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Abstract 

Lam, C.W.H., G. Kolesova and L. Thiel, A computer search for iinite projective planes of 
order 9, Discrete Mathematics 92 (1991) 187-195. 

There are four known finite projective planes of order 9. This paper reports the result of a 
computer search which shows that this list is complete. The computer search starts by 
generating all 283,657 non-isomorphic latin squares of order 8. Each latin square gives 27 
columns of the incidence matrix. Another program attempts to complete each of these 
incidence matrices to 40 columns. Only 21 of them can be so completed, giving rise to 326 
matrices of 40 columns. A third computer program attempts to complete the rest of the 
matrices. One of the 326 does not complete. The rest complete each to a unique matrix. An 
isomorphism testing program is then applied to the 325 complete matrices, creating a certificate 
for each matrix, as well as its collineation group. The certificates are then compared with the 
known planes and no new ones found. As a fmther evidence of the correctness of the computer 
programs, this paper also shows that the computer results are consistent with those expected by 
using information about the known planes and their associated iatin squares. 

1. Ilttroduction 

A finite projective plane of order n is a collection of n2 + n + 1 lines and 
n2 + n + 1 points such that: 

(1) every line contains n + 1 points, 
(2) every point is on n + 1 lines, 
(3) any two distinct lines intersect at exactly one point, and 
(4) any two distinct points lie on exactly one iine. 
There are four known planes of order 9, namely the Desarguesian Plane, the 

Left Nearfield Plane, the Right Nearfield Pane and the Hughes Plane. For a 
detailed description of these planes, as well as their collineation groups, see [ll]. 
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It was an unsettled question whether there were any more planes of order 9. In 
several special cases, [3,5, lo], computer searches have discovered no new 
planes. In this paper, we report the result of an exhaustive computer search which 
shows that there cannot be any new planes of order 9. We also show that the 
computer results are consistent with those one would expect by applying the 
collineation group to the known planes. 

In Section 2, we introduce the mathematical preliminaries which are required 
in the rest of the paper. Section 3 gives the methodology of the computer search 
and the computer results. Finally, Section 4 addresses the question of correctness 
of these results. 

2. Mathematical preliminaries 

The subject of projective planes is vast and we will introduce only the concepts 
that we need in this paper. For more details, one can refer to the excellent books 

Another way to represent a projective plane is to use an incidence matrix A of 
size n* + n + 1 by n2 + tt + 1. The columns represent the points and the rows 
represent the lines. The entry A, is 1 if point i is on line i; otherwise, it is 0. In 
terms of an incidence matrix, the property of being a projective plane is 
translated into: 

(1) A has constant row sum n + 1, 
(2) A has contant column sum n + 1, 
(3) the mner product of any two distinct rows of A is 1, and 
(4) the inner product of any two distinct columns of A is 1. 
.The property of being a projective plane is preserved under arbitrary and 

independent relabelling of lines and points. In terms of the incidence matrix, 
these operations translate to arbitrary and independent permutations of rows and 
columns. Two incidence matrices that can be transformed one into another by 
row and co&mii permutations are said to be isomorphic. Since we are interested 
only in non-isomorphic planes, we shall use these operations to reduce our search 
space. Given a particular column permutation, we shall use the row permutations 
to sort the rows into a standard form. Thus, the symmetry group acting on the 
incidence matrix is the symmetric group on n2 + n + 1 letters. The subgroup 
which fixes the incidence matrix is called its collineution group. 

A lain square of order n is an n x n matrix satisfying the following properties: 
(1) all the entries are from a set of n distinct symbols, 
(2) in every row, no entry is repeated, and 
(3) in every column, no entry is repeated. 
Usually, the entries are chosen from the set (1, . , . , n}. 
While it is well known that the existence of a projective plane of order n is 

equivalent to the existence of a complete set of mutually orthogonal latin squares 



A computer search jor finite projective planes of order 9 189 

of order n, it is also possible to characterize the property of being a projective 
plane in terms of latin squares of order n - 1. We do not need the complete 

characterization. We sh.all only describe how to extract a latin square of order 8 
from a projective plane of order 9. 

The method is bnsed on choosing a triungle, which is defined to be a set of 3 
noncuiiinear points, and then normaking the incidence matrix into the form 
shown in Fig. 1. There exist 3 lines each containing two of these 3 points. We 

permute the rows and columns so that they come first and as a result, the 
principal submatrix on the top left is as shown. Next, we rearrange the columns to 
place the remaining 8 points of line 1 at column positions 4 to 11. The remaining 
points for line 2 are placed at columns 12 to 19 and those for line 3 at columns 20 
to 27. Similarly, rows 4 to 11 are the remaining lines through point 1; rows 12 to 
19 are the lines through point 2 and rows 20 to 27 are the lines through point 3. 
Lines 4 to 11 have intersected with lines 2 and 3. Hence, they cannot contain any 
of the points 12 to 27. They have not intersected with line 1 and so they must 
each contain one of the points from 4 to 11. However, each of the points 4 to 11 
can only be incident on at most one of the lines 4 to 11. Thus, each of the lines 
from 4 to 11 contains a distinct point from 4 to 11. By permuting the columns 4 to 
11, we can ensure that the submatrix formed by rows 4 to 11 and columns 4 to 11 
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Fig. 1. A normalized incidence matrix for a plane of order 9. 
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is an identity matrix. lhe incidence structure of rows 12 to 27 with points 1 to 27 
follows from a similar reasoning. 

The remaining rows are sorted in a lexicographical order. Naturaiiy, ail the 
remaining lines containing point 4 comes first, followed by those containing point 
5, and so on. Thus, the rows 28 to 91 are divided into eight row blocks. Those 
containing point 4 (rows 28 to 35) form the row block 1. Those from rows 36 to 42 
form the row block 2 and so on. In each row block, a row has to intersect row 2 
exactly once. Hence, the row ordering within a row block can be further refined 
by the incidence of points 12 to i9. We label the submatrix formed by columns 20 
to 27 with the various row blocks as Bi to B,+ They will give rise to a latin square 
of order 8. 

First, we claim that each of the Bi is a permutation matrix. Since each of its 
rows must intersect row 3, Bi contains one 1 in each row. Since each column of Bi 
intersects column i + 3 of the incidence matrix at most once, there is at most one 
1 in each column of Bi- Hence, Bi must be a permutation matrix. 

There are several ways to associate the submatrices Bi with a latin square. We 
have chosen to use points 4 to 11 to define the rows 1 to 8 of the latin square, 
points 12 to 19 to define the labels 1 to 8 of the entries, and points 20 to 27 to 
define the columns 1 to 8 of the latin square. Thus, if there is a 1 in row k, 
column i of Bi, there is a k in row i and column i of the latin square. We next 
prove that the result is indeed a latin square. Since Bi is a permutation matrix, 
row i of the resulting square must have distinct entries. In the incidence matrix, a 
column from the range 20 to 27 must intersect each of the columns in the range 12 
to 19 exactly once. Hence, a column of the resulting square must have distinct 
entries. 

The symmetry operations of permuting columns of the incidence matrix induce 
symmetry operations on the latin squares. Interchanging two points in the range 4 
to 11 induces an interchange of two rows of the latin square. Permuting points in 
the range 12 to 19 corresponds to relabelling the entries in the latin square. A 
permutation of points in the range 20 to 27 becomes a column permutation on the 
latin square. These three types of operations are the kotopic operations. 
Together, they partition the latin squares into isotopy classes. Moreover, the first 
3 points can be permuted amongst themselves. For example, interchanging points 
1 and 3 corresponds to transposing the latin square. These 3! permutations of the 
first 3 points translate to the conjugate operations on the latin square. They merge 
the isotopy classes into main classes. For a detailed description of these symmetry 
operations on latin squares, see [2]. 

3. Methodology and results 

The search for a projective plane of order 9 is divided into four steps: 
(1) generate one representative from each main class of latin squares of order 

8, 
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(2) translate the representative latin square into the first 27 columns of the 
incidence matrix and attempt all possible ways to extend it to 40 columns, 

(3) extend the resulting partial incidence matrix to 91 columns, and 
(4) perform isomorphism testing on the complete incidence matrices, deriving 

a certificate for each as well as its collineation group. 
Finally, the certificates are compared with those of the known planes. 
There are several reasons for organizing the search into such steps. First of a& 

there exist published numbers of latin squares of order 8 under the action of 
different symmetry groups, which provide a check on the starting points of our 
search. Moreover, it is too expensive to perform isomorph rejection beyond this 
point. Unfortunately, some of the published numbers seem to be wrong. For 
more details, see [7]. The reason for completing the incidence matrix first to 40 
columns and then to 91 columns is for efficiency purposes. The bulge of the 
search occurs around column 30, reaching around lo9 cases. In this first range of 
columns, we use the method of a compatibility matrix, which is first introduced in 
[l] and also described in greater detail in [8,12]. Since there are only 326 sur- 
vivors at column 40, we can afford to use a slower program to complete it. For this 
purpose, we use an existing program which we had used mainly for estimation. 

Out of the 283,657 latin squares of order 8, only 21 have extensions to 40 
columns, giving rise to 326 partial incidence matrices. One of these 326 (arising 
from latin square 16) cannot be completed. The remaining 325 each completes 

Table 1 
Distribution of 325 complete incidence matrices arising from 21 latin squares 

Ls 
id 
1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 - 

automo 
Zonjugate 

6 
6 
2 
2 
2 
2 
1 
6 
6 
1 
2 
6 
6 
2 
1 
2 
2 
2 
2 
6 
6 

total 

me 

bism 
[sotopic 

1 
1 
3 
6 
2 
6 
1 
1 
3 
2 
3 
6 
1 
2 

12 
48 

192 
6 

128 
1536 

256 

Right 
1 

;e t f 

1 

Hughes Desarguesian 

1 

3 

1 

108 

114 

1 
4 
1 

1 
1 
1 
1 
1 

1 
1 
1 

8 
1 
8 

64 

95 
2 
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exactly once. The distribution of the 325 complete incidence matrices according 
to the latin squares is given in Table 1. The first column identifies the latin 
square. The next two columns contain information about the size of the 
automorphism group of the latin square. The second column gives the number of 
conjugation operations that fix the latin square. The third column gives the 
number of isotopic operations that fix the latin square. The next four columns 
identify the number of times a particular plane occurs as an extension of a given 
latin square. 

4. Consistency of the results 

While it is impossible to prove that a computer search is correct, we shall do 
the next best thing; that is, to explain how one can derive the raw data of the 
computer search by working backwards from the known planes and using only the 
information about their collineation groups and the associated latin squares. The 
fact that the computer results are consistent with those predicted by theoretical 
methods should give the readers confidence in the correctness of the computer 
search. Those interested in a discussion of this method of consistency checking 

Table 2 
Desarguesian Plane 

automorphism 
triangle Latin S. triangle [ Latin S. copies 

1 21 768 1 1536 2 

Table 3 
Right Nearfield Plane 

automorphism 
triangle Latin S. triangle Latin S. copies 

1 1 6 6 1 

2 12 12 36 3 
3 6 12 12 1 
4 16 96 96 1 
5 20 96 9216 96 
6 20 768 9216 12 

Table 4 
Left Nearfield Plane 

triangle 

1 
2 
3 
4 

5 
6 

1 automornhism 1 I 
Latin S. triangle 1 Latin S. copies 

9 Gl 6 I 
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Table 5 
Hughes Plane 

triangle Latin s. 
1 4 
2 15 
3 10 
4 5 
5 11 
6 19 
7 17 
S 1s 
9 14 

10 3 
11 13 
12 7 
13 4 
14 S 
15 9 
16 20 

?- l- automc 
FGgF 

12 
12 

2 
4 
6 

32 
4s 
12 
4 
6 
6 
1 
4 
6 

1s 
144 

!!iZkJ copie; 1 
7 

12 1 
2 1 
4 1 
6 1 

256 8 
384 8 

12 1 
4 1 
6 1 
6 1 
1 1 

12 3 
6 1 

1s 1 
9216 64 

are referred to [9]. Tables 2 to 5 give the intermediate results used in deriving 
these checks. 

First, we have to determine how many distinct latin squares can be extracted 
from a given projective plane. A latin square is uniquely determined, up to rhe 
symmetries af the latin square, by its defining triangle, and if two triangles are 
isomorphic under the action of the collineation group, then their associated latin 
squares are the same. Hence, for each plane, we have to first find out the number 
of non-isomorphic triangles. The number of entries in Tables 2 to 5 gives the 
number of such triangles. 

Even though two triangles are non-isomorphic, they may still give rise to the 
same latin square. For example, triangle 5 and 6 of the Right Neartield plane 
both give rise to latin square 20. So, we have to generate a representative from 
each class of non-isomorphic triangles, extract the latin square, and find out 
which latin square it is. It is comforting to note that, in all cases, the resulting 
latin squares are in the list of 21 that can be extended to a plane. Moreover, as 
the tables show, they are all associated with the correct latin squares. For 
example, Table 1 shows that the Right Nearfield plane arises from extending latin 
squares 1, 6, 12, 16 and 20; and in Table 3, the latin squares arising from the 
triangles are exactly these five squares. In [6], Killgrove and Parker have also 
shown that there are 21 latin squares of order 8 in the known planes, which 
agrees with our results. 

Next, we want to determine, given a latin square, how many distinct ways arc 
there to extend it to a particular plane. For this purpose, we have to know the 
automorphism groups of both the triangles and the latin squares. The sizes of 
these automorphism groups are also given in the tables. The automorphisms of 
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the latin square map one completed incidence matrix into another. These images 
need not be distinct. If the original incidence matrix is equal to one of its images, 
then the automorphism of the latin square that created this image is also a 
collineation fixing the triangle. The number of distinct incidence matrices 
generated by the automorphisms of the latin squares is equal to the size of the 
automorphism group of the latin square divided by the size of the automorphism 
group of the triangle. For example, latin square 12 has three distinct completions 
to the Right Near-field plane and the quotient of the respective sixes of the 
automorphism groups gives 36 (12 = 3. The last column in the tables gives this 
number of distinct copies arising from a given triangle. In some cases, such as 
latin square 20 in the Right NearGeld case, the same latin square arises from two 
triangles. The total number of distinct copies expected is the sum of the two 
values 96 + 12 = 108, as found by the computer search. 

There is one further consistency check to verify that the triangles are generated 
correctly. In a plane of order 9, there are 91 x 90 x 81/6 triangles. For each 
triangle, the size of its orbit is equal to the quotient of the sizes of the collineation 
group and the automorphism group. For example, for the Right Near-Geld case, 
we fmd 

91X90X81 

6 - 

Let us now speculate about the probability that an undiscovered plane of order 
9 exists but is missed by our computer search. If one exists, then it can be 
constructed as an extension of one or more of the latin squares. A mistake could 
occur if we do not consider all the latin squares, or if there is an error in our 
extension programs. As reported in [7), there are some discrepancies in the 
published values of the number of latin squares of order 8. Our number is 
internally consistent as well as being consistent with two of the four published 
results. Because of the consistency checking on the number of latin squares, we 
are certain that our number is correct. Our extension programs performed 
faultlessly on the known planes. It is difficult to imagine how it could fail to find a 
new plane, if one exist, and yet produce no contradictory results on the known 
ones. 

What is the effect of an undetected hardware error? A common error is the 
random changing of bits in a computer word. The occurrence of such an error 
during the running of the extension programs will mean possibly the loss of a 
branch of the search tree. There is a possibility that the undiscovered plane is in 
this branch. If this is the only branch where the plane occurs, then we are in 
trouble. Fortunately, the results from the known planes in Table 1 indicate that, 
typically, a plane can be constructed from several latin squares. Moreover, the 
collineation group of an undiscovered plane is likely to be small, which implies 
that there are more non-isomorphic triangles and, consequently, more distinct 
latin squares embedded in the incidence matrix. Thus, it is highiy unlikely that 
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the undiscovered plane is obtainable only as an extension of one latin square. If it 
is the extension of more than one square, then the problem of a hardware error is 
less serious, because it is unlikely that the random errors are so selective that they 
deleted only the branches containing the undiscovered plane and yet left all the 
known ones untouched. 

Because of the agreement of the computer results with those obtained by 
theoretical means, we are confident that the computer program is correct and that 
there is no unknown projective plane of order 9. 
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