at (X, &), |&,| S Mp, of size p x Mp.

Given ge ¥ (p°p, Q,), we know from Lemma 3.7 that ¢=gq,+¢,,
cq, € S (p°E1, Q,), cq, € S (p°py, Q,), for a universal constant ¢ > 0.

We now make the assumption that the derived symbol pX(x,, &,) (see
(42)) is nonelliptic-nondegenerate on a block Qid <R xR, centered at
(x¥, &¥), containing (x3, £9). In particular, it follows that

|§?| 4M2<M2 0)4 45
CoM ~ (po)™. (45)

Now, p’p, € S*(Q2), p1 €S*(1x M), and the fact that p,(x,, -,-) is a

po
polynomial in x,, at scale p, yield that

0%, 0%, 0L(p7p1)(x 1, X3, &) S Coy p~(Mp?0°)* (pd) " (Mpd) 7, (46)
v(xl > X2, 52) € (nxl(Qp) X io‘)/m = (n(xl,xz, éz)(Rri))””a Where
Eé = nxl(Qp) X nxz( Q;zn)) X nél(Qp) X nfz( /27())

From (46) and p*p, € S*(1 x M), it follows that p?p, can be localized® on
any subblock of (R)" of sizes pd x Mpd.
We may suppose p?p, is a polynomial in (x,, x,, &,) on (a large dilate

Dm

of) 0,. We also suppose that p°p, can be written, on R}, as

PPy, x5, &) = p20Pe(x, &)(E, — ¢y —0(xy, x,))*+ M2P2(54I7(x1, X3)
(47)
¢ By this we mean the following: Suppose, on a 1 x M block Q, we are given pe S”(1 x M),

and let Q5 = Q be a smaller block of sizes J x Md. We say that p can be localized to Q; if
D)o, €S™(d x Md). By interpolation one has that

peS"(IxM),  |pio,| S (M&>)" =p,,, €S™(S x M5).
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where |5 —EF | < Mpod and (by (46)):

(1) 0 is an algebraic function in x,, a polynomial of a priori bounded
degree d in x,, satisfying the estimates:

X

0%, 0% 0(xy, x2)| < CoyMpdp —(pd) 7,

ie., (Mpd)~'0eS%px pdx Mpd), whence it follows that, for x, varying at
scale pd, pdse S'(pd x Mpd): In fact, with 0 <5 < 1,

10% 0% 0(x 1, x3)| < CpMpdp ~(p3) # < Coy Mpd(pd) ~* (pd) % (48)

(ii) 0< ¥ is the polynomial p?p, restricted to the graph of
& =00x,, x5) + &3
and such that
p 2V e S%p x pd x Mpd), (49)

whence M?(pd)* V can be localized when x, is ranging at scale pd, to an
element of S?(pd x Mpé).

(iii) e is positive, elliptic, and ee S% p x pd x Mpd), so it can be
localized to an element of S°(pd x Mpd).

We now use the symplectic dilation

¥ vk
s (xlaxza 515 62)H<XIPXIaX2pxz’ pélap(é2_é§k)>:(ya 77)’

taking Q' to be a block of sizes 1 x Mp? (hereafter we shall use M in place

of Mp?) and R, to a “band” Ry of sizes 1 x d x M x M9,
Rs:=1IxJs5 %1y xJyys, (50)
center(R;) =(0, 0, 77,, 0), with |7, | < CMo.

In these new coordinates, writing p, for p?p, os~', the symbol p?p goes
over into

Py, ) =n}+0%(p, n2) (s, —ns—0(¥))* + M?6* W p),

with 60eS'(1x6xMs), 0<V, M*5*VeS*(1xdxMs), 0<é elliptic
belonging to S°(1 xJ x Mé) (and, when size of y, ~3J, 60 S'(6 x MJ),
M?6*V e SH (5 x M6), ée S°(6 x MJ)).
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We call (y,#) (x, &) again. Hence,
p(x, &) =&+ 0%(x, &)(E,— &5 — 0(x))* + M?0*V(x) =& + pi(x, &)
(51)

on (R";)**,
Since e is a harmless, localizable elliptic factor, we drop it in the
following. Note that now (45) reads as

7] < CoMo, (52)

and pj(x,, &,) is nonelliptic-nondegenerate on the new Q3.
Since p, can be localized to sizes d x MJ, we write

Ry =) Iy xJ;xIisxJus)= U 05",
Ky Ky kys ks

where |15 ~ 9, [I%| ~ M5 (with an a priori bounded number of overlap-
pings for their ( )** dilates).
Let I,,5 be the interval in the &, -axis containing &Y. Let

E(SZU(IIEXJa X L pys XJM&):U Q§CR5,
k k

with center(R;) = (0, 0, £¥, 0) with |E¥| £ MJ.
Moreover, we suppose (x°, £%) e R;.

LEMMA 5.11.  Suppose pi(x, E,)eS* (1 x5 x MJ) on RY, |E9] < CyMJ,

J
(x°, E9 e Ry (in the above notations). Then, for any subunit broken path I’
starting at (x°, &9),

I(t;x°, &%) = (x,(2), xo(1), &,(0), &),

we have

lx,(1) = x5]  [E(1) — &, |
<4C,,
s Mo Cs

where 0 < C,, is an a priori constant.

Proof. Any ¢, € ¥(p, Q), giving rise to I, can be written as g, =qy,
+ ¢ox, where, for a universal 0 <c <1 (depending, see Remark 3.3, on an
a priori cut-off function),

Cq i e’g)(é%’ Q)a Cqr, € ‘gp(pl > Q)
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It follows that

Q1k|g170—035 k¢ 70—aéquk|517050 i=1,2
Thus, for an a priori constant C >0,
10, q1(x1(2), X3, &7, E < CIEY| < C'MD

and

8.
a2t epr<c il < e, (53)

p, can be localized to subblocks of size J x MJ, then the same is true for
¢-«- By Proposition 3.4 it follows that

Gl x, 5)2 <pi(x, &)

on Ry, and cq,, € ¥ (p,, Q) implies (by interpolation we get the needed
estimates for ||+ |f] =1) that ¢,, € ¥ (p,, 0 X M9).

Since R;=U,, ,, Q5™, we write (this is analogous to what has been
done in Proposition 5.10)

gul(x, &)= Z ‘Izkw x, &),
Vis

where cqy,,,, € S (py, Q3") for a universal constant ¢ >0, supp g, ,, =
(Qy)** Consider Hamilton’s equations for the kth segment of I. By
Taylor expansion we have

xz:agz%c(xa <)
= (06, qi)(x1(2), X3, &7, E9) + Qual(X, E)(x2 —x7)
+<Q2k(%f), (f(f)—fo)>’
M

&= —0,,qu(x, &)
— {0, qi)(x1(2), X3, €3, E9) + M Q1 (x, &)(x, — x5)
+CO5(x, &), (&) =E%)) 1,
where [Q; | <1, |Q%|<1,i,j=1,2,Vk=0,1,.., L—1. Consider

(06,41 (x4(2), x5: &%) = (0c,q11)(x(2), x5: &%)
+ 2 (0, G, ) (X4(1), X35 E°)

Vi, Vy
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and

(0 qi)(x1(2), X35 E%) = (0 qu)(x1(1), X35 E°) + D (0o, ) (x1(2), X35 E°).

Vi V2

We have that [0, g, (X1(2), X35 ) £ M6 and |0, qas,,(X1(2), X535 &%)
<.
These inequalities, together with (53), give (using Lemma 4.1)

£(1) ¢

106, 4115 X, E)) < Cpd + (1) = X8|+

and
10 qi(T(1; x°, EONI < Cu MO + M |x5(1) — x3| + [E(1) = &°),

so that Lemma 5.4 (adapted to the present situation as in Proposition 5.10)
yields

M |x,(t) = x3] + |&(1) = &%) <4C, Mo, 1
Write now 0(x) in (51) as Mdb(x,, x,). B
Denote b(x;)=(Av,, c;b)(xy) and by(xy, x5) :=b(xy, x5) —b(x;). Then

bo(x,, x,) is an algebraic function in x,, a polynomial of a priori bounded
degree in x,. We now make the requirement that

max |E(x2)| < C5

xy€J5
0 < C a universal constant so that, with

max |b(x,)| < C,
.\"ZEJ()#

(since b is a polynomial, C,, is a universal constant depending on d, C,,, C;
J7 is the dilate of J; by the factor 4(C,+1)=C, (in view of Lemma
5.11), we have

ﬂzzézsz_Méb_(xz)s S e(as), x2€JF =me(lys)".  (54)
Define the following canonical transformation
Vi (xy, X3, &1, Eo) o (X, X0, &, & — &85 — M5E(x2)) =(yn). (55)

¥ is globally defined, and it is tame whenever (x, ) are ranging at scale
0 x MJ.
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We shall refer to this fact by saying that ¥ is d-locally tame. 1t follows
from (54) that
P(R}) <R3,
thus Y(R;) is of sizes 1 xJd x M x M.

We use the new coordinates defined by ¥ (calling them (x, &) again).
Note that now

P(x%, %) = (x], x5, &1, &5 = &5 — MOb(x3)) = (1°, %) 1= (Xes Chew)- (56)

We have the following important facts:

0 0
*ox, Ox,

(F2) p, can be localized at scale d x Mo on R;, hence any ¢,e
F(py, Q) can be localized at scale 6 x Md on R;.

Thus, subunit symbols for p, on blocks of sizes J x MJ can be pushed
forward through ¥ to equivalent subunit symbols for ((¥~')*p,) on
equivalent blocks of sizes 0 x Mo and vice versa (in view of Proposi-
tion 3.5).

(F3) Since, by Lemma 5.11, &, doesn’t leave I}, through subunit
paths, it follows that ¥ transports the geometry localized at sizes J x M.
We can pass from one J x Md-localization to another & x Md-localization
using (F1). Moreover, since we have the subunit symbol

(F1) ¥

qO(xs é) = Célx(xa é)

(see (31)), which allows us to move according to the flow of 9/0x,, we also
have subunit symbols (relative to p)

Gos(x, &) = o0&, y5(x, &),

where y; is analogous at sizes J x MJ to the above y. The ¢,s allow us to
move according to 60/0x,. Let us check that ¢, are indeed subunit sym-
bols for P10y provided &, el7,; (for |E9| £ MJ, Qs being now a generic
block of sizes d x M6 in R* xR?, 7 (Q5) = 17;,). We have |07 0%y 5(x, &)| <
( M5) 1Bl —lo
af

qos(x, £)* < POPET<ET (0<d<;
for |a| =2,

107 q0s(x, E) =0 &, ] 10%x5(x, &) £ OMI6 2 = M
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for |af =[] =1,
0% 0% qos(x, E) < cd10%xs(x, O+ 1E1 1 10% 0% xs(x, E)I)
SO+ MO(M?) ') =2;
for [f] =2,

10:q0s(x, )| < (10 y5(x, E)| + & 10Ex5(x, E)D)

S 6((MS) ™"+ MS(MS)~2) :%.

We can hence move according to vector fields ~ d0/0x,.
Fact. The transformation ¥ allows us to suppose that
(Avxl elb)(xz) = 07

and to construct the equivalent subunit ball in the ¥-coordinates.

This results in a “clustering” of the ¢,-component of the subunit ball
around the graph of the polynomial b(x,).
We can now state the following theorem.

THEOREM 5.12.  Under the above assumptions, we suppose, on an a priori
large dilate of R, in W-coordinates,

p(x, &)= EF+ 0%(&, — MOby(xy, x,))* + (M%) V(xy, x,),
where by(x,) =0. Define

a(b?):= max (by(x;, x,))? and a(V):= max V(x,, x,).

xelxJs xelxJs
Then, in these ¥-coordinates
B(x%, €0, 1) & {(x, &) ey =X S 1, [x, —x2| £,
&= &%l S Modg+ Moa(V)'*},
where

€01+ 13
AO 22#4‘0’(1)%)1/2.
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Proof. Define
/(31 X2, &) 1= 6%(E, — MOby(xy, X,))
(¢>0 is a universal normalizing constant).

LemMMmA 5.13.  (x% &%) can be joined through a subunit broken path to
(x19x2+(’6t3a 36(2))3

where ¢ is the above universal constant, 0 <t; ~ 1. The same holds true

Y(x°, &) with |E — &0 < M.

Proof of the Lemma. Consider the subunit Hamiltonian vector field

A_ el 4 ms? 0L s 0
H/,(x,g)—c<5ax2+M5 (0, bolx )) -+ M2, bofx ))552>'

Denote

We flow along y, to the point
V/‘(tl;xoa éo) (-xl,xz sé(l)s 6(21))

where |f,| <1, ¢, ~1, and we can suppose 7, >0 (see Remark 3.10). Here
t, is chosen so that

(AV e /b5)(x5") ~ max(Av, ¢ /bg)(x).

x,eJs

This is possible with ¢; ~ 1 since (Avxle,bé)(xz) is a non-negative polyno-
mial of a priori bounded degree.

We consider also, for 0 <t; ~ 1, t;<1t,, t; to be determined (depending
on universal constants), the point

(x9, x5 —cdt5, &9, &9).

We evolve it through y,(z; x9, x3— cdt5; £°) to reach the point, at time
1 +1s5,

(x2, &%) 1= (x7, x5+ cdty, &, EP).

We can hence move (x9,x5—cdt5;E% to  (xV,x9+cdt; EP)=
(x7, x57; &),
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Consider /(x;, x%", ¢V)? and flow along yp(z; xV, &) (note that
(x5, &, &,) remains in this way fixed) to reach, at time 7, ~ 1, a maximum
for x; >/ (x,, x8", £V)? (say X,). This is possible in view of the properties
of algebraic functions (see Section 4 of [ 18] and in particular Lemma 4.7).

By Lemma 4.3, we hence have

max /(xln x(zl): é(zl))ZNAVxlel/(xla x(zl)» 6(21))2

xlel
~ 02 [EV P+ (M) (Av, b3)(xi)).  (57)
On the other hand,

(AV, 05)(x5") ~ max(Av, . /bg)(x,)

xyeJs5

~ (AVxl elAszeJ(st(xl . X3)%) ~max by =a(bhg), (58)
IxJs

for b, is an algebraic function in x,, polynomial in x,. Recall also that

max bj ~ max bj].
IxJs (IxJs)

We now have to estimate |1 — &),
Note that &V and & arise from “parallel” trajectories having different
initial conditions. Define

yAD) i=p,(1:x% €% and  pH(7) t=y,(TxY, X5 — i3 E°).
Then
A1) =(x9, x5 —cdts+cdr) and  w yu(7)=(x%, x)+ cdr).
By Taylor expansion, we have

(Vbo)(m77(1)) = (Vo) (7,7 (7)) + OBo(xX°, 15, T)( —ct3),

where
1
By(x°, 5, 7) = j (0,Vho)(x0, X2+ Ot + cds(—13)) ds.
0

Since, by the properties of algebraic functions (see [ 18, Lemma 4.8]),

’ 4

max |0, Vby(x)] <g max |Vby(x)| <— max |by(x)| ~— a(by)'?
xelxJs 2 5xs]><],; 5 xelxJs 5
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we therefore have

|fm—f(2)| = Mo?

[ bomaten de— [ (Vbo)m. k(o)) e

= Ms?

[ wbomao) dr

1

+ [ B 1,20 (20 = () e

(913)

<MY= a(by)"

(in fact, m,yX(t) —m.y,(7) = (0, —cdt5)). Hence
&1 — &P < CMotsa(bg) ', (59)

Now consider (%, x\", &M, &Py and (£, x§, &2, £3) (x) =x?) (which
belong to R}, in view of our a priori normalizations). Since

/(xl H x(zl)a 5(21))2 i M2540(bé)5

it follows that we can find a neighborhood of (&, x{", &V, &) of sizes

5a(b3)"? x Moa(b3)"? on which £ (x,, x5, &)2 ~ £ (£, x5, V)2
Recalling that dist((x, &), (%, &)) :=max{|x—x|, M ' |E—¢&|}, we call
that neighborhood

U, ={(x, &) e R*x R*; dist((x, &), (%, x5 EM)) < ca(b)'?5}.
Consider y; e CF(R*xR?), y, =1 on LU, supp y; = U;, 0<y, < 1. Then
0% 02 31(x, &) < Cop(Ma(bg)'?) ~ 1 (6a(b3)"?) 1.

(Note that U, = R}, and U, = (Q%)**, the one containing (&,, xi"; ™").)
Hence we can consider the symbols

0:1(x, &) = ca(bg)'? Mo(x;, —x5) ya(x, &), (60)
qa(x, &) = ca(b3)'? Mo(x, —,) 11(x, &) (61)

By normalization (by an a priori ¢>0), q;,¢9,€S(p, Q) (in fact,
41> 9> € S (p1, 0%)). Let us check that they are indeed subunit symbols.
We make the check for ¢, since that for ¢, is analogous:

q1(x, RS Mézo_(b(z))éle(x’ ES/(x3 &) on  Supp x;:
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for |a| =

10%q1(x, O = MIa(b5)" (10 1(x, O] + s = x5 0% (x, E)])

00 e iy ) 080 =20
for |p] =
1024 ,(x, O £ MO |x,— x| 102 1(x, &)] a(b3)'?
< Ma(b2)2oa(h2)"2 (Mda(h2)'?) 2= M~
for |af =[p|=1,
0% 0%q1(x, &) £ Moa(b3)'"? (10%x1(x, E) + x5 — x5 0% 0% x1(x, E)I)

12
§Ma‘a(bg)1/2< ! 9(b;) >=2.

Moo+ Mo%a(b2)

Hence q,, ¢ € £ (p,, Q%) and q,, ¢ € ¥(p, Q). Consider then

0
12 Y
Hy=H,(x &) ~ Moa(h) " 5
and
0
12 Y
Hy= H,(x, &) ~ Moo(h3)'®
inlU,.

Through the associated y,(z; %, x3"; &) and p,(¢; %,, xt¥; &?)) we can
thus join (in 1U,)

()zlsx(zl)’ 5(11)9 é(zl)) to (xlax;2)> é(IZ)a 6(22))

(recall that x{* =x{"), provided t3=511, where ¢>0 is a universal con-
stant. This proves that (x9, xJ — ct56, &9, & )can be joined to (xY, x93, &Y, &9).
The same kind of argument applies for (x9, x2 + 30, &Y, &Y) and for points
of the kind (x9, x5+ ct30,¢,,&,), with |€— f°|<M5 This proves the
lemma. ||

The lemma immediately yields that the slices
(x5 1 =27 21, % —x3| £ 0} x {&} = B,((x%, &%), 1)

for |€ — &0 S M6.
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Consider now the following function:
L(x, &)?:=c0°ET 4+ (x; &) (62)

For fixed &, L? is of the kind considered in Lemma 4.3.

We now move (as we are allowed to) from (x9, x9) to a point (¥, X,)
in Ix J; which is maximum for L(x, &%)

By the properties of algebraic functions of Section 4 (see Lemma 4.3)

L(-fa 60)2 ~ AVerXJ(sL(xa 50)2
~O%|EV P 407 [E9)7 + (MS?) a(bg) := AG( MS>)>. (63)
Thus

1801+ 1¢8)

4o Mo

+a(b2)'2.

Note that L(x, &%) < (Md?)% L(x, &)? being smooth (at scale & x MJ)
and >0, 3U,, a neighborhood of (x; &%) of sizes 4, x MJdA, on which
L(x, &)* ~ A3(MJ%)2. Note that U, = R} and U, = (Q%)**, the one con-
taining (x,, X,, &7, &9).

Let 7, e CF(R*xR?), 0<y,<1, y, =1 on 1U,, supp y, = U,. Hence

|0% 5?%z(x, oI < Caﬁ(Mél'o)i‘m (64,) .
Consider the symbols

X — X,

0

q5(x, <) =CM52A0< >x2(x, <), (64)

Xy — X,

qM@wm%<5>mm» (65)

We check that they are subunit symbols for p at scale 1 x M (and 6 x M9,
since they can be localized).
Consider ¢ (the check for ¢, is completely identical):

(x;—x )2

q5(x, 5)2 = 02(M52)2 Aﬁ Tllz(xa 5)2 < CZA(z)(Méz)z xa2(x, 5)2

éL(X, é)zgp(xa é) on  Supp x».
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For |a| =2,

|a§q3(x, )| § M52AO <|ax)f(xa 9] n [x, ;xl |

0

I 40 1 )
40> 5

< M8,

for | ] =2,

|x; — X | 1 1

5 < MS> s < Mo? Y YRR T
|a£ﬂ3(xa &) S Mo*4, 5 |0q)(2(X, SI'= Mo“404, (M5A0)2 M’

for |o| +|p] =1,

0% 02q5(x, O)| S M?Ao(0 ™" [0exa(x, O + 40 10% 0275, E))

1 A
< Mo*4 2 =2.
= 0 <MA052 +A05M(5A0>

Hence q39 ‘I4 € y(p: Q) (and q3’ q4 € y(pl# s Q{;l) as Weua Wlth pl#(-xs é) =
O(&r = &N+ pi(x, &5)).

Considering

0
H,(x, é)~M5A0£
1

0
H,(x,&)~Mdd, ET
2

we are allowed to move in the ¢-direction by an amount ~ |£9] + (&S| +
Moéa(b})'>.

We now move (x,, x,) to reach, at time ~ 1, the point (x,, X,), a point
at which V(x,, x,) is comparable to its maximum. Hence

V()EISXZ)NJ(V)Z max V(xlsx2)~ max V(x19x2)
xelxJs (xl,xz)e(lx./(;)#

because of Theorem 4.4.

Note that it follows from the above constructions that we can join
(x1, X2, &1, &) 10 (X4, Xy, &4, &5) VE such that [&— E°) < M.

V=0 and Theorem 4.4 yields that there exists a region R(V) of sizes
~6a(V)V* x 6a(V)* in (x,, x,)-space, containing (¥,, X,), on which

V(x1, %) = 30(V).
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As we have already seen, by [18, Corollary 4.3], we can construct
®1, ¢, € CL(R?) such that supp ¢, = R(V), i=1,2,

p(x)’<ca(V),
0. @i(x)=c;0"'a(V)', 0.,0:(x)=0, i#ji=1,2, VxeiR(V),
and such that for i=1, 2,
|0%0:(x)] < Cua(V) 127 IHVEG =1,
We now construct, for a generic & such that |€ — °| < MJ, subunit symbols

qs» qs- Let Y e CF(R?), 0<y <1, y=1 on {& |E—E<IMS}, y=0 on
{&; |€—¢| = M6}, Define

qs(x, &) =M@ (x) Y(&) (66)
q6(x, &) = cMF*p,(x) Y(&). (67)
Consider g5 (¢ is similar):
qs(x, &> <?M?6%a(V) < V(x,,x,)  on  R(V)xsupp y;
|| =2,
10%g5(x, &) S Y(&) MO? |05 ,(x)| £ MO*0 2a(V) "2~ 114 = M;
1Bl =2,

1
0245(x. ) S MOa(1)'? (M0) 25 -

0% 0L qs(x, &) £ M6 0%, (x)| 1059(&)]
S M52 a(V) 214 (M) TS L.

Hence ¢s,qs€ S (p, Q) and g¢s,qs€ L (pf,0x Md) as well. We can
therefore flow along the trajectories ys, 74, generated by

0
- 4 9
Hqs(x, &)~ Moa(V) 2%,

H,(x, &)~ Mda( V)4 aagz’
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whence
{(X, é)s |X1 _x(1)| § 19 |X2—x(2)| ééz
|E—E&°1 S Mod,+ Moa(V)'*} < B,((x, &), 1).

We now prove the “opposite inclusion.”
Applying Lemma 5.11 in the ¥-coordinates yields that

M |x5(1) = x|+ |&(1) = &°| <4C, MO

for any subunit broken path (x(¢), &(¢)) starting at (x°, &9). Let (x*(¢),
EX(1)) :=7,(1) be a segment (generated by the subunit Hamiltonian ¢,(x, &))
of a broken path I(¢; x°, &) = (x(7), &(¢)) starting at (x°, &°).

Consider

fk(t) = 7aqu(r(t7 xoa 60))
(for te(ty, tr1)). As already noted, for a universal constant ¢ >0,

q1 =41+ G2 cqu €L (E3,0), cqueS(py, 0).

As previously done, write Ry ={J, Q}.
Localize, as we are allowed to, p, to such Qj}. As above,

qu(x, 0, &) = 0=V qulx, &Y, &) S IET]
Hence from
(Voqu) (1) = (V.oqu)(I(1), &7, &x(0) + O(1&,(1) — &7,
it follows that
Vg ) = 17 +1¢4(2) — &7
Moreover,

|E4(2)] = 1€7] + max max 10 @ X(1); 0, E())] + [E1(1) = T (68)

v xe(IxJs

NOW, ¢o, = ¢ aw + q31,» Where g, is subordinate to 7 (x, &,)* essentially in
03, and ¢3,, is subordinate to M?5*V(x,, x,) essentially in Q. Hence

0% 0L g% (x, )| < CoyMO*(MO) V15—, o] + [ ] <2.
Let

2:{(3@ f)ER”i;;fz:Mébo(xl,xz)} and 2,=2nQ5. (69)
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2 is the zero set of . p=0; p;. Then

Vx(Q;kv | z,,) = (VXCIékV)\z‘, + Mé(aézfﬁm) |z V.bo(x)=0. (70)

Since |0¢,qx.,(X, &)] £ MO*(MJ)~"' =0, by Taylor expanding Vg3, at X,
we obtain (using &, — Mdby(x)| <&, —E5| + &3]+ M0 [by(x)])

Vet (X, E)| £ MO? V. bo(xy, xo)| +[E°] + MO max | |bo(x)] + 1€ —&°
(71)
for (x, &) e O3.

Remark once more that the maxima of |b,| on rectangles of comparable
diameters are comparable, and the same applies to V.
Now,

max 6 |Vby| S max |by|=0a(b})'?
xe(IxJs)# xe(IxJs)#

whence
IVda(X O £ 10 + Moa(bg)' 2 +1E=E°, (x,&)eB,  (72)
where
B={(x, &); [x; = x| < Cy, |32 —x5| < C,0, [€— &7 < C,, MO}

Of course, only the Q) whose ( )**-dilate intersect B are to be considered.
By Lemma 4.2 we also get

IV @3, O S |E—=E°1 4+ |E° + Moa(V) "4, (73)
Finally, we obtain, for any k=0, 1, .., L—1,

10qi(I(2; x°, &) S [E° + Moa(bg)'? + Moa(V) " + | T'y(1; x°, &%) = &°).
(74)

Applying Lemma 5.4 gives
|5(25 x°, &%) = &°| £ E°] + MOa(b3)'* + Moa(V)'*
= M54+ Mda(V)"2. (75)
We have hence proved
B,((x% &%), D) {(x, &) Ixy =xT| = 1, |x; —x3| £,

|&—E°| S Mdd,+ Moa(V)'*}.
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Thus

B((x%, &), D & {(x, &): |xy —xP[ <L, [, = x5 <0,
&= &)\ S Mody+ Méa(V)'*}.

Remark 5.14. 1In the case the ¢; in formula (47) happens to be &9, we
have that (£9),ew = — MJb(x9). Hence the 4, in Theorem 5.12 takes the
form

new

|£0| )1/2

Ao =35+ 1B + ol (76)

5.5. The (2 + 2)-Dimensional Case: Conclusion

We now present the construction of B, in the general (24 2)-dimen-
sional nonelliptic-nondegenerate case.

We recall the general setup, using the results and notations of the
preceding Sections 5.3 and 5.4.

We are considering p>p, nonelliptic-nondegenerate on a C.Z. block Q,
centered at (X, &), |&,| S Mp, of sizes p x Mp.

The derived symbol pX(x,,&,) is supposed to be nonelliptic-non-
degenerate on a block Qié =R xR, centered at (x¥, £¥) containing (x9, &9).
In particular |9 < M(po).

p’p,€SHQ0s), Py €S (1xM), x;+py(x, -,-) polynomial in x, at
scale p, yield that estimates (46) are valid for p?p, on the region

Ryi=m,(Q,)x71(075) X1 (Q,) X1 (05,)

(and actually on a large dilate of it; see Section 5.4). Moreover, p?p, can
then be localized (see the footnote at the beginning of Section 5.4) to sub-
blocks of R; of sizes pd x Mpd. By Lemma 5.8 and Lemma 5.9 it follows
that there exists a region R; = R¥ of the form

Rs:=1,%xJ,5 xIp, X pps

(which we shall refer to as a “good band”) with 7, xIMp STy, gl)(Q[,)
J s X Jarps © Q2%* center(J 5 x Jy,5) = (x5, £3), on Wthh p’p, can be writ-
ten in the form (see (47))

pzpl(xz, X5, &) zpzéze(x’ )6, — f(z)_g(xb xz))2+M2(54p217(x1, X5)

(see Lemma 5.8), where @ is an algebraic function in x,, polynomial of a
priori bounded degree in x,; 0, ¥ satisfying the estimates (48), (49) in (i)
and (ii) of Section 5.4.
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We have hence Taylor expanded first x, +— p,(x,, -, -) at scale p, then
x, —0(-, x,) at scale pd, and finally, applying Consequence 1 in Section 2,
p*p, in all the variables at scale p x pd x Mpd. We may therefore regard
p*V as the polynomial (M?5*)~'p°p, , evaluated at the graph
&, =&Y+ 0(x,, x,). All this can be achieved by choosing, in an a priori way,
A (the initial dilation parameter of the C.Z. decomposition) and M, .
After the symplectic dilation

S (x15x2’ 51752)H<w3xz_xz ’pélsp(f2_é;)>:
p P

using M in place of Mp?, we can hence suppose that Ry =1xJs x I, x J s
is a region such that (note that x{ might not belong to I) R}'* = Q" and
on which p?p (which we call p again) can be written as

p(x, &) =&+ 0%(&, — &5 — MOb(x,, x5))? + (Md?)* V(xy, X,)
(see (51)), with
0 <eelliptic, eeS%1 xJx Md), M*he S (1 x6 x MJ),
ogV, M?*5*V e S*(1 x5 x MJ)

(see Section 5.4).
By Lemma 5.11 we have an a priori box containing the subunit ball:

n,., () xB={(x,¢)eR*xR?; |x, —x}| <4C,,
X2 — X3 MO +[&— &% <4C, Mo}

Hence 7, . \(B,((x" &%), 1)) < B. Consider ¥ (see (55) in Section 5.4 and
notations used therein). Then, by picking 4 a priori large, we have that

&y e(Tus), X3 le 362—52—M55()€2)€(.}M{;)".
Thus, we can achieve the situation in which
W(RY)< Ry

Applying then Facts (F1), (F2), and (F3) of the previous Section 5.4, we
have, working in ¥-coordinates, that the subunit ball is contained in an
equivalent, through ¥, box which we call again 7, (Q)” x B, with
nXI(Q)# X §~ < Rj. It follows that we can work, in ¥-coordinates, sitting in
the region Rj"*.
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Let us now set, for (x° &%) the center of the subunit ball in ¥-coor-
dinates,

Fo:= S ) b 4 o, (77)

Consider now a C.Z. decomposition of R}*, relative to p,(x,, x,, &,) in
R? x R?, into blocks Q, of various sizes and centers, which we call §, x M3,
and (x", £") respectively. We write R here as

Ry= 1 (U5 x 7 (Q3) x Iy x 1 (03)),

Ky, ky

with |[I51| ~6, |I%5| ~ MJ (and a priori bound on overlappings for their
()** dilates). By picking A4 larger than an a priori A,, we can achieve the
situation in which, in ¥-coordinates, denoting by Q% the k(/)"*-dilate
of Q,, we have

Q¥ cRy*  and Q¥ nQF£F=5,~0,.

Since p,(x,, x5, &,) need not satisfy condition (s.e.), we have to introduce,
recalling Fefferman and Phong’s Calderon—Zygmund decomposition (see
Section 2 before Lemma 2.3), a stopping condition: we stop cutting when
the sizes of the block Q,, i.e., J, x MJ,, satisfy

S5, ~0A,. (78)

Note that we are allowed to use C.Z. since p, can be localized to sizes
6 x M (ie., it defines an element of S%(J x MJ) when restricted to a block
of sizes & x MJ). Since (x5, ¢9) e 03, a nonellipticity-nondegeneracy C.Z.
block for pff(x,, &,) (after the rescaling s), it follows that each J, is such
that 0 <9, <.

Suppose p;g,, for some C.Z. block Q,, is nonelliptic-nondegenerate.
This might be caused either by the x,, or by the x,, or by the &, variable.
Corresponding to these cases, by Lemma 2.5 and Remark 2.6, we have the
following

LEMMA 5.15. On a large dilate of Q, either
(i) pix, &) =0d,e,(x, E)(E = &5 —0,(xy, x,))* + (MIT)* V()

with 0 <e,, elliptic, belonging to S°6, x M3$,), 5,0, S5, x MJ,), 0<
(M32)* V, e S*(J, x MJ,); or
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(i) pi(x, &) =07e,(x, E)(M(x; —x3)
—g.(xy, fz))z + Mzéi Vi(x1,&5),

with e, as above, d,g,€S"'(d, x MJ,), 0 < M?61V, e S*(J5, x Md,); or

(ii))  pi(x, &) :533v(xs &) (M(xy —x7)
- gv(x29 52))2 + M25§ Vv(x2s 62)3

with e, J,g,, M?61V, having the same properties as above. Moreover, 0,,
g, are “rescaled” algebraic functions. By Lemma 2.4, the other cases left out
are

(iv) py g elliptic,  py o ~M?0};
(v) &, ~06d,

We remark that cases (i), (ii), (iii) of the above lemma are due to the fact
(see Remark 2.6) that p, >0, 4 th-order derivatives under control and non-
elliptic-nondegeneracy, yield that 93 p, or 7 p, or 0 p, are “big.”

In the case (i) above, define the mamfold (at scale 0, x Mo ,)

2y, ={(x,8): & =84 0,(x1, x0), (x, O € 01} = {(x, &) € QF; 0. p, =0}.
Define also

N,

max

1
He(xl’xz) 0,(x1,x5) Ni Z x19x2 =0,(x,, x,) —07F(x,),

(79)
where N, 1S an a priori chosen number (depending on the subellipticity
constants). The X', |, give rise to the stratification mentioned in the Intro-
duction, stratification caused, as we will see in a moment, by the graphs of
the functions 6%*.

Remark 5.16. The good band R; is not a priori unique. There might be
other good bands farther away from x!. It follows that some of the J, in
case (1) of Lemma 5.15 can be ~ J. Hence the normal form (i) for p, would
hold for x, in an interval of size 1. (We may think of the example

Pi(xy, x5, &5) 252()61(%_)61) éz_sz)2+M254V(x19 X,)

for x| <1, [x,| <9, |&,| < M0d.)
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We use the good band for moving (x,, &,, ¢,). We in fact move from
(x°, &9 to the good band through the trajectory with subunit Hamiltonian
¢,. Hence, from Theorem 5.12 follows

LEMMA 5.17. As long as (x, &) e R (ie., x, €1y),
Rg me((xoa éo)a 1)z {(xa é)a X1 EI&’ |x2_x(2)| gé! |é_60| <M§ZO}

Moreover, our a priori choice of the constant c, when finding R; was made
in such a way that we can, by subunit paths, reach R starting from (x°, &°),
move there, and go back to conclude that

{(Xa 5)9 |X1 _x(l)| § la |X2—X2| §5a |6_éo| §M(SZO} CBp((x()) 60)9 1)

Our purpose is now to describe what happens when we exit the good
band, moving x,; by order ~ 1. In fact, exiting R; gives new contributions
to the ¢-size of B, (not to the x,-size, which is already J, the biggest
allowed by the C.Z. decomposition of pif(x,, &,)). Of course, blocks on
which (v) of Lemma 5.15 holds don’t give any contributions. Since we have
a priori information on the size of the region containing the subunit ball
(ie., nxl(Q)# x B), we shall have to consider just those Q, for which

0,n(n.,(Q)xB)# .

Lemma 5.18. Suppose the block Q, can be reached through a subunit
path starting at (x°, °) and passing through Rs. Then cases (ii), (iii), (iv)
of Lemma 5.15 are equivalent, that is, the displacement given by subunit
paths is ~ 0, in the x-direction, ~ MJ, in the E-direction.

Proof. Case (iv) is an immediate consequence of the elliptic case. The
Q,, on which (iv) holds, contribute to the subunit displacement by an
amount ~J, in the x-direction, ~ MJ, in the &-direction.

Let us consider the case (iii):

53(M(x1 —x7) — gu(x2, 52))2 +M25§ Vi(x5,8) S Mzéévl-
Hence, for a subunit Hamiltonian for p{ := 3(51 — é‘l')z +pijp,0n Q,, we
have [0,q| <MJ,, |0:9| <J,. On the other hand, we can always move x,
according to the subunit (for £2) vector field 9/dx, to reach (at a time ~ 1),
with (x,, &,) = (X,, &,) fixed, a maximum in Q, of the polynomial x, —
/1 [xy, -,-)* where /7  is the “quadratic” part of the normal form (iii).
The maximum is therefore of the order of (by virtue of the bounds on g,)

2 254
AV,\'len'\_l(Qv)/],pNM 0,



436 ALBERTO PARMEGGIANI

(the corresponding point being, say, x,). It follows (rescaling, as usual, to
the unit cube) that we can find a neighborhood U of sizes ~dJ, x Md, on
which

/l,v(-xla x29 52)2"‘ M254:

Hence the elliptic construction applies also in this situation.

Case (i1). As in case (iii) we have that the gradient of subunit
Hamiltonians satisfies the above inequalities. As above, p, o, < M?J7.
Since in the good band we can move x, by order ~d ( =4,), it follows that
we can reach (at time ~1) a maximum point for the polynomial
Xy 45, X,, - )7 (at xy, &, fixed), where /3 | is the quadratic part of the
normal form (ii). In fact, we start with (x,, xz;_f_) € R; N B,. Let x, be such
that (X,, x,; &) e @,. We then move (x,, x,; &) to (x;, X,; &) where x, is
such that

/2, v(fla xZ) EZ)ZNAV )/5, v ’\'Mzéj

X, € nXZ(Q‘,
(Again, this is possible because / ﬁ , 18 a non-negative polynomial in x, and
by virtue of the bounds on g,.) Then 7, (X, X, ,)* ~ M?J? and we con-
clude as above using the elliptic case. ||

We now study the bounds for the gradients of subunit Hamiltonians at
points at which the normal form (i) of Lemma 5.15 holds. (Hence, in the
0, with this property, 2, , is a nonempty manifold.)

ProrosITION 5.19.  Suppose the block Q,, on which we have the normal
form (i) for p,, can be reached through a subunit path starting at (x°, &°).
Define on Q, the function 0° (see (79)) and let (%, &) e Q, be a reachable
point: (%, &) =TI1(i; x°, &°), i~ 1. (Note that we enter and leave Q,, generi-
cally, by means of 0/0x,.)

Let y be an arc of subunit path starting at (%, &), with subunit Hamiltonian
q. Then the following bound for the speed of the &-component of y holds:

0cq(x, I S Mo, A,,  (x,&)ey,

where, with I} :=n..(Q,),

Z\r:Zv(Xn é)
=Gl HIE 80l (f 00\
Mo, Mo,
* 2
i 6( VV)I/4 n Haxzev HLT(I;)

M >
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with o(f) :=max,c, o, |/(X)|. In the case in which the normal form (i) holds
on a good band (i.e., with x| ranging order 1), o(f) :=max, ., | f(x)| with
|x, —X,| =1 in the subunit ball. Note that the function

(%, &) 4,(%, )
is continuous on Q,.

Proof. Define the tame (at scale 0, x MJ,) canonical transformation

V(x5 X, &1, &) o (X, Xa, &4, 60— &5 — 07 (X)),

Since we can always move according to the vector field 0/0x,, we apply the
proof of Theorem 5.12 to the symbol

PE(x, &) =00 =&+ (pr o P, (X1, X2, &),

(x, &) e ¥,(Q%), the only modification being that we have to substitute
Av o, With the discrete average

x| en\.l(
1 Nmax

. k
Meny (@) T Z o(xy —xh),

max k=1

Avd

where ¢ is the Dirac function. This modification allows us to use
Theorem 4.4’ of Section 4. In ¥,-coordinates we have the bound given by
(we write ¥, =(¥,,, ¥,,))

10,(qo ¥ )y, 1)

¥, &) = W5 O 09 \?\"” 4
§M5V< MS +J<<M5v> > +0.( Vv) >

v

Pulling things back to Q, (by means of ¥ '), we have

an,
0,,q(x, &) =(0,,(q= 7 NPx, &) +(0,,(q= ¥ (P,(x, &) % (x, ).

Noting that

0
0,(a° P NP0 ) 57 (36| < €0, 10,05 | 1oy
2

—CMs ”axzev* HL‘T-(I%)

gives the proposition. |
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Remark that, by Theorem 4.4,

Haﬁg;“ | oo 2
S (M) max [03(x).

2
x, el

Let A :={v; 0, (7, (Q)* xB)# &} and let 4, be the optimal subunit
displacement relative to Q,.
By this we mean:

(1) In cases (ii) and (iii) of Lemma 5.15 we have, by Lemma 5.18,
4,=90,, the length of the x-side of Q,; whereas,

(2) in case (i)

Combining Lemmas 5.15, 5.17 and 5.18 and Proposition 5.19 gives the
following structure theorem for the subunit ball of radius p:

THEOREM 5.20. Define Ay :=max{4d,, max{4,;ve A"}}. Then, after
the symplectic scaling s and the transformation ¥ (see (55)), calling p the
symbol p*pos— oW (ie., setting p=1 and M = Mp?),

B, = B,((x° &%), 1) = B,,
where
By ={(x, &) eRXR?; |x; —x{| £ 1, |x, —x3| 0, | —&°| £ M4}
and

By={(x, &) eR*xR*; [x; —x}| S L, [x, —x3| £, [ —&°| S MoA}.

Remark 521. Suppose [E9|/M ~ 5, for some v. The use of the good
band makes it possible to conclude that for those v, 4, = [E9|/(M4,).

This is already contained in the stopping condition (78). It is equivalent
to taking a C.Z. decomposition relative to the symbol (|&9|/M)* M?> +
Pi(X1, X2, &5).

Remark 522. In case (ii) of Lemma 5.15 we define the rescaled
algebraic function F,(&,):=(MJ5,) " (g*(&,) — g*(&,)) +X,, for some
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(X2, &5) €7y, 2)(Q,), vE AN Then, in 0¥, we can fill in, by subunit trajec-
tories, a box of the kind

{(xa &) lxy— x| 20, [xa—F (&) Mo, + |, *El | S Mo,D,,
|€2_£_2| §M6v}a

where now
D=0 8= S8 e (o) gxE)
v V M5V v V
+( max (g2/(MJ,))*)"+( max V)4
(»’Clséz)en(Al,éz)(Qv) (Xlsiz)e”(rl‘iz)(gv)

We stress once more that it was the use of the good band which allowed
us to get the best possible displacement in this case.

We next show, by studying an example, that Theorem 5.20 is optimal.
We shall in fact exhibit a symbol for which the “stratification” we referred
to in the Introduction occurs, and for which one is able to compute the
“critical radii.”

THE EXAMPLE &7+ (x,&,— Mb)?. Consider on a (large dilate of a)
block O = R*>x R?, centered at (0, 0) and of sizes 1 x M, the symbol

p(x, é)=é?+(xlfz_Mb)2

with 1> b M*~ > We shall study B,()°, p) as p varies, where y° = (x°, &°).
In this example one can prove that the subunit ball Bp((xo, &9, 1), for a
suitable choice of (x° &%) =(u,0,0,0), 1 >u>0, is not a box in the fol-
lowing sense. One can travel through subunit paths to regions in which the
contributions allowed in the ¢-direction are strictly greater than the one
given by the “good band” (to which (x° £°) belongs). Since the choice of
i may be made in such a way that the time elapsed to reach such regions
is of order 1, it is not possible to go back through subunit paths to points
of the form (x°, &), with || ~ displacement strictly greater than the good-
band displacement (the constants in ~ being a priori). This prevents the
ball from being a bow.

We omit the computations.

We now want to prove that, when considering the subunit ball of radius
p, there exists a “critical radius” p.,, determined depending on (x°, &°),
such that, for p <cp. and p = Cp., (¢, C>0 a priori constants), Bp(yo, P)
is essentially a box. Note then that for any fixed center (x°, £°), the number
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of such p.. is a priori bounded. We shall use the following notations:
1,=1,x0)=[x{—p,x+p] and

Pp(x2,&5) 1= (AV, cf, P1)(X2, &)

We hence consider, on the above Q of sizes 1 x M, centered at (0, 0), the

operator p?p(x, &).
We already assume (see Assumption (A2v)) that

/)min<p<pmax' (80)

On the other hand, considering p?p on Q, we have that the C.Z. procedure
stops at Q, = Q because either p°p,,,, is elliptic or p°p,,, is nondegenerate.

Whenever y°€ Q,, block on which p?p ,, is elliptic, the ball is a box,
hence we shall only deal with the case in which p°p ., is nonelliptic-non-
degenerate.

Since p?p(x, &) = p*ET + p?py(x, &,), nonelliptic-nondegeneracy will occur
in @, such that sizes(Q,) ~ p x Mp. We therefore have the following first
condition: suppose e Q, with p’p,, nonelliptic-nondegenerate, then

pp(y°) < CM?p*, ie.,
2\ 12
) , (81)

p=a(y°) '=<|é?|2+ #ig—b
- T\ m? M

whence, whenever p S a(y°) or p~a(y°), the ball is a box. In fact, since

M?a(y°)* = p(y°) and p S a(y°) (or p ~a(°)) implies

pp(y°) S CM?*p* = Cp>’M?p> < C'p>M?a(y°)* ~ p°p(7°),

we have that p?p(y°) is as big as the maximum of p?p on the block Q, of
sizes p x Mp. Since p2p is a polynomial, it follows that the ball is a box.

For p = p,=a(y°)/C"?, we consider now a C.Z. decomposition relative
to pX(x,, &,). In this case

* — 25 £ @ ! 2
pp(xzs 62)_p pp(x2a C2)+ M M
=p2(ué —Mb)2+1 452+<|ég|>4M2
PG 3P 2 M
1 Mbpu >2 M>bp*
_ 2 2,1 2 o
=’ (“ +3’)><52 2302 T3 (13 )
+ ('é?'>4 M?p*, (82)
Mp
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We look at

aézp;k('xb’ 62) = zpza(:ua p)a azsz: = 09 (83)

where a(u, p) :=u>+ 1p2
It follows that

o . .
(i) 2 p}~p*in case |u| <p;
(ii) 5%1?,’!‘ ~ pu? in case p < |u|.

In case (1),

o) 5 (5
pion ot (G n ) 4 2 ()

In case (ii),

* ~ 0212 _ Mb,u >2 {bz <|é?|>4} 272
Py(x2, E)~pp <fz (. 7) + ﬂ2+ My (Mp*)~

Remark that we are supposing p°p (and hence p¥) can be localized to
0, 37" sizes(Q,) ~ p x Mp. It follows that it must be, in case (i),

b2 |£0 | 4
F'F (]\/Ilp> =G(p)<Cy;
in case (ii),

bz |éO| 4
,uz+<]\/[lp> =Gy(p)<Cy,

where C, >0 is a universal constant.

Hence, if G,(p) > C,, for an a priori constant C, >0, we have in case (i)
the ellipticity of p* and the ball is a box; if G,(p) = C,, we again have ellip-
ticity of p ¥ and the same conclusion holds in case (ii).

(Remark that if G,(p) < C,, then b*/p?> < C,/2 or (|E°|/(Mp))* < C,/2 or
both; likewise for G,(p) < C,. Regarding G,(p) = C,, we have that at least
one of b?/p? and (|EV|/(Mp))* is greater than or equal to C,/2.)

At any rate, the conditions on G, and G, determine a range of values of
p. We next suppose

S lul=po
and examine the following cases:

nl<p. pe{peR.:G(p)<C\} =S(G) (84)
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(in case S(Gl) N [l:ula pmax] ¢@)9
pPelpo, lul1nS(G,) (85)

(in case the intersection of the two sets is non-empty).

In case (84) p¥ is nondegenerate at scale ~ p>x Mp?> on a block Q7 ,
y5 € 05 . pj may be elliptic or nonelliptic-nondegenerate on Q7 . Since it
can be localized to Q‘Z,O, it follows that

Mbu
*(2,0)  p4 50_
p/}(VZ) ,0 <~2 O'(/l,p)

2
) 1 Gy(p)(Mp*) < C(Mp*),

1e.,

0 2
Hl(p):=14<62— b”p)> LG (86)

p*\M  alu, p*

If p* is elliptic on Qﬁo, the ball is a box; if it is nonelliptic-nondegenerate,
then, in any case, this is so for

peCri=[lul, pmax] 0 S(G) 0 S(H,)

(a possibly empty set). Since C, is an intersection of level sets of rational
functions of p, quotients of polynomials of a priori bounded degree (inde-
pendent of y° and b), it follows that C, has an a priori bounded number
of connected components. The same kind of argument applies in case (85),
and we get a condition on the corresponding H,(p):

Mb 2
PEYY) ~pu’ <62— “ > + Go(p)(Mp?)* < C(M(pu))?,
a(u, p)
whence
1 g bu >2 G,(p)
H, = — <C, 87
(#) (pu)2<M a(u, p) * wt < (87)

and the condition
peCyi=[po, lul10S(G,)n S(H,)

(a possibly empty set). As for C,, C, consists of an a priori bounded
number of connected components. (In case p¥(y3)~ M?*(pu)?, it follows
that the ball is a box since we would have that at (x,, x9; &%) the polyno-
mial p?p,(x, &)+ (|EY|/M)* M? is as big as its maximum on a block of

sizes plp| x Mp|ul.)
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We distinguish now among the following cases:

1
pe{po,w@ nCy: (88)
1
pe<czr{3|u|,|u|]>u<clm[|m,2|m]); (89)
p6[3 |/’llﬂpmax]mcl (90)

(in case these sets are not empty).

Case (88). Consider a C.Z. decomposition relative to p?p,(x, &,). Call
0, the C.Z. block for which yS en . - (0,).

Look at 02 (p°p;) =2p°x7. The “good band” R in this situation has sizes
~pXplulx Mp |u|. Call Mp |u| 4, the &-displacement given by R. The
stopping condition for p?p, now reads: (diam, Q,) ~ 4, p ||

Since p°p(x, &) = px3(&, — Mb/x,)* and 1, =[3u, 3u] (we may sup-
pose u>0, as we shall from now on), it follows that p2p,(x, &)~
p*u(é, — Mb/x,)? on R and Vx, €I,, whence

s
Mppdo=|E7| +1E5— Mb| + M(b* — (b)), (1)

where we have set b”:=Av,_ _, (b*/x7) and b:=Av, _, (b/x,). Let
W=1{(x,&); Ix; =71 < p, [xy— x5 <cpp, |E=E% <cdoMpuj  (92)
where ¢ >0 is a universal constant (note that 7., .,(W) < Qfo**). Consider

N= {V’ Qv N W¢ @s diamx Qv ip:uAO}

(Note that nxl(QE N W) contains a subinterval of diameter ~4,.)
We are going to prove that either

B,(7% p) = {(x,&); Ix, —x0 [ <p, Ix, = x| < plul, [E—=E° < Mp|ul}
or
B,(y", p) = W.

In either case, the ball is a box.
Suppose, for some ve N, p°p, o, is elliptic. It then follows that

aéz(p2pl \Qv) = 2p2x% < Cé%»

whence, since |x,|~ |u| on Q, "W, 6, R p |ul.
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On the other hand, p}(x,, &) < CM?p*u®, whence, since p,(x,, &) R

Mz(si fOI' (x29 62) en(xz, 52)(Qv N W)n 51/ ~p |1u| _
Hence Q, is of sizes ~ pux Mpu. Let W, = Q%N R Leté, en.(W,). It
follows that p*(x, &) ~ M?(pu)?, and that, with R*==, . (R),

max _ p¥(x,, &) ~ M3 (pu)t.

(xp. &) e R?
By inspection of the form of p*, one gets:

max P:(xz, &)
(x5, &5) e R?

Mb, 2 Mb, 2
~p2ﬂ2<53— “ +cAoM/w> +p7p? <53— a —CAOP,U>
a(u, p) a(u, p)

+ Vu, p) M?(pu)*
~pu’ {(éS—Mb” >2+c2A§M2(/w)2}
a(p, p)
+ Vu, p) M>(pu)* ~ M?(pp)?, (93)

where V(u, p) :=b*/(u* (> + 5p%)) + (1€ 1/ (Mpp))*.
It follows that at least one of

Mb 2
p2ﬂ2<62 ”>, CLMpn), Vi p) MA(pu)®
alu, p)
1
>3 EM(pp)’,

from which it follows that the ball is a box of sizes ~ p x p |u| x Mp |u|. (In
case p’u*(E3— M(bu/o(p, 1)))* = EM(pu)*/3, p3(x5, £3) ~ M?(pu)* then.)

Suppose now, for some ve N, p°p, o, is nonelliptic-nondegenerate because
of 03 (p’py). Again, it follows that 0, ~ pu. (In fact, 0% (p°py) o, =2p°x]
07, a)zcl(/)zpﬂ\gv =2p¢E3 ~ M?97, and since p’py| o, = p*E3(x; — Mb/E)?,
we have that

AVxlenxl(Wv) P°P1io, =Py
= pzAV\Xl — 5 gcé‘,pl 10,
VLA

~p X, ——
P2 : & 10, 3 p2

Hence, M?6? §pv‘n;2(Q‘_) §p;k|QvO S M (pp)™.
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Slnce X, en, (W,)=|x,|~pu, from 0 (p°p,) = 2p x1 we have p?u’ <
02 < put) Now fix &, en.(W,) for such a v. p?p, being a polynomial,
takmg the average with respect to x; in 7. (Qh N R) yields pX(x,, &)~
M?(pu)*, whence

max P;k(xza &)~ Mz(pﬂ)4'

(x5, &) e R?

As before, it follows that the ball is a box of sizes ~ p x p |u| x Mp |u|.
Finally, suppose, for ve N, p°p, | o, is nonelliptic-nondegenerate because of
0z . Tt follows that the ball is a box ~ W (in this case, ; ~ 02 (p°p)) o, ~
<2 G2 v
P1>).
In fact, define B={(x,{)eQ;x,el,} and N ={v;0Q NnB#,
Tixy, () N szo** # ). It follows that, for any ve N’, §, ~ pu, and that

Mb\?
PP1 ovnn(X, &) =px7 <fz—x> .
1

Observe that we a priori know that

T (By(7° p)) = L,(xY).

A symbol ¢ subordinate to p?p can be written in the form ¢, + ¢,, with ¢,
subordinate to p*¢7, and ¢, subordinate to p°p,. Since p¥ can be localized
to sizes pu x Mpu, and p°p, < Cp}, it follows (I being a subunit path),
that

|0:,q(I(1;9°)| < Cp |ul.
Denoting by I, the &-projection of I', we have
10,q(I(t;7°)| < C(doMp |ul + | 15(2, %) = E%)).

This follows upon using the transformation ¥ introduced earlier (which, in
this case, is written in the form

b
(X, é)'_) <X, 519 éz_MAVxleIp <>>>9
X1

the Taylor expansion of 0,.¢g, with respect to

1 1
Z:{(y, n);n,=Mb <—Avylg,p <>>, b2 ell,},
Y1 Y1
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and changing the variables back. This proves that also in this case the ball
is a box:

B,((x &%), p) = {(x, &); Ix) —x}[ < p,
o= X9 <p lul, 1E=E1 <A Mp |ul}.
This concludes Case (88).
Case (90). In this case we have that 0 e[ (x?), and

4 bu > 272 2 <|50|> )
*(xp, &5) ~ ,—M M?3b M2
PEGta En)~ p (é ) e

The ¢-displacement given by the “good band” R is now given by
Mp*Ag ~ |EY] + €3 — Mb| + M(b> — (b)*) ',
where
B i= AV, o BN, Bi= AV, L b)),
Note that
B, ((x3, &), D) & {(x2, &5)5 s — x5 < p% |6 — &3 S Mp24,},
with

bu
a(u, p)

Mp>4, ~ 7]+ &3~

B G848 M

because

b Mb, b2
J2 2/‘ - M5 pi2 pllt/z < CMbl/Z 12

alp, p)  p p

in this case. Also, Mb*”, Mb< Mb'?p'2. We have to consider the
following two cases (the stopping condition is now given by
diamx Qv ~ A0P2)3
(i) Mp*4, 2 Mb'2p'? (or Mp>Ay ~ Mb'?p'?);
(il) Mp*4, < Mb'?p'7>.
Since Mp?4, ~ Mp?4,+ Mb'?p'? in case (i), we get
Mp>Ay ~|E0| + |ES] + Mb' 22

(in fact, |9 — Mb| 4+ Mb'?p'? ~|EY| + Mb'?p'?), which is the maximum
displacement allowed. Hence in case (i) the ball is a box.

In case (ii), we have ||, |9 — Mb| £ Mb'?p'2, from which it follows
that Mp?4, ~ |ES| + Mp'/b'>,
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We now look at the following quantities:

Mbu
a(u, p)

2
ci(p¥)i= max pi(xs )~ <é§— +M2p4A(2,>+M2b2p2

(x3. &) e R?

~ PG M 4 p* |E3— MBI+ MpH(B — (B)%) + p* 1E3)°

P P18 + b = gty (L) (2] +}

and

b 2
oa(p) = p (s E0) ~ p“(éS—M”)

a(u, p)
+ M?b?p% ~ (Mp*)? |ég| ’ b—z 95

Consider a C.Z. decomposition relative to p?p,, and let O be a C.Z. block
such that (0,0)e 0. As a consequence, p2p, |0 must be elliptic (in the
present case (ii)) and sizes (Q) ~ (bp)'> x M(bp)". We may suppose that
&9 €T, (0) (since otherwise we would be in case (i) above: it would be
9] ~ Mpl/zb”2 and thus Mp?4, ~ M(bp)'7?).
We distinguish now among the following cases:

(A) 1&5]=CM(bp)'>

(B) [&3]1~M(bp)';

(C) &ene(Q) (ie, &3] < CM(bp)'?).

(A) We have that

Ul(P:)Naz(Pj) and MpzAl ~ |f(z)|

p’p, being a non-negative polynomial, it follows that 3x, € ¢/, (say) such
that

2 = 0 0 42 |é(2)| 2
ppl(xl9x2’ fZ)N(Mp ) Mpz .

We can therefore find a neighborhood of (X, x5, &9, &9) of sizes

(31 2 Mp? [31
Mp? Mp?
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on which pp, ~(Mp*)? (|E5]/(Mp?))*=p*|EY|%, whence we have the
possibility of moving, through subunit paths, by order |E)| in the
&-variables, i.e., the maximum allowed. Hence, the ball is a box:

B,(7% p) = {(x, &); |x) = x7| < p, Xy — x5 < p? 1€ =& < €31 ).

(B) This case is completely analogous to case (A).

(C) In this case Mp?4, ~Mb"?p"? is the maximum ¢&-displacement
allowed.

Since |u| <p/3 now, we can reach x,=0 at time 1, and using the
ellipticity of p°p, . we fill in a region of sizes

ps/zp p FEC

It follows that the ball is a box:
B,(7% p) = {(x, &); [x; — X3 < p, %, — x5 <p7, [E—E0 < MB'Pp' Y.
This concludes Case (90).

Case (89). It gives |u| as critical radius (applying the construction at
the beginning of this section).

To complete the discussion, we have to consider the following cases we
have left out so far (recall that p = p,):

sl <po<iul, Il <po<3iul,  po=3lul

In the first case, condition (88), (89), or (90) may hold, whence the conclu-
sions of Case (88), Case (89), and Case (90) follow.

In the second case, condition (88) is empty, while (89) or (90) may hold,
whence the conclusions of Case (89) and Case (90) follow.

In the third case, only condition (90) holds, whence the conclusion of
Case (90) holds true.

We may summarize the result as follows:

(1) If p<|u|/3 the ball is a box:
By, D) 2 {(x, &) [xy =71 <y [xy = 3] < p lul, 1E—E°1 < Ao Mp |ul}

with 4, given by (91),
(2) If p=3|u| the ball is a box:

szp(yo> l)z{(xa f)’ |xl 7x(1)| <p> |x27x(2)| <p27

€= <IETI+ &3]+ Mb'2pi2Y.
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We hence have a “transition” of the geometry at the radius:

~ Il =x11.

We finally want to comment on the resulting geometry of these subunit
balls. It follows from Theorem 5.20 that

o (By((x° &%), D) = {x; |x; —xV[ <1, [x, — x5 <4}

Hence, while the subunit localization in x gives naturally expected results,
the &-localization presents the above described “stratification,” related to
the stability, as x, varies in the interval [x—1, x9+ 1], of normal forms
(with respect to &,) of the symbol p,(x,, x,, &,), where x; may be viewed
as a parameter. These normal forms are in turn related to the degeneration
of the algebraic variety (p; can be supposed a polynomial)

2, = {(Xaf)€R2><R; 6p1/652=0}.

ExamMPLE A. We give here an example of the symbol for which the
good band is not unique, but for which the stratification doesn’t take place.
Consider

P(x, &) =E1+0%(5—x1)7 (§—x1)° (& — Mx,x,)* + M?6*V(x,, x,),

on Q of sizes 1 x M centered at (0,0), 0<oJ<1. For this symbol, in the
case |EV|/M <9,

B,((x% &%), 1)~ {(x, &) Ix, — x| < 1, |x, — x5 <0, [E—E0| S MOA,}.
where

0
Z |f |A}_5|é2| o_(b2)1/2+0.( V)l/4,
b(xy, X3) =X x5.
The absence of the stratification is also due to the “stability” of the
function V.

ExaMpPLE B. We now give an example of a 2nd-order differential
operator for which the stratification doesn’t occur. Consider a 2nd-order
differential operator in R? with symbol

p(x, &) =e(xy, x5) é$+a(x1>x2) é%a
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where ¢ >0 is a C*-function, 0 <e~1 is an elliptic factor, and p satisfies
the Assumptions of Section 2.! As in Section 2, we microlocally reduce p to
a symbol belonging to the class S*(1 x M) (still denoted by p). Let hence
O be a block 1 xM (M>1) centered at (x, &), with || ~M. Hence
Plo€S(I1xM) and Een Q)= [E|~M. Now, [&|=max{|,],|E ]},
hence it might well be |&,| <« M and |&,| ~ M. For simplicity we assume
a(x;, x,) is a polynomial (otherwise, by subellipticity, this can be achieved
by considering the subunit ball of radius p), such that a=a,(x;) ay(x,)
with a,, a, non-negative polynomials. Assume a < 1. Let (x°, &%) € Q be the
center of our subunit ball. Under these assumptions, Q itself is a nonellip-
ticity-nondegeneracy block for p. Since |&,| ~ M on Q, we have on Q

p(x, &)~ & +alx,, x,) M?
and &, | S M, ¢, eng (Q). Denote

a(x,) = (AV\xl—x‘ﬂ <1a)(x»)

and consider the derived symbol

F(x,, & )=<|§?|>4M2+d(x )éz~<|é?|>4M2+d(X )M2
PriXs, G2 CM 2) G2 CcM 2 .

Then pi(x,, &,) S M*. We consider a C.Z. decomposition of 7, (. e O)
relative to pj. Let Q3 be a C.Z. block in R xR, of sizes § x MJ, at which
the procedure stops. In particular (since |&,| ~ M), a(x,) S 6*. We have the
following cases:

(i) pf is elliptic on Q3 because |EV|/M ~ J;

(ii) pf is elliptic on Q3 because |£V|/M ~d and a(x,) ~ &%

(ili) pf is elliptic on Q3 because |£)|/M <6 and a(x,) ~ 6.
In all these cases we have

B,((x% &%), D)= {(x, &); |x; = xT| < L, [xy = x5 M+ |E—E°| < MO}

! The case X7 + X3 for real vector fields X, X, satisfying a subelliptic condition (say, the well-
known Hormander finite-type condition) can be treated by using the Weyl Pseudodifferential
Calculus: if p,(x, &) is the symbol of X;, the Weyl symbol of X3+ X3 is p,(x, &)? + pa(x, &)?
>0, and we apply the methods so far developed.
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(iv) pf is nonelliptic-nondegenerate on Q3 because |£%|/M <J and
0% a(x,) ~0% in this case it follows that a(x,)=d,as(x,) ~d*(x, —x§)>
—|—54oc where x¥ en, (Q3) and 0 <a< 1. Since

a(x;)

1

px, O ~ET+

(0%(xy = x3)? + &%) M,

moving x, to a maximum for «, on the interval [x%—1,x%+ 1] yields
a;(x,)/a, ~1 so that (using the fact that the subunit ball relative to
&1+ pi(x,, &) contains the one relative to p), we have

Bp((xoa éo)’ ) {(x ) |X1 x(l)| < la
Xy = X351 M +1&, = EY<IEY] + X5 — x5 | M+ Moo,
&, — &3l < Mo}

(relative to

)
(%,,&,) and

(The case in which a(x,) ~d*(x, —X,)* is ruled out by (s..
Pi(xs, &) i=a(x,) &3; see Section 2.) Here center(Q3)=
M5*> 1. In fact, take the testing box in R xR

6 M52 —1+¢/2
BZ{(Xz, éz)ERXR, |x2 X2| <cl/2¥,
Jac
MO(M&*) ">
<V — }

Then Bc (7, (Q3) x 7. (Q))* (note that (M) ' <9%/0 = ). It follows that

5 (Ma?,

max p(x,, &) < Cmax(0*(x, —X,)> M?) < B
B B

and hence that p, doesn’t satisfy (s.e.).)

In case |&,|~M and || <M or |&,|~M, Do 1s elliptic, hence
B,((x% &%), 1)~ Q.
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