

Discrete Mathematics 236 (2001) 53-58

www.elsevier.com/locate/disc

On graphs with a local hereditary property

Mieczysław Borowiecki^{a, *}, Peter Mihók^b

^aInstitute of Mathematics, Technical University of Zielona Góra, Podgórna 50, 65-246 Zielona Góra, Poland

^bDepartment of Applied Mathematics, Faculty of Economics, Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic

Received 20 November 1997; revised 23 June 1998; accepted 5 March 2000

Abstract

Let \mathscr{P} be an induced hereditary property and $L(\mathscr{P})$ denote the class of all graphs that satisfy the property \mathscr{P} locally. The purpose of the present paper is to describe the minimal forbidden subgraphs of $L(\mathscr{P})$ and the structure of local properties. Moreover, we prove that $L(\mathscr{P})$ is irreducible for any hereditary property \mathscr{P} . \mathbb{C} 2001 Elsevier Science B.V. All rights reserved.

Keywords: Hereditary property, Local property

1. Introduction

We consider finite undirected graphs without loops or multiple edges. A graph G has vertex-set V(G) and edge-set E(G), and $H \leq G$ means that H is an induced subgraph of G. We say that G contains H whenever G contains an induced subgraph isomorphic to H.

In general, we follow the notation and terminology of [3].

Let \mathscr{I} denote the class of all graphs. If \mathscr{P} is a proper nonempty isomorphism closed subclass of \mathscr{I} , then \mathscr{P} will also denote the property of being in \mathscr{P} . We shall use the terms *class of graphs* and *property of graphs* interchangeably.

A property \mathscr{P} is called (*induced*) *hereditary*, if every (induced) subgraph of any graph with property \mathscr{P} also has property \mathscr{P} and *additive*, if the disjoint union $H \cup G \in \mathscr{P}$ whenever $G \in \mathscr{P}$ and $H \in \mathscr{P}$. Obviously, any hereditary property is induced hereditary, too.

Let us denote by \mathbb{L} (\mathbb{M} , resp.) the set of all hereditary (induced hereditary, resp.) properties of graphs. Corresponding sets of additive properties are denoted by \mathbb{L}^a and \mathbb{M}^a , respectively. The sets \mathbb{L} , \mathbb{L}^a , \mathbb{M} and \mathbb{M}^a , partially ordered by the set inclusion, form

E-mail address: m.borowiecki@im.pz.zgora.pl (M. Borowiecki).

0012-365X/01/\$ - see front matter C 2001 Elsevier Science B.V. All rights reserved. PII: S0012-365X(00)00430-1

^{*} Corresponding author. Tel.: +48-68-328-2424; fax: +48-68-324-7448.

complete distributive lattices with the set intersection as the meet operation. Obviously, (\mathbb{L}, \subseteq) is a proper sublattice of (\mathbb{M}, \subseteq) , for more details see [1,2].

We list some properties to introduce the necessary notions which will be used in the paper. Let k be a nonnegative integer.

 $\mathcal{O} = \{ G \in \mathscr{I} : G \text{ is totally disconnected} \},\$

 $\mathcal{O}_k = \{ G \in \mathscr{I} : \text{ each component of } G \text{ has at most } k+1 \text{ vertices} \},\$

 $\mathscr{I}_k = \{ G \in \mathscr{I} : G \text{ contains no subgraph isomorphic to } K_{k+2} .$

Let $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ be properties of graphs. We say that a graph *G* has property $\mathcal{P}_1 \circ \cdots \circ \mathcal{P}_n$, if the vertex set of *G* can be partitioned into *n* sets V_1, \ldots, V_n such that $G[V_i]$, the subgraph of *G* induced by V_i , has the property \mathcal{P}_i for $i = 1, \ldots, n$. It is easy to see that $\mathcal{P}_1 \circ \cdots \circ \mathcal{P}_n$ is (induced) hereditary and additive whenever $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n$ are (induced) hereditary and additive, respectively. An (induced) hereditary property \mathcal{R} is said to be *reducible* if there exist two (induced) hereditary properties \mathcal{P}_1 and \mathcal{P}_2 such that $\mathcal{R} = \mathcal{P}_1 \circ \mathcal{P}_2$ and *irreducible*, otherwise.

For a given irreducible property $\mathscr{P} \in \mathbb{M}$, a reducible property $\mathscr{R} \in \mathbb{M}$ is called a *minimal reducible bound* for \mathscr{P} if $\mathscr{P} \subset \mathscr{R}$ and for each reducible property $\mathscr{R}' \subset \mathscr{R}$, $\mathscr{P} \not\subseteq \mathscr{R}'$. The family of all minimal reducible bounds for \mathscr{P} will be denoted by $\mathbf{B}(\mathscr{P})$.

Let \mathscr{P} be a class of graphs. A graph G = (V, E) is said to satisfy a property \mathscr{P} locally if $G[N(v)] \in \mathscr{P}$ for every $v \in V(G)$. The class of graphs that satisfy the property \mathscr{P} locally will be denoted by $L(\mathscr{P})$ and we shall call such a class a *local property*.

Early investigations dealt mostly with the case $|\mathcal{P}| = 1$; i.e., when all neighborhoods are isomorphic. Summaries of results of this type can be found in the survey papers of Hell [5] and Sedlaček [7]. The major question is the existence of an appropriate G. More recently, the cases when \mathcal{P} consists of all cycles, all paths, all matchings, or all forests were investigated. Also, results concerning some extremal problems on such classes of graphs have been obtained, see [4,8].

Assume that \mathscr{P} is an induced hereditary property. The purpose of the present paper is to describe the minimal-forbidden subgraphs of $L(\mathscr{P})$ and the structure of local properties. Moreover, we prove that $L(\mathscr{P})$ is irreducible for any $\mathscr{P} \in \mathbb{L}$.

2. Forbidden subgraphs

Any induced hereditary property \mathscr{P} can be characterized by the set of minimalforbidden-induced subgraphs:

 $\mathscr{C}(\mathscr{P}) = \{ H \in \mathscr{I} \colon H \notin \mathscr{P} \text{ but } (H - v) \in \mathscr{P} \text{ for any } v \in V(H) \}.$

It is easy to prove that a property $\mathscr{P} \in \mathbb{M}$ is additive if and only if all minimal-forbidden-induced subgraphs of \mathscr{P} are connected.

Lemma 1. If $H \in \mathscr{C}(L(\mathscr{P}))$, then H has a universal vertex.

Proof. Let $F \in \mathscr{C}(L(\mathscr{P}))$ and suppose F has no universal vertex. Let $v \in V(F)$. Then, there is a vertex $x \in V(F)$ such that $x \notin N_F(v)$. Since $F - x \in L(\mathscr{P})$, it follows that $F[N_{F-x}(v)] \in \mathscr{P}$. But $N_{F-x}(v) = N_F(v)$, hence $F[N_F(v)] \in \mathscr{P}$. This proves that $F \in L(\mathscr{P})$, a contradiction. \Box

Lemma 2. $\mathscr{C}(L(\mathscr{P})) = \{K_1 + H : H \in \mathscr{C}(\mathscr{P})\}.$

Proof. Let $F \in \mathscr{C}(L(\mathscr{P}))$. By Lemma 1, F has a universal vertex v. Let H = F - v. We shall prove that $H \in \mathscr{C}(\mathscr{P})$, i.e., $H \notin \mathscr{P}$ and $H - u \in \mathscr{P}$ for every $u \in V(H)$.

Suppose that $H \in \mathscr{P}$. This implies that $H[N_H(u)] \in \mathscr{P}$ for every $u \in V(H)$. Moreover, $F[N_F(u)] \in \mathscr{P}$, because of

- (1) If u is a universal vertex of F, too, then F u is isomorphic to F v which is equal to $H \in \mathcal{P}$.
- (2) If u is not a universal vertex of F, let w be a vertex in F that is nonadjacent to u. Then $F[N_F(u)] = F[N_{F-w}(u)] \in \mathcal{P}$, since $F w \in \mathcal{P}$.

Thus, by (1) and (2) we have $F[N(x)] \in \mathscr{P}$ for every $x \in V(F)$, i.e., $F \in L(\mathscr{P})$, a contradiction. Thus, $H \notin \mathscr{P}$.

Now suppose that H is not a minimal-forbidden subgraph of \mathscr{P} , i.e., there is a vertex $u \in V(H)$ such that $H - u \notin \mathscr{P}$. Hence, $H' = (H - u) + K_1 \notin L(\mathscr{P})$. But H' is isomorphic to $F - u \in L(\mathscr{P})$, a contradiction. Thus, $H \in \mathscr{C}(\mathscr{P})$.

Conversely, let $H \in \mathscr{C}(\mathscr{P})$ and $F = K_1 + H, V(K_1) = w$. Obviously $F \notin L(\mathscr{P})$ since $H \notin \mathscr{P}$. Suppose that there is a proper induced subgraph $H' < F, H' \in \mathscr{C}(L(\mathscr{P}))$. Since the graph $H \in L(\mathscr{P}), w \in V(H')$ and the graph H' has a universal vertex $u \neq w$ such that $H' - u \in \mathscr{C}(\mathscr{P})$. However H' - u is isomorphic to H' - w < H, a contradiction. Thus, $F \in \mathscr{C}(L(\mathscr{P}))$. \Box

Lemmas 1 and 2 imply the following theorems.

Theorem 1. A property $\mathcal{Q} = L(\mathcal{P})$ for some $\mathcal{P} \in \mathbb{M}$ if and only if every $H \in \mathcal{C}(\mathcal{Q})$ has a universal vertex.

Theorem 2. Let $\mathcal{P}, \mathcal{Q} \in \mathbb{M}$. Then,

(a) L(𝒫) ∈ M^a,
(b) 𝒫 ⊂ L(𝒫),
(c) If 𝒫 ⊆ 𝔅, then L(𝒫) ⊆ L(𝔅),
(d) L(𝒫) = L(𝔅) if and only if P = 𝔅.
(e) If G ∈ 𝒫, then G + K₁ ∈ L(𝒫).

Proof. Conditions (a)–(c) follow immediately from the corresponding definitions. To prove (d), suppose that $\mathscr{P} \neq \mathscr{Q}$. Then there is a graph H such that, say, $H \notin \mathscr{P}$ and $H \in \mathscr{Q}$. From this it follows that: $K_1 + H \notin L(\mathscr{P})$ and $K_1 + H \in L(\mathscr{Q})$. Thus, $L(\mathscr{P}) \neq L(\mathscr{Q})$, a contradiction. Condition (e) follows from the proof of Lemma 2. \Box

Let $\mathscr{P} \in \mathbb{M}$. Then

 $c(\mathscr{P}) = \sup\{k: K_{k+1} \in \mathscr{P}\}$

is called the *completeness* of \mathcal{P} .

From the definition of completeness, Lemma 2 and Theorem 2, we have the following:

Theorem 3. Let $\mathscr{P} \in \mathbb{M}$. Then $c(L(\mathscr{P})) = c(\mathscr{P}) + 1$.

Let $\mathbb{L}_k = \{ \mathscr{P} \in \mathbb{L} : c(\mathscr{P}) = k \}$. The set \mathbb{M}_k is defined analogously. $(\mathbb{M}_k, \subseteq)$ and $(\mathbb{L}_k, \subseteq)$ are distributive sublattices of (\mathbb{M}, \subseteq) and (\mathbb{L}, \subseteq) , respectively (see [2]).

By the previous results we have immediately

Theorem 4. Let $L(\mathbb{L}_k) = \{L(\mathscr{P}): \mathscr{P} \in \mathbb{L}_k\}$. Then,

(a) L(L_k) ⊂ L_{k+1},
(b) L(L_k) is isomorphic to L_k,
(c) L(L) is isomorphic to L.

3. Irreducibility

There are different approaches to show that an additive hereditary property \mathscr{P} is irreducible in \mathbb{L}^a (see [1], Chapter 3). The following deep Theorem of Nešetřil and Rödl implies that some properties have exactly one-trivial minimal reducible bound.

Theorem 5 (Nešetřil and Rödl [6]). Let $\mathscr{C}(\mathscr{P})$ be a finite set of 2-connected graphs. Then for every graph G of property \mathscr{P} there exists a graph H of property \mathscr{P} such that for any partition $\{V_1, V_2\}$ of V(H) there is an i, i=1 or 2 for which the subgraph $H[G_i]$ induced by V_i in H contains G.

Corollary 1 (Borowiecki et al. [1]). Let $\mathscr{C}(\mathscr{P})$ be a finite set of 2-connected graphs, then the property \mathscr{P} has exactly one minimal-reducible bound $\mathscr{R} = \mathcal{O} \circ \mathscr{P}$.

Particularly for the property $L(\mathcal{O}_k)$ it follows:

Lemma 3. $\mathbf{B}(L(\mathcal{O}_k)) = \{\mathcal{O} \circ L(\mathcal{O}_k)\} \text{ for } \mathcal{O}_k \in \mathbb{L}^a.$

Proof. The set of minimal-forbidden subgraphs for $\mathcal{O}_k \in \mathbb{L}$ is given by

 $\mathscr{C}(\mathcal{O}_k) = \{ G \in \mathscr{I} : |V(G)| = k + 2 \text{ and } G \text{ is connected} \}.$

Thus, if $H \in \mathscr{C}(L(\mathcal{O}_k))$, then H is 2-connected. Since $\mathscr{C}(L(\mathcal{O}_k))$ is finite, then each minimal reducible bound $\mathscr{Q} \circ \mathscr{Q}'$ for $L(\mathcal{O}_k)$, by Corollary 1, has the form $\mathscr{Q} \circ L(\mathcal{O}_k)$, i.e., one of factors has to be $L(\mathcal{O}_k)$. By the minimality we have $\mathscr{Q} = \mathscr{O}$ which proves the lemma. \Box

56

From above the following lemma follows.

Lemma 4. The property $L(\mathcal{O}_k)$ is irreducible for $\mathcal{O}_k \in \mathbb{L}, k \ge 1$.

Theorem 6. If $\mathscr{P} \in \mathbb{L}^{a}$, then $L(\mathscr{P})$ is irreducible.

Proof. Suppose that for some property $\mathscr{P} \in \mathbb{L}_{k}^{a}$, $L(\mathscr{P})$ is reducible, i.e., $L(\mathscr{P}) = \mathscr{D}_{1} \circ \mathscr{D}_{2}$. Then by Theorem 3 $c(\mathscr{D}_{1} \circ \mathscr{D}_{2}) = k + 1$, $k \ge 1$ and $L(\mathscr{O}_{k}) \subset \mathscr{D}_{1} \circ \mathscr{D}_{2}$. By Lemma 3, $L(\mathscr{O}_{k}) \subset \mathscr{O} \circ L(\mathscr{O}_{k}) \subset \mathscr{D}_{1} \circ \mathscr{D}_{2}$. But $c(\mathscr{O} \circ L(\mathscr{O}_{k})) = c(\mathscr{O}) + c(L(\mathscr{O}_{k})) + 1 = k + 2 \le c(\mathscr{D}_{1} \circ \mathscr{D}_{2}) = k + 1$, a contradiction. \Box

4. Concluding remarks

Let $L^r(\mathscr{P}) = L(L^{r-1}(\mathscr{P}))$ and $L^r(\mathbb{L}_k) = L(L^{r-1}(\mathbb{L}_k))$ for $r \ge 2$. By induction on r we can prove the following statements.

Theorem 7. Let $\mathcal{P} \in \mathbb{M}$ and $r \ge 1$. Then,

(1) $\mathscr{C}(L^{r}(\mathscr{P})) = \{K_{r} + H : H \in \mathscr{C}(\mathscr{P})\}.$ (2) $c(L^{r}(\mathscr{P})) = c(\mathscr{P}) + r.$ (3) $L^{r}(\mathscr{P}) \subseteq L^{r+1}(\mathscr{P}).$ (4) $L^{r}(\mathscr{P}) \in \mathbb{M}^{a}.$ (5) $L^{r}(\mathbb{L}_{k}) \subseteq \mathbb{L}_{k+r}.$ (6) $L^{r}(\mathbb{L}_{k})$ is isomorphic to $\mathbb{L}_{k}.$ (7) If $r \ge 2$, then $L^{r}(\mathscr{P})$ is irreducible for any $\mathscr{P} \in \mathbb{L}.$

Acknowledgements

The authors are very grateful to the anonymous referee for his help in preparing the revised version of the paper.

References

- M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5–50.
- [2] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory, Vishwa International Publications, Gulbarga, 1991, 41–68.
- [3] G. Chartrand, L. Lesniak, Graphs and Digraphs, Wadsworth & Brooks/Cole, Monterey, California, 1986.
- [4] L.H. Clark, R.C. Entringer, J.E. McCanna, L.A. Székely, Extremal problems for local properties of graphs, Australasian J. Combin. 4 (1991) 25–31.
- [5] P. Hell, Graphs with given neighborhoods I, in: Problèmes Comb. et Théorie des Graphes, Coll. Internat., CNRS, Vol. 260, Paris, 1978, pp. 219–223.
- [6] J. Nešetřil, V. Rödl, Partition of vertices, Comment. Math. Univ. Carolin. 17 (1976) 675-681.

- [7] J. Sedlaček, On local properties of finite graphs, in: M. Borowiecki, J.W. Kennedy, M.M. Sysło, eds., Graph Theory, Lagów 1981, Lecture Notes in Mathematics, Vol. 1018, Springer, New York, Berlin, 1983, pp. 242–247.
- [8] Á. Seress, T. Szabó, Dense graphs with cycle neighborhoods, J. Combin. Theory B 63 (1995) 281-293.

58