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a b s t r a c t

A posteriori estimates for mixed finite element discretizations of the Navier–Stokes
equations are derived. We show that the task of estimating the error in the evolutionary
Navier–Stokes equations can be reduced to the estimation of the error in a steady
Stokes problem. As a consequence, any available procedure to estimate the error in
a Stokes problem can be used to estimate the error in the nonlinear evolutionary
problem. A practical procedure to estimate the error based on the so-called postprocessed
approximation is also considered. Both the semidiscrete (in space) and the fully discrete
cases are analyzed. Some numerical experiments are provided.
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1. Introduction

We consider the incompressible Navier–Stokes equations

ut −1u + (u · ∇)u + ∇p = f , (1)
div(u) = 0,

in a bounded domainΩ ⊂ Rd (d = 2, 3) with a smooth boundary, subject to homogeneous Dirichlet boundary conditions
u = 0 on ∂Ω . In (1), u is the velocity field, p the pressure, and f a given force field. For simplicity in the exposition we
assume, as in [1–5], that the fluid density and viscosity have been normalized by an adequate change of scale in space and
time.

Let uh and ph be the semidiscrete (in space) mixed finite element (MFE) approximations to the velocity u and pressure p,
respectively, solution of (1) corresponding to a given initial condition

u(·, 0) = u0. (2)

We study the a posteriori error estimation of these approximations in the L2 and H1 norm for the velocity and in the L2/R
norm for the pressure. To do this, for a given time t∗ > 0, we consider the solution (ũ, p̃) of the Stokes problem

−1ũ + ∇p̃ = f −
d
dt

uh(t∗)− (uh(t∗) · ∇)uh(t∗)
div(ũ) = 0


inΩ,

ũ = 0, on ∂Ω.

(3)
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In this paper we prove that ũ and p̃ are approximations to u and p whose errors decay by a factor of h| log(h)| faster than
those of uh and ph (h being the mesh size). As a consequence, the quantities ũ − uh and p̃ − ph, are asymptotically exact
indicators of the errors u − uh and p − ph in the Navier–Stokes problem (1)–(2).

Furthermore, the key observation in the present paper is that (uh, ph) is also theMFE approximation to the solution (ũ, p̃)
of the Stokes problem (3). Consequently, any available procedure to a posteriori estimate the errors in a Stokes problem can
be used to estimate the errors ũ− uh and p̃− ph which, as mentioned above, coincide asymptotically with the errors u− uh
and p − ph in the evolutionary NS equations. Many references address the question of estimating the error in a Stokes
problem, see for example [6–12] and the references therein. In this paper we prove that any efficient or asymptotically
exact estimator of the error in the MFE approximation (uh, ph) to the solution of the steady Stokes problem (3) is also an
efficient or asymptotically exact estimator, respectively, of the error in the MFE approximation (uh, ph) to the solution of
the evolutionary Navier–Stokes equations (1)–(2).

The analysis of the errors u−ũ and p−p̃ is new and appears in this paper for the first time, although it follows closely [13],
where MFE approximations to the Stokes problem (3) (the so-called postprocessed approximations) are considered with
the aim of getting improved approximations to the solution of (1)–(2) at any fixed time t∗ > 0. In [13], most of the results
concern only quadratic and cubic elements. For this reason, in the present paper, some new results concerning first order
finite elements that had not appeared before have also been included.

In this paper we will refer to (ũ, p̃) as infinite-dimensional postprocessed approximations (ID-postprocessed
approximations). Of course, they are not computable in practice and they are only considered for the analysis of a posteriori
error estimators.We remark that the Stokes reconstruction of [5] is exactly the ID-postprocessing approximation (ũ, p̃) in the
particular case of a linear model. We prefer the term ID-postprocessed approximation for historical reasons and consistency
with our previous published papers. In [5], the Stokes reconstruction is used to a posteriori estimate the errors of spatially
semidiscrete approximations to a linear time-dependent Stokes problem.

The postprocessed approximations to the Navier–Stokes equations were first developed for spectral methods in [14–17],
and also developed for MFE methods for the Navier–Stokes equations in [18,19,13].

For the sake of completeness, in the present paper we also analyze the use of the (computable) postprocessed
approximations of [13] for a posteriori error estimation. The use of this kind of postprocessing technique to get a posteriori
error estimations has been previously studied in [20–23] for nonlinear parabolic equations excluding the Navier–Stokes
equations. For the analysis in the present paper we do not assume that the solution u of (1)–(2) possessesmore than second-
order spatial derivatives bounded in L2(Ω)d up to initial time t = 0, since demanding further regularity requires the data
to satisfy nonlocal compatibility conditions unlikely to be fulfilled in practical situations [2,3].

In the second part of the paper we consider a posteriori error estimations for the fully discrete MFE approximations
Un
h ≈ uh(tn) and Pn

h ≈ ph(tn), (tn = tn−1 + 1tn−1 for n = 1, 2, . . . ,N) obtained by integrating in time with
either the backward Euler method or the two-step backward differentiation formula (BDF). For this purpose, we define
a Stokes problem similar to (3) but with the right-hand-side depending now on the fully discrete MFE approximation Un

h
(problem (70)–(71) in Section 4 below).Wewill call infinite-dimensional time-discrete postprocessed approximation (IDTD-
postprocessed approximation) to the solution (Un,Pn) of this new Stokes problem. As before, (Un,Pn) is not computable in
practice and it is only considered for the analysis of a posteriori error estimation. Again, the analysis of the errorsUn

− Un
h

andPn
− Pn

h is new and appears for the first time in this paper, although following closely the analysis of [24].
Observe that in the fully discrete case (which is the case in actual computations) the task of estimating the error u(tn)−Un

h
of the MFE approximation becomes more difficult due to the presence of time discretization errors enh = uh(tn)−Un

h , which
are added to the spatial discretization errors u(tn) − uh(tn). However we show in Section 4 that if temporal and spatial
errors are not very different in size, the quantity Un

− Un
h correctly estimates the spatial error because the leading terms

of the temporal errors inUn and Un
h cancel out when subtractingUn

− Un
h , leaving only the spatial component of the error.

This is a very convenient property that allows to use independent procedures for the tasks of estimating the errors of the
spatial and temporal discretizations. More precisely, we mean that we can choose the tolerance for the temporal error
and the tolerance for the spatial error approximately of the same size, in order to control both temporal and spatial errors
in an adaptive way. We remark that the temporal error can be routinely controlled by resorting to well-known ordinary
differential equations techniques.We refer the reader to [22], where analogous results were obtained for fully discrete finite
element approximations to evolutionary convection–reaction–diffusion equations using the backward Euler method, and
where an adaptive algorithm is proposed. The performance of an adaptive algorithm in time and space for the Navier–Stokes
equations will be the subject of future research.

As in the semidiscrete case, a key point in our results is again the fact that the fully discrete MFE approximation (Un
h , P

n
h )

to theNavier–Stokes problem (1)–(2) is also theMFE approximation to the solution (Un,Pn) of the Stokes problem (70)–(71).
As a consequence, we can use again any available error estimator for the Stokes problem to estimate the spatial error of the
fully discrete MFE approximations (Un

h , P
n
h ) to the Navier–Stokes problem (1)–(2).

Computablemixed finite element approximations to (Un,Pn), the so-called fully discrete postprocessed approximations,
were studied and analyzed in [24] where we proved that the fully discrete postprocessed approximations maintain the
increased spatial accuracy of the semidiscrete approximations. The analysis in the second part of the present paper borrows
in part from [24].We also include error bounds for the L2 norm of the difference between the temporal errors of the Galerkin
and postprocessed approximations to the pressure, that had not been proved before. Finally, we propose a computable error
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estimator based on the fully discrete postprocessed approximation of [24] and show that it also has the excellent property
of separating spatial and temporal errors, both for the velocity and the pressure.

The rest of the paper is as follows. In Section 2 we introduce some preliminaries and notation. In Section 3 we study the a
posteriori error estimation of semidiscrete in space MFE approximations. In Section 4 we study a posteriori error estimates
for fully discrete approximations. Finally, some numerical experiments are shown in Section 5.

2. Preliminaries and notations

Wewill assume thatΩ is a bounded domain in Rd, d = 2, 3, of class Cm, form ≥ 2. When dealing with linear elements
(r = 2 below)Ω may also be a convex polygonal or polyhedral domain. We consider the Hilbert spaces

H = {u ∈ L2(Ω)d | div(u) = 0, u · n|∂Ω
= 0},

V = {u ∈ H1
0 (Ω)

d
| div(u) = 0},

endowed with the inner product of L2(Ω)d and H1
0 (Ω)

d, respectively. For l ≥ 0 integer and 1 ≤ q ≤ ∞, we consider the
standard spaces,W l,q(Ω)d, of functions with derivatives up to order l in Lq(Ω), and H l(Ω)d = W l,2(Ω)d. We will denote by
‖·‖l the norm inH l(Ω)d, and ‖·‖−l will represent the norm of its dual space.We consider also the quotient spacesH l(Ω)/R
with norm ‖p‖H l/R = inf{‖p + c‖l | c ∈ R}.

We recall the following Sobolev’s imbeddings [25]: For q ∈ [1,∞), there exists a constant C = C(Ω, q) such that

‖v‖Lq′ ≤ C‖v‖W s,q ,
1
q′

≥
1
q

−
s
d
> 0, q < ∞, v ∈ W s,q(Ω)d. (4)

For q′
= ∞, (4) holds with 1

q <
s
d .

The following inf-sup condition is satisfied (see [26]): there exists a constant β > 0 such that

inf
q∈L2(Ω)/R

sup
v∈H1

0 (Ω)
d

(q,∇ · v)

‖v‖1‖q‖L2/R
≥ β, (5)

where, here and in the sequel, (·, ·) denotes the standard inner product in L2(Ω) or in L2(Ω)d.
LetΠ : L2(Ω)d −→ H be the L2(Ω)d projector onto H . We denote by A the Stokes operator onΩ:

A : D(A) ⊂ H −→ H, A = −Π∆, D(A) = H2(Ω)d ∩ V .

Applying Leray’s projectorΠ to (1), the equations can be written in the form

ut + Au + B(u, u) = Π f inΩ,

where B(u, v) = Π(u · ∇)v for u, v in H1
0 (Ω)

d.
We shall use the trilinear form b(·, ·, ·) defined by

b(u, v, w) = (F(u, v), w) ∀u, v, w ∈ H1
0 (Ω)

d,

where

F(u, v) = (u · ∇)v +
1
2
(∇ · u)v ∀u, v ∈ H1

0 (Ω)
d.

It is straightforward to verify that b enjoys skew-symmetry:

b(u, v, w) = −b(u, w, v) ∀u, v, w ∈ H1
0 (Ω)

d. (6)

Let us observe that B(u, v) = ΠF(u, v) for u ∈ V , v ∈ H1
0 (Ω)

d.
For α ∈ R and t > 0, let us consider the operators Aα and e−tA, which are defined by means of the spectral properties of

A (see, e.g., [27, p. 33], [28]). Notice that A is a positive self-adjoint operator with compact resolvent inH . An easy calculation
shows that

‖Aαe−tA
‖0 ≤ (αe−1)αt−α, α ≥ 0, t > 0, (7)

where, here and in what follows, ‖ · ‖0 when applied to an operator denotes the operator norm associated with ‖ · ‖0.
We shall assume, as in [2], that u0 ∈ V ∩ H2(Ω)d, that there exists a constant M̃1 such that ‖f ‖0 + ‖ft‖0 ≤ M̃1, for

t ∈ [0, T ], and that the solution u of (1)–(2) exists on an interval [0, T ] and satisfies

‖u(t)‖1 ≤ M1, 0 ≤ t ≤ T , (8)

for some constantM1. Then, following Theorem 2.3 in [2] we get

‖u(t)‖2 + ‖ut(t)‖0 + ‖p(t)‖H1/R ≤ M2, 0 ≤ t ≤ T .
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Moreover, assuming that there exists a constant M̃2 such that

‖f ‖1 + ‖ft‖1 + ‖ftt‖1 ≤ M̃2, 0 ≤ t ≤ T , (9)

and that for some k ≥ 2

sup
0≤t≤T

‖∂
⌊k/2⌋
t f ‖k−1−2⌊k/2⌋ +

⌊(k−2)/2⌋−
j=0

sup
0≤t≤T

‖∂
j
t f ‖k−2j−2 < +∞,

according to Theorems 2.4 and 2.5 in [2], there exist positive constantsMk and Kk such that the following bounds hold:

‖u(t)‖k + ‖ut(t)‖k−2 + ‖p(t)‖Hk−1/R ≤ Mkτ(t)1−k/2, (10)∫ t

0
σk−3(s)(‖u(s)‖2

k + ‖us(s)‖2
k−2 + ‖p(s)‖2

Hk−1/R + ‖ps(s)‖2
Hk−3/R) ds ≤ K 2

k , (11)

where τ(t) = min(t, 1) and σn = e−α(t−s)τ n(s) for some α > 0. Observe that for t ≤ T < ∞, we can take τ(t) = t and
σn(s) = sn. For simplicity, we will take these values of τ and σn.

Let Th = (τ hi , φ
h
i )i∈Ih , h > 0, be a family of partitions of suitable domainsΩh, where h is the maximum diameter of the

elements τ hi ∈ Th, and φh
i are the mappings of the reference simplex τ0 onto τ hi .

For r ≥ 2, we consider the finite-element spaces

Sh,r = {χh ∈ C(Ωh) | χh|τhi
◦ φh

i ∈ P r−1(τ0)} ⊂ H1(Ωh),

S0h,r = Sh,r ∩ H1
0 (Ωh),

where P r−1(τ0) denotes the space of polynomials of degree at most r − 1 on τ0. As it is customary in the analysis of finite-
element methods for the Navier–Stokes equations (see e.g., [1–4,29]) we restrict ourselves to quasiuniform and regular
meshes Th, so that, as a consequence of [30, Theorem 3.2.6], the following inverse inequality holds for each vh ∈ (S0h,r)

d:

‖vh‖Wm,q(Ωh)d
≤ Chl−m−d( 1

q′
−

1
q )‖vh‖W l,q′ (Ωh)d

, (12)

where 0 ≤ l ≤ m ≤ 1, and 1 ≤ q′
≤ q ≤ ∞.

We shall denote by (Xh,r ,Qh,r−1) themixed finite-elements spaces that we consider, which are, when r ≥ 3, the so-called
Hood–Taylor element [31,32], given by

Xh,r = (S0h,r)
d, Qh,r−1 = Sh,r−1 ∩ L2(Ωh)/R, r ≥ 3,

and, when r = 2, the so-called mini-element [33], for which Qh,1 = Sh,2 ∩ L2(Ωh)/R, and Xh,2 = (S0h,2)
d
⊕ Bh. Here, Bh is

spanned by the bubble functions bτ , τ ∈ Th, defined by bτ (x) = (d+1)d+1λ1(x) · · · λd+1(x), if x ∈ τ and 0 elsewhere, where
λ1(x), . . . , λd+1(x) denote the barycentric coordinates of x. For these elements a uniform inf-sup condition is satisfied, that
is, there exists a constant β > 0 independent of the mesh grid size h such that

inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)

‖vh‖1‖qh‖L2/R
≥ β, (13)

see [31,33]. We remark that our analysis can also be applied to other pairs of LBB-stable mixed finite elements (see [13,
Remark 2.1]).

The approximate velocity belongs to the discrete divergence-free space

Vh,r = Xh,r ∩ {χh ∈ H1
0 (Ωh)

d
| (qh,∇ · χh) = 0 ∀qh ∈ Qh,r−1},

which is not a subspace of V . We shall frequently write Vh instead of Vh,r whenever the value of r plays no particular role.
LetΠh : L2(Ω)d −→ Vh,r be the discrete Leray’s projection defined by

(Πhu, χh) = (u, χh) ∀χh ∈ Vh,r .

We will use the following well-known bounds for u ∈ V ∩ H l(Ω)d.

‖(I −Πh)u‖j ≤ Chl−j
‖u‖l, 1 ≤ l ≤ 2, j = 0, 1. (14)

These are a consequence of similar bounds for the Stokes projection [3], (12) and the fact that u is divergence-free. We will
denote by Ah : Vh → Vh the discrete Stokes operator defined by

(∇vh,∇φh) = (Ahvh, φh) = (A1/2
h vh, A

1/2
h φh) ∀vh, φh ∈ Vh.
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Let (u, p) ∈ (H2(Ω)d ∩ V ) × (H1(Ω)/R) be the solution of a Stokes problem with right-hand side g , we will denote by
sh = Sh(u) ∈ Vh the so-called Stokes projection (see [3]) defined as the velocity component of solution of the following
Stokes problem: find (sh, qh) ∈ (Xh,r ,Qh,r−1) such that

(∇sh,∇φh)+ (∇qh, φh) = (g, φh) ∀φh ∈ Xh,r , (15)

(∇ · sh, ψh) = 0 ∀ψh ∈ Qh,r−1. (16)

The following bound holds for 2 ≤ l ≤ r:

‖u − sh‖0 + h‖u − sh‖1 ≤ Chl(‖u‖l + ‖p‖H l−1/R). (17)

The proof of (17) for Ω = Ωh can be found in [3]. For the general case, Ωh must be such that the value of δ(h) =

maxx∈∂Ωh dist(x, ∂Ω) satisfies δ(h) = O(h2(r−1)). This can be achieved if, for example, ∂Ω is piecewise of class C2(r−1),
and superparametric approximation at the boundary is used [34]. Under the same conditions, the bound for the pressure
is [26]

‖p − qh‖L2/R ≤ Cβhl−1(‖u‖l + ‖p‖H l−1/R), (18)

where the constant Cβ depends on the constant β in the inf-sup condition (13). We will assume that the domain Ω is of
class Cm, withm ≥ r so that standard bounds for the Stokes problem [34,35] imply that

‖A−1Πg‖2+j ≤ ‖g‖j, −1 ≤ j ≤ m − 2. (19)

For a domainΩ of class C2 we also have the bound (see [36])

‖p‖H1/R ≤ c‖g‖0. (20)

In what follows we will apply the above estimates to the particular case in which (u, p) is the solution of the Navier–Stokes
problem (1)–(2). In that case sh = Sh(u) is the discrete velocity in problem (15)–(16) with g = f − ut − (u · ∇u). Note that
the temporal variable t appears here merely as a parameter, and then, taking the time derivative, the error bound (17) can
also be applied to the time derivative of sh changing u, p by ut , pt .

Since we are assuming thatΩ is of class Cm and m ≥ 2, from (17) and standard bounds for the Stokes problem [34,35],
we deduce that

‖(A−1Π − A−1
h Πh)f ‖j ≤ Ch2−j

‖f ‖0 ∀f ∈ L2(Ω)d, j = 0, 1. (21)

We consider the semidiscrete finite-element approximation (uh, ph) to (u, p), solution of (1)–(2). That is, given uh(0) =

Πhu0, we compute uh(t) ∈ Xh,r and ph(t) ∈ Qh,r−1, t ∈ (0, T ], satisfying

(u̇h, φh)+ (∇uh,∇φh)+ b(uh, uh, φh)+ (∇ph, φh) = (f , φh) ∀φh ∈ Xh,r , (22)

(∇ · uh, ψh) = 0 ∀ψh ∈ Qh,r−1. (23)

For 2 ≤ r ≤ 5, provided that (17)–(18) hold for l ≤ r , and (10)–(11) hold for k = r , we have

‖u(t)− uh(t)‖0 + h‖u(t)− uh(t)‖1 ≤ C
hr

t(r−2)/2
, 0 ≤ t ≤ T , (24)

(see, e.g., [13,2,3]), and also,

‖p(t)− ph(t)‖L2/R ≤ C
hr−1

t(r ′−2)/2
, 0 ≤ t ≤ T , (25)

where r ′
= r if r ≤ 4 and r ′

= r + 1 if r = 5.

3. A posteriori error estimations. Semidiscrete case

Let us consider theMFE approximation (uh, ph) to (u(t∗), p(t∗)) at any time t∗ ∈ (0, T ], obtained by solving (22)–(23).We
consider the ID-postprocessed approximation (ũ(t∗), p̃(t∗)) in (V , L2(Ω)/R) which is the solution of the following Stokes
problem written in weak form

(∇ũ(t∗),∇φ)+ (∇p̃(t∗), φ) = (f , φ)− b(uh(t∗), uh(t∗), φ)− (u̇h(t∗), φ), (26)

(∇ · ũ(t∗), ψ) = 0, (27)

for all φ ∈ H1
0 (Ω)

d and ψ ∈ L2(Ω)/R. We remark that the MFE approximation (uh(t∗), ph(t∗)) to (u(t∗), p(t∗)) is also the
MFE approximation to the solution (ũ(t∗), p̃(t∗)) of the Stokes problem (26)–(27). In Theorems 1 and 2 belowwe prove that
the ID-postprocessed approximation (ũ(t∗), p̃(t∗)) is an improved approximation to the solution (u, p) of the evolutionary
Navier–Stokes equations (1)–(2) at time t∗. Although, as it is obvious, (ũ(t∗), p̃(t∗)) is not computable in practice, it is
however a useful tool to provide a posteriori error estimates for the MFE approximation (uh, ph) at any desired time t∗ > 0.
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In Theorem1we obtain the error bounds for the velocity and, in Theorem2, the bounds for the pressure. The improvement is
achieved in both the L2(Ω)d and H1(Ω)d norms when r = 3, 4, and only in the H1(Ω)d normwhen using the mini-element
(r = 2).

In the sequel we will use that for a forcing term satisfying (9) there exists a constant M̃3 > 0, depending only on M̃2,
‖Ahuh(0)‖0 and sup0≤t≤T ‖uh(t)‖1, such that the following bound holds for 0 ≤ t ≤ T , see [4, Proposition 3.2],

‖Ahuh(t)‖2
0 ≤ M̃2

3 . (28)

The following inequalities hold for all vh, wh ∈ Vh and φ ∈ H1
0 (Ω)

d, see [4, (3.7)],

|b(vh, vh, φ)| ≤ c‖vh‖
3/2
1 ‖Ahvh‖

1/2
0 ‖φ‖0, (29)

|b(vh, wh, φ)| + |b(wh, vh, φ)| ≤ c‖vh‖1‖Ahwh‖0‖φ‖0. (30)
The proof of Theorem 1 requires some previous results which we now state and prove.
We will use the fact that ‖A1/2

h wh‖0 = ‖∇wh‖0 for wh ∈ Vh. Then, since, for vh ∈ Vh, we have (A−1/2
h wh, vh) =

(wh, A
−1/2
h vh), it follows that

C−1
‖A−1/2

h wh‖0 ≤ ‖wh‖−1 ≤ C‖A−1/2
h wh‖0 ∀wh ∈ Vh, (31)

where the constant C is independent of h.

Lemma 1. Let (u, p) be the solution of (1)–(2) and fix α > 0. Then there exists a positive constant C = C(M2, α) such that for
w1

h, w
2
h ∈ Vh satisfying the threshold condition

‖wl
h − u‖j ≤ αh3/2−j, j = 0, 1, l = 1, 2, (32)

the following inequalities hold for j = 0, 1:

‖A−j/2
h Πh(F(w1

h, w
1
h)− F(w2

h, w
2
h))‖0 ≤ C‖A(1−j)/2

h (w1
h − w2

h)‖0, (33)

‖A−j/2
h Πh(F(w1

h, w
1
h)− F(u, u))‖0 ≤ C‖w1

h − u‖1−j. (34)

Proof. Due to the equivalence (31), and since ‖Πhf ‖0 ≤ ‖f ‖0 for f ∈ L2(Ω)d, it is sufficient to prove

‖F(w1
h, w

1
h)− F(w,w)‖−j ≤ C‖w1

h − w‖1−j, j = 0, 1, (35)

for w = w2
h or w = u. We follow the proof of [19, Lemma 3.1] where a different threshold assumption is assumed. We do

this for w = u, since the case w = w2
h can be proved with arguments similar to those in the proof of [19, Lemma 3.1]. We

write

F(w1
h, w

1
h)− F(u, u) = F(w1

h, eh)+ F(eh, u), (36)

where eh = w1
h − u. We first observe that

‖F(eh, u)‖0 = sup
‖φ‖0=1

(eh · ∇u, φ)+
1
2
((∇ · eh)u, φ)


≤ C‖eh‖L2d‖∇u‖L2d/(d−1) + C‖eh‖1‖u‖L∞

≤ C(‖∇u‖L2d/(d−1) + ‖u‖L∞)‖eh‖1,

where, in the last inequality, we have used that thanks to Sobolev’s inequality (4) we have ‖eh‖L2d ≤ C‖eh‖1. Similarly,

‖F(w1
h, eh)‖0 ≤ C‖w1

h‖L∞‖eh‖1 + C‖∇w1
h‖L2d/(d−1)‖eh‖L2d

≤ C(‖w1
h‖L∞ + ‖∇w1

h‖L2d/(d−1))‖eh‖1.

The proof of the case j = 0 in (35) is finished if we show that for v = w1
h and v = u, both ‖v‖L∞ and ‖∇v‖L2d/(d−1) are

bounded in terms of M2 and the value α in the threshold assumption (32). This is a consequence of Sobolev’s inequality (4)
when v = u, and, as mentioned above, the case v = w1

h can be dealt with as in the proof of [19, Lemma 3.1]. Finally, the
proof of the case j = 1 in (35) is, with obvious changes, that of the equivalent result in [19, Lemma 3.1]. �

In the sequel we consider the auxiliary function vh : [0, T ] → Vh solution of
v̇h + Ahvh +ΠhF(u, u) = Πhf , vh(0) = Πhu0. (37)

According to [13, Remark 4.2] we have

max
0≤t≤T

‖vh(t)−Πhu(t)‖0 ≤ C | log(h)|h2, (38)

for some constant C = C(M2). The following lemma provides a superconvergence result.
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Lemma 2. Let (u, p) be the solution of (1)–(2). Then, there exists a positive constant C such that the solution vh of (37) and the
Galerkin approximation uh satisfy the following bound,

‖vh(t)− uh(t)‖1 ≤ C | log(h)|2h2, t ∈ (0, T ]. (39)

Proof. Since for yh = A1/2
h (vh − uh)we have

ẏh + Ahyh + A1/2
h Πh(F(vh, vh)− F(uh, uh)) = A1/2

h ρh,

where ρh = Πh(F(vh, vh)− F(u, u)), it follows that

‖yh(t)‖0 ≤

∫ t

0
‖A1/2

h e−(t−s)Ah‖0‖Πh(F(vh, vh)− F(uh, uh))‖0 +

∫ t

0
‖Ahe−(t−s)Ah(A−1/2

h ρh(s))‖0 ds.

Applying (33) we have ‖Πh(F(vh, vh)− F(uh, uh))‖0 ≤ C‖yh‖0, so taking into account that

‖A1/2
h e−(t−s)Ah‖0 ≤ (2e(t − s))−1/2, (40)

it follows that

‖yh(t)‖0 ≤
1

√
2e

∫ t

0

‖yh(s)‖0
√
t − s

+

∫ t

0
‖Ahe−(t−s)Ah(A−1/2

h ρh(s))‖0 ds.

Since applying [13, Lemma 4.2] we obtain∫ t

0
‖Ahe−(t−s)Ah(A−1/2

h ρh(s))‖0 ds ≤ C | log(h)| max
0≤s≤t

‖ρh(s)‖0,

a generalized Gronwall lemma [37, pp. 188–189], together with (33) allow us to conclude

‖vh − uh‖1 ≤ C | log(h)|‖vh − u‖0.

Then by writing ‖vh − u‖0 ≤ ‖vh −Πhu‖0 + ‖Πhu − u‖0 and applying (14) and (38), the proof is finished if we check that
the threshold condition (32) holds for w1

h = uh and w2
h = vh. In view of (38), (14) and the inverse inequality (12) we have

indeed that ‖vh − u‖j = o(h3/2−j), for j = 0, 1. In the case of uh the threshold condition holds due to (24). �

Lemma 3. Let (u, p) be the solution of (1)–(2). Then, there exists a positive constant C such that the solution vh of (37) and the
Galerkin approximation uh satisfy the following bound

‖v̇h(t)− u̇h(t)‖−1 ≤ C | log(h)|2h2, t ∈ (0, T ], (41)

where vh and uh are defined by (37) and (22)–(23) respectively.

Proof. The difference vh − uh satisfies that v̇h − u̇h = Ah(vh − uh)+Πh(F(u, u)− F(uh, uh)), so that multiplying by A−1/2
h

and taking norms, thanks to (34), we have

‖A−1/2
h (v̇h − u̇h)‖0 ≤ ‖A1/2

h (vh − uh)‖0 + C‖u − uh‖0.

Now we write

‖u − uh‖0 ≤ ‖u −Πhu‖0 + ‖Πhu − vh‖0 + ‖vh − uh‖0,

so that (14), (38) and (39) allow us to write,

‖A−1/2
h (v̇h − u̇h)‖0 ≤ C | log(h)|2h2.

Then, applying (31) the proof is finished. �

Lemma 4. Let (u, p) be the solution of (1)–(2) and let uh be the Galerkin approximation. Then, there exists a positive constant C
such that

‖ut − u̇h(t)‖−1 ≤
C

t(r−1)/2
hr

| log(h)|r
′

, t ∈ (0, T ], r = 2, 3, 4, (42)

where r ′
= 2 when r = 2 and r ′

= 1 otherwise.
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Proof. The case r = 3, 4 is proved in [13, Lemma 5.1]. For the case r = 2 we write

ut − u̇h = (ut −Πhut)+ (Πhut − v̇h)+ (v̇h − u̇h). (43)

A simple duality argument and the fact that ‖ut −Πhut‖0 ≤ Ch‖ut‖1, easily show that

‖(I −Πh)ut‖−1 ≤ Ch2
‖ut‖1 ≤ C

M3

t1/2
h2.

The bound of the third term on the right-hand side of (43) is given in Lemma 3, so that, thanks to the equivalence (31) we
are left with estimating

yh = t1/2A−1/2
h (Πhut − v̇h).

We notice that

ẏh + Ahyh = t1/2A1/2
h θ̇h +

1
2
t−1/2A−1/2

h (Πhut − v̇h),

where θh = (Πh − Sh)u. Thus,

yh(t) =

∫ t

0
s−1/2A1/2

h e−(t−s)Ah(sθ̇h) ds +
1
2

∫ t

0
s−1/2A1/2

h e−(t−s)AhA−1
h (Πhus − v̇h) ds.

Recalling (40), by means of the change of variables τ = s/t , it is easy to show that∫ t

0
s−1/2

‖A1/2
h e−(t−s)Ah‖0 ds ≤

1
√
2e

B

1
2
,
1
2


, (44)

where B is the Beta function (see e.g., [38]). Thus, we have

‖yh‖0 ≤ CB

1
2
,
1
2


max
0≤s≤t

(s‖θ̇h‖0 + ‖A−1
h (Πhus − v̇h)‖0).

The first term on the right-hand side above is bounded by CM4h2. For the second one we notice that

A−1
h (Πhut − v̇h) = θh − (Πhu − vh),

so that using (14), (17) and (38) it is bounded by M2h2
| log(h)|. �

Theorem 1. Let (u, p) be the solution of (1)–(2). Then, there exists a positive constant C such that the ID-postprocessed velocity
ũ, defined in (26)–(27), satisfies the following bounds:

(i) If r = 2 then

‖u(t∗)− ũ(t∗)‖1 ≤
C

t∗(1/2)
h2

| log(h)|2. (45)

(ii) If r = 3, 4 then

‖u(t∗)− ũ(t∗)‖j ≤
C

t∗(r−1)/2 h
r+1−j

| log(h)|, j = 0, 1. (46)

Proof. The proof follows the same steps as [13, Theorem 5.2]. Subtracting (26) from (1), standard duality arguments show
that

‖ũ(t∗)− u(t∗)‖1 ≤ C(‖F(u(t∗), u(t∗))− F(uh(t∗), uh(t∗))‖−1 + ‖ut(t∗)− u̇h(t∗)‖−1).

To bound the second term on the right-hand side above we apply Lemma 4, whereas for the second we apply (35) to get

‖F(u(t∗), u(t∗))− F(uh(t∗), uh(t∗))‖−1 ≤ C‖u(t∗)− uh(t∗)‖0. (47)

Applying (24) the proof of (45) and the case j = 1 of (46) are finished.
We now get the error bounds in the L2 norm. It is easy to see that

A(ũ(t∗)− u(t∗)) = Π(F(u(t∗), u(t∗))− F(uh(t∗), uh(t∗)))+Π(ut(t∗)− u̇h(t∗)).

Then, by applying A−1 to both sides of the above equations, we obtain

‖ũ(t∗)− u(t∗)‖0 ≤ ‖A−1Π(F(u(t∗), u(t∗))− F(uh(t∗), uh(t∗)))‖0 + ‖A−1Π(ut(t∗)− u̇h(t∗))‖0.
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As regards the nonlinear term, applying [13, Lemma 4.1] we obtain

‖A−1Π(F(u(t∗), u(t∗))− F(uh(t∗), uh(t∗)))‖0 ≤ C(‖u(t∗)− uh(t∗)‖−1 + ‖u(t∗)− uh(t∗)‖1‖u(t∗)− uh(t∗)‖0).

To bound the second term on the right-hand side above we apply (24), whereas the first one is bounded in the proof of
[13, Theorem 5.2] by

‖u(t∗)− uh(t∗)‖−1 ≤
C

t∗(r−2)/2 h
r+1

| log(h)|.

Finally, to bound ‖A−1Π(ut(t∗)− u̇h(t∗))‖0 we apply [13, Lemma 5.1] to obtain

‖A−1Π(ut(t∗)− u̇h(t∗))‖0 ≤
C

t∗(r−1)/2 h
r+1

| log(h)|,

which concludes the proof. �

In the following theorem we obtain the error bounds for the pressure p̃.

Theorem 2. Let (u, p) be the solution of (1)–(2). Then, there exists a positive constant C such that the ID-postprocessed pressure,
p̃, satisfies the following bounds:

‖p(t∗)− p̃(t∗)‖L2/R ≤
C

t∗(r−1)/2 h
r
| log(h)|r

′

, (48)

where r ′
= 2 if r = 2 and r ′

= 1 if r = 3, 4.

Proof. The proof follows the same steps as [13, Theorem 5.3]. Applying the inf-sup condition (5) it is easy to see that

β‖p(t∗)− p̃(t∗)‖L2/R ≤ ‖ũ(t∗)− u(t∗)‖1 + ‖ut(t∗)− u̇h(t∗)‖−1 + ‖F(uh(t∗), uh(t∗))− F(u(t∗), u(t∗))‖−1.

Applying now (45) and (46) to bound the first term and arguing as in the proof of Theorem 1 to bound the other two terms
we conclude (48). �

Remark 1. As a consequence of Theorems 1 and 2, in the proof of Theorem 3 we obtain that (ũ − uh) is an asymptotically
exact estimator of the error (u − uh), while (p̃ − ph) is an asymptotically exact estimator of the error (p − ph). However, as
we have already observed ũ and p̃ are not computable in practice. In Theorems 3, 4 and 6 we present different procedures
to get computable error estimators.

As we pointed out before the MFE approximations (uh, ph) to the velocity and the pressure of the solution (u, p) of the
evolutionary Navier–Stokes equations (1)–(2) at any fixed time t∗ are also the approximations to the velocity and pressure
of the steady Stokes problem (26)–(27). In Theorem 3 below, we show that any a posteriori error estimator of the error in
the steady Stokes problem (26)–(27) is also an a posteriori indicator of the error in the approximations to the evolutionary
Navier–Stokes equations.

Theorem 3. Let (u, p) be the solution of (1)–(2) and fix any positive time t∗ > 0. Assume that the Galerkin approximation
(uh, ph) satisfies, for h small enough and r = 2, 3, 4,

‖u(t∗)− uh(t∗)‖j ≥ Crhr−j, j = 0, 1. (49)

for some positive constant Cr = Cr(t∗).

(i) Let us denote by ξ(t∗) any reliable and efficient a posteriori error estimator of the error in the steady Stokes problem (26)–(27),
see for example [6,8,39]. That is, we assume that there exist positive constants C1 and C2, that are independent of the mesh
size h, such that the following bound holds

C2ξ(t∗) ≤ ‖ũ(t∗)− uh(t∗)‖1 + ‖p̃(t∗)− ph(t∗)‖0 ≤ C1ξ(t∗). (50)

Then, ξ(t∗) is also a reliable and efficient estimator of the error in the evolutionary Navier–Stokes equations, i.e., the following
bound holds for h small enough

2
3
C2ξ(t∗) ≤ ‖u(t∗)− uh(t∗)‖1 + ‖p(t∗)− ph(t∗)‖0 ≤ 2C1ξ(t∗). (51)

(ii) If ξ jvel(t
∗), j = 0, 1 is an asymptotically exact estimator of the norm ‖ũ(t∗)−uh(t∗)‖j of the error in the velocity in the steady

Stokes problem, then, it is also an asymptotically exact estimator of the norm of the error ‖u(t∗)− uh(t∗)‖j in the velocity in
the evolutionary Navier–Stokes equations. The same result holds for the pressure in the L2 norm.
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Proof. Let us first observe that

‖uh(t∗)− u(t∗)‖1 ≤ ‖uh(t∗)− ũ(t∗)‖1 + ‖ũ(t∗)− u(t∗)‖1

and

‖ph(t∗)− p(t∗)‖0 ≤ ‖ph(t∗)− p̃(t∗)‖0 + ‖p̃(t∗)− p(t∗)‖0,

so that adding the two above inequalities we get

‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0 ≤ ‖uh(t∗)− ũ(t∗)‖1 + ‖ph(t∗)− p̃(t∗)‖0

+ ‖ũ(t∗)− u(t∗)‖1 + ‖p̃(t∗)− p(t∗)‖0.

Dividing by ‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0, using (49) and applying Theorems 1 and 2 we obtain

1 ≤
‖uh(t∗)− ũ(t∗)‖1 + ‖ph(t∗)− p̃(t∗)‖0

‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0
+

Ct∗−((r−1)/2)

Cr
h| log(h)|r

′

,

where r ′
= 2 for r = 2 and r ′

= 1 for r = 3, 4. Now, using (50) we get

‖uh(t∗)− ũ(t∗)‖1 + ‖ph(t∗)− p̃(t∗)‖0

‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0
≤

C1ξ(t∗)
‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0

.

Taking h small enough so that Ct∗−((r−1)/2)

Cr
h| log(h)|r

′

≤ 1/2, we get

1
2

≤
C1ξ(t∗)

‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0

and then

‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0 ≤ 2C1ξ(t∗). (52)

Now, we use the decompositions

‖uh(t∗)− ũ(t∗)‖1 ≤ ‖uh(t∗)− u(t∗)‖1 + ‖u(t∗)− ũ(t∗)‖1,

and

‖ph(t∗)− p̃(t∗)‖0 ≤ ‖ph(t∗)− p(t∗)‖0 + ‖p(t∗)− p̃(t∗)‖0,

and add both inequalities as before to get

‖uh(t∗)− ũ(t∗)‖1 + ‖ph(t∗)− p̃(t∗)‖0 ≤ ‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0

+ ‖u(t∗)− ũ(t∗)‖1 + ‖p(t∗)− p̃(t∗)‖0.

Reasoning as before we get

‖uh(t∗)− ũ(t∗)‖1 + ‖ph(t∗)− p̃(t∗)‖0

‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0
≤ 1 +

Ct∗−((r−1)/2)

Cr
h| log(h)|r

′

≤
3
2
,

for h small enough. Using again (50) we obtain

C2ξ(t∗)
‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0

≤
3
2
,

so that

2
3
C2ξ(t∗) ≤ ‖uh(t∗)− u(t∗)‖1 + ‖ph(t∗)− p(t∗)‖0. (53)

From (52) and (53) we conclude (51).
Let us now assume that ξ jvel(t

∗) is an asymptotically exact error estimator for the velocity. Using

‖uh(t∗)− ũ(t∗)‖j ≤ ‖uh(t∗)− u(t∗)‖j + ‖u(t∗)− ũ(t∗)‖j, j = 0, 1,

we have

lim
h→0

‖uh(t∗)− ũ(t∗)‖j

‖uh(t∗)− u(t∗)‖j
= 1 + lim

h→0

‖u(t∗)− ũ(t∗)‖j

‖uh(t∗)− u(t∗)‖j
= 1,
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the last equality being a consequence of Theorem 1 and the saturation hypothesis (49). As we pointed out before, this limit
implies that (ũ − uh) is an asymptotically exact estimator of the error (u − uh). Then

lim
h→0

ξ
j
vel(t

∗)

‖uh(t∗)− u(t∗)‖j
= lim

h→0

ξ
j
vel(t

∗)

‖uh(t∗)− ũ(t∗)‖j

‖uh(t∗)− ũ(t∗)‖j

‖uh(t∗)− u(t∗)‖j
= 1,

and ξ jvel(t
∗) is also an asymptotically exact estimator of the error in the approximation to the velocity of the evolutionary

Navier–Stokes equations. The proof for the pressure can be obtained arguing exactly in the same way. �

Remark 2. We remark that with hypothesis (49) we are merely assuming that the term of order hr−j is really present in the
asymptotic expansion of the Galerkin error. The same assumption is also assumed in [20–22,39]. As argued in [40], this is
not a very restrictive condition in practice. Let us observe that the constant Cr in (49) is, in general O(t∗−(r−2)/2), so that the
ratio t∗−((r−1)/2)/Cr in the proof of Theorem 3 is, in general, O(t∗(−1/2)).

Remark 3. For some a posteriori error estimators of the steady Stokes problem one can have instead of (50) the following
inequalities (see e.g., [12])

C2ξ(t∗) ≤ ‖ũ(t∗)− uh(t∗)‖1 + ‖p̃(t∗)− ph(t∗)‖0 + OSC(f , Th) ≤ C1ξ(t∗), (54)

where OSC(f , Th) is the data oscillation term. If this is the case, then, arguing exactly the same as in the proof of Theorem 3,
it is possible to obtain a similar bound to (51) that takes into account the oscillation term. More precisely, under hypothesis
(54), the following bound holds,

2
3
C2ξ(t∗) ≤ ‖u(t∗)− uh(t∗)‖1 + ‖p(t∗)− ph(t∗)‖0 + OSC(f , Th) ≤ 2C1ξ(t∗).

In Theorem 4 we extend the results of [5] to the nonlinear Navier–Stokes equations. Using the same notation as in [5],
in the sequel we will denote by ξvel((uh, ph), f ,H j), j = 0, 1, any a posteriori error estimator of the error uh − ũ in
the norm of H j(Ω)d in the approximation to the velocity in the steady Stokes problem (26)–(27). We will denote by
ξpres((uh, ph), f , L2/R) any error estimator of the quantity ‖ph − p̃‖L2/R.

The key point in Theorem 3 comes from the observation that if we decompose

u − uh = (u − ũ)+ (ũ − uh), (55)

the first term on the right hand side of (55), u − ũ, is in general smaller, by a factor of size O(h log(h)), than the second
one, ũ − uh (Theorem 1). Then, to estimate the error u − uh we can safely omit the term u − ũ in (55). Comparing with the
analysis of [5] for a nonstationary linear Stokes model problem the main difference is that the two terms in (55) are taken
into account. In Theorem4we show that this kind of technique can also be applied to the nonlinear Navier–Stokes equations.
The advantage of this point of view is that hypothesis (49) is not required for the proof of Theorem 4. Let us finally observe
that (u̇h, ṗh) are the MFE approximations to the solution (ũt , p̃t) of the Stokes problem that we obtain deriving respect to
the time variable the Stokes problem (26)–(27). Then, we will denote by ξvel((u̇h, ṗh), ft ,H j), j = −1, 0, 1, any a posteriori
error estimator of the error u̇h − ũt in the norm of H j(Ω)d in the approximation to the velocity of the corresponding steady
Stokes problem. The proof of the following theorem follows the steps of the proof of [21, Theorem 1].

Theorem 4. Let (u, p) be the solution of (1)–(2) and let (uh, ph) be its MFE Galerkin approximation. Then, the following a
posteriori error bound holds for 0 ≤ t ≤ T and a constant C independent of h.

‖(u − uh)(t)‖0 ≤ C‖u0 − uh(0)‖0 + Cξvel((uh(0), ph(0)), f (0), L2)+ ξvel((uh(t), ph(t)), f (t), L2)

+ Ct1/2 max
0≤s≤t

ξvel((uh, ph), f , L2)+ Ct1/2 max
0≤s≤t

ξvel((u̇h, ṗh), fs,H−1). (56)

Proof. Let us denote by η = u − ũ. From (26)–(27) it follows that

ηt + Aη +Π(F(u, u)− F(uh, uh)) = Π(u̇h − ũt).

Then η satisfies the equation

η(t) = e−Atη(0)+

∫ t

0
e−A(t−s)Π(F(ũ, ũ)− F(u, u)) ds

+

∫ t

0
e−A(t−s)Π(F(uh, uh)− F(ũ, ũ) ds)+

∫ t

0
e−A(t−s)Π(u̇h − ũt) ds.
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Taking into account (7) we get

‖η(t)‖0 ≤ ‖η(0)‖0 + C
∫ t

0

‖A−1/2Π(F(ũ, ũ)− F(u, u))‖0
√
t − s

ds

+ C
∫ t

0

‖A−1/2Π(F(uh, uh)− F(ũ, ũ))‖0
√
t − s

ds + C
∫ t

0

‖A−1/2Π(u̇h − ũt)‖0
√
t − s

ds.

We first observe that for any v ∈ L2(Ω)d we have ‖A−1/2Πv‖0 ≤ C‖v‖−1. Then, taking into account (35) we get

‖A−1/2Π(F(ũ, ũ)− F(u, u))‖0 ≤ C‖ũ − u‖0,

‖A−1/2Π(F(uh, uh)− F(ũ, ũ))‖0 ≤ C‖uh − ũ‖0.

Let us observe that in order to apply (35) we require uh to satisfy (32), which holds due to (24), and ‖ũ‖∞ and ‖∇ũ‖L2d/(d−1)

to be bounded. Using (4) both norms are bounded in terms of ‖ũ‖2. Applying (19) we get

‖ũ‖2 ≤ C(‖u̇h‖0 + ‖uh · ∇uh‖0)

≤ C(‖Ahuh‖0 + ‖ΠhF(uh, uh)‖0 + ‖Πhf ‖0 + ‖uh · ∇uh‖0).

Finally, using that ‖Ahuh‖0 is uniformly bounded, see (28), and arguing as in (29) to bound the second and forth terms above
we conclude ‖ũ‖2 is uniformly bounded. Then, we arrive at

‖η(t)‖0 ≤ ‖η(0)‖0 + C
∫ t

0

‖η(s)‖0
√
t − s

ds + C
∫ t

0

‖uh(s)− ũ(s)‖0
√
t − s

ds + C
∫ t

0

‖u̇h(s)− ũs(s)‖0
√
t − s

ds.

And then,

‖η(t)‖0 ≤ ‖η(0)‖0 + C
∫ t

0

‖η(s)‖0
√
t − s

ds + Ct1/2 max
0≤s≤t

ξvel((uh, ph), f , L2)+ Ct1/2 max
0≤s≤t

ξvel((u̇h, ṗh), fs, L2).

A standard application of a generalized Gronwall lemma [37] gives

‖η(t)‖0 ≤ C‖η(0)‖0 + Ct1/2 max
0≤s≤t

ξvel((uh, ph), f , L2)+ Ct1/2 max
0≤s≤t

ξvel((u̇h, ṗh), fs, L2).

Now, using decomposition (55) we conclude the proof. �

Remark 4. We observe that using the same proof, a similar bound for the H1(Ω)d norm of the error can be obtained by
changing only ξvel((uh, ph), f , L2) by ξvel((uh, ph), f ,H1) and ξvel((u̇h, ṗh), ft ,H−1) by ξvel((u̇h, ṗh), ft , L2). Let us also remark
that Theorem 4 allows to obtain a posteriori upper error bounds for the error in the approximation to the nonlinear
Navier–Stokes equations using only upper error bounds for some Stokes problems depending only on the data and the
computed approximation. However, the estimation of the error at a time t requires the estimation of the error of a family of
Stokes problems with the right hand side depending on τ , for all τ ∈ [0, t].

We now propose a simple procedure to estimate the error which is based on computing a MFE approximation to the
solution (ũ(t∗), p̃(t∗)) of (26)–(27) on a MFE space with better approximation capabilities than (Xh,r ,Qh,r−1) in which
the Galerkin approximation (uh, ph) is defined. This procedure was applied to the p-version of the finite-element method
for evolutionary convection–reaction–diffusion equations in [20]. The main idea here is to use a second approximation of
different accuracy than that of the Galerkin approximation of (u, p) and whose computational cost hardly adds to that of
the Galerkin approximation itself.

Let us fix any time t∗ ∈ (0, T ] and let us approximate the solution (ũ, p̃) of the Stokes problem (26)–(27) by solving the
following discrete Stokes problem: find (ũh(t∗), p̃h(t∗)) ∈X ×Q satisfying

(∇ũh(t∗),∇φ̃)+ (∇p̃h(t∗), φ̃) = (f , φ̃)− (F(uh(t∗), uh(t∗)), φ̃)− (u̇h(t∗), φ̃) ∀φ̃ ∈X, (57)

(∇ · ũh(t∗), ψ̃) = 0 ∀ψ̃ ∈ Q , (58)

where (X,Q ) is either:
(a) The same-order MFE over a finer grid. That is, for h′ < h, we choose (X,Q ) = (Xh′,r ,Qh′,r−1).
(b) A higher-order MFE over the same grid. In this case we choose (X, Q ) = (Xh,r+1,Qh,r).

We now study the errors u − ũh and p − p̃h.

Theorem 5. Let (u, p) be the solution of (1)–(2) and for r = 2, 3, 4, and let (10)–(11) hold with k = r + 2 Then, there exists
a positive constant C such that the postprocessed MFE approximation to u, ũh satisfies the following bounds for r = 2, 3, 4 and
t ∈ (0, T ]:
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(i) if the postprocessing element is (X,Q ) = (Xh′,r ,Qh′,r−1), then

‖u(t)− ũh(t)‖j ≤
C

t(r−2)/2
(h′)r−j

+
C

t(r−1)/2
hr+1−j

| log(h)|r
′

, j = 0, 1, (59)

‖p(t)− p̃h(t)‖L2/R ≤
C

t(r−2)/2
(h′)r−1

+
C

t(r−1)/2
hr

| log(h)|r
′

, (60)

(ii) if the postprocessing element is (X,Q ) = (Xh,r+1,Qh,r), then

‖u(t)− ũh(t)‖j ≤
C

t(r−1)/2
hr+1−j

| log(h)|r
′

, j = 0, 1, (61)

‖p(t)− p̃h(t)‖L2/R ≤
C

t(r−1)/2
hr

| log(h)|r
′

. (62)

For r = 2 only the case j = 1 in (59) and (61) holds. In (59)–(62), r ′
= 2 when r = 2 and r ′

= 1 otherwise.

Proof. The cases r = 3, 4 have been proven in Theorems 5.2 and 5.3 in [13]. Following the same arguments, we now prove
the results corresponding to r = 2 and (X,Q ) = (Xh′,r ,Qh′,r−1), the case (X,Q ) = (Xh,r+1,Qh,r) being similar, yet easier.
We decompose the error u − ũh = (u − sh′)+ (sh′ − ũh), where (sh′ , qh′) ∈ Xh′,2 × Qh′,1 is the solution of

(∇sh′ ,∇φh′)− (qh′ ,∇ · φh′) = (f − F(u, u)− ut , φh′) ∀φh′ ∈ Xh′,2, (63)

(∇ · sh′ , ψh′) = 0 ∀ψh′ ∈ Qh′,1, (64)

that is, sh′ is the Stokes projection of u onto Vh′ . Since in view of (17)–(18) we have

‖u − sh′‖1 + ‖p − qh′‖L2/R ≤ CM2h′,

we only have to estimate sh′ −ũh and qh′ −p̃h. To do this, we subtract (57) from (63), and take inner productwith ẽh = sh′ −ũh
to get

‖∇ ẽh‖2
0 ≤ (‖ut − u̇h‖−1 + ‖F(uh, uh)− F(u, u)‖−1)‖ẽh‖1.

Now applying Lemma 4, (35) and (24) the proof of (59) is finished.
To prove (60), again we subtract (57) from (63), rearrange terms and apply the inf-sup condition (5) to get

β‖qh′ − p̃h‖L2/R ≤ ‖∇ ẽh‖0 + ‖ut − u̇h‖−1 + ‖F(uh, uh)− F(u, u)‖−1

and the proof is finished with the same arguments used to prove (59). �

To estimate the error in (uh(t∗), ph(t∗)) we propose to take the difference between the postprocessed and the Galerkin
approximations:

η̃h,vel(t∗) = ũh(t∗)− uh(t∗), η̃h,pres(t∗) = p̃h(t∗)− ph(t∗).

In the following theorem we prove that this error estimator is efficient and asymptotically exact both in the L2(Ω)d
and H1(Ω)d norms, and it has the advantage of providing an improved approximation when added to the Galerkin MFE
approximation.

Theorem 6. Let (u, p) be the solution of (1)–(2) and fix any positive time t∗ > 0. Assume that condition (49) is satisfied. Then,
there exist positive constants h0, γ0 < 1, and C1, C2, C3 and C4 such that, for h < h0 and 0 < γ < γ0, the error estimators
η̃h,vel(t∗) η̃h,pres(t∗) satisfy the following bounds when (X,Q ) = (Xh′,r ,Qh′,r−1) and h′ < γ h:

C1 ≤
‖η̃h,vel(t∗)‖j

‖(u − uh)(t∗)‖j
≤ C2, j = 0, 1, C3 ≤

‖η̃h,pres(t∗)‖L2/R

‖(p − ph)(t∗)‖L2/R
≤ C4. (65)

Furthermore, if (X,Q ) = (Xh′,r ,Qh′,r−1), with h′
= h1+ϵ , ϵ > 0, or (X,Q ) = (Xh,r+1,Qh,r) then

lim
h→0

‖η̃h,vel(t∗)‖j

‖(u − uh)(t∗)‖j
= 1, j = 0, 1, lim

h→0

‖η̃h,pres(t∗)‖L2/R

‖(p − ph)(t∗)‖L2/R
= 1. (66)

For the mini element, the case j = 0 in (65) and (66)must be excluded.

Proof. We will prove the estimates for the velocity in the case r = 3, 4, since the estimates for the pressure and the case
r = 2 are obtained by similar arguments but with obvious changes. Let us observe that for j = 0, 1,

‖u(t∗)− uh(t∗)‖j ≤ ‖η̃h,vel(t∗)‖j + ‖ũh(t∗)− u(t∗)‖j

≤ ‖η̃h,vel(t∗)‖j +
C

(t∗)(r−2)/2
(h′)r−j

+
C

(t∗)(r−1)/2
hr+1−j

| log(h)|.
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On the other hand

‖η̃h,vel(t∗)‖j ≤ ‖u(t∗)− uh(t∗)‖j + ‖ũh(t∗)− u(t∗)‖j

≤ ‖u(t∗)− uh(t∗)‖j +
C

(t∗)(r−2)/2
(h′)r−j

+
C

(t∗)(r−1)/2
hr+1−j

| log(h)|.

Using (49) we get ‖η̃h,vel(t∗)‖j

‖(u − uh)(t∗)‖j
− 1

 ≤
C
Cr


(t∗)−(r−2)/2


h′

h

r−j

+ (t∗)−(r−1)/2
| log(h)|h


. (67)

Taking h′
≤ γ h and h and γ sufficiently small, the bound (65) is readily obtained. The proof of (66) follows straightforwardly

from (67), since in the case when (X,Q ) = (Xh′,r ,Qh′,r−1) with h′
= h1+ϵ , ϵ > 0, the term (h′/h)r−j

→ 0 when h tends to
zero, and in the case when (X,Q ) = (Xh,r+1,Qh,r) the term containing the parameter h′ is not present. �

Remark 5. The value of h0 for which Theorem 6 holds for h ≤ h0 is unknown in practice and in particular it depends on the
Reynolds number. When using the estimator in a practical problem, if one needs to know if it will be applicable, it is usually
enough to look at the postprocessed approximation to see if, in some sense, it smooths out the Galerkin approximation and,
as a consequence, it can be used in practice to estimate the error for the current value of h. We also want to remark that, in
the case of high Reynolds numbers, it is convenient to use, instead of the method proposed in this paper, the postprocessing
procedure presented in [41]. This new postprocessing was presented in [42] for semidiscretizations in space of nonlinear
convection–diffusion problems and extended in [23] for full discretizations. In [23] a posteriori error estimates, based on this
technique, are obtained, both for the semidiscrete in space and the fully discrete cases. The use of the new postprocessing
procedure to get a posteriori error estimations in the case of the Navier–Stokes equations will be the subject of future
research.

4. A posteriori error estimations. Fully discrete case

In practice, it is not possible to compute the MFE approximation exactly, and, instead, some time-stepping procedure
must be used to approximate the solution of (22)–(23). Hence, for some time levels 0 = t0 < t1 < · · · < tN = T ,
approximations Un

h ≈ uh(tn) and Pn
h ≈ ph(tn) are obtained. In this section we assume that the approximations are obtained

with the backward Euler method or the two-step BDF which we now describe. For simplicity, we consider only constant
stepsizes, that is, for N ≥ 2 integer, we fix k = T/N , and we denote tn = nk, n = 0, 1, . . . ,N . For a sequence (yn)Nn=0 we
denote

Dyn = yn − yn−1, n = 1, 2 . . . ,N.

Given U0
h = uh(0), a sequence (Un

h , P
n
h ) of approximations to (uh(tn), ph(tn)), n = 1, . . . ,N , is obtained by means of the

following recurrence relation:

(dtUn
h , φh)+ (∇Un

h ,∇φh)+ b(Un
h ,U

n
h , φh)− (Pn

h ,∇ · φh) = (f , φh) ∀φh ∈ Xh,r , (68)

(∇ · Un
h , ψh) = 0, ∀ψh ∈ Qh,r−1, (69)

where dt = k−1D in the case of the backward Euler method and dt = k−1(D +
1
2D

2) for the two-step BDF. In this last case,
a second starting value U1

h is needed. Here, we will always assume that U1
h is obtained by one step of the backward Euler

method. Also, for both the backward Euler and the two-step BDF, we assume that U0
h = uh(0), which is usually the case in

practical situations.
We now define the IDTD-postprocessed approximation. Given an approximation d∗

t U
n
h to u̇h(tn), the IDTD-postprocessed

velocity and pressure (Un,Pn) are defined as the solution of the following Stokes problem:

(∇Ũn,∇φ)+ (∇P̃n, φ) = (f , φ)− b(Un
h ,U

n
h , φ)− (d∗

t U
n
h , φ), ∀φ ∈ H1

0 (Ω)
d, (70)

(∇ · Ũn, ψ) = 0, ∀ψ ∈ L2(Ω)/R. (71)

For reasons already analyzed in [22,24] we define

d∗

t U
n
h = Πhf − AhUn

h −ΠhF(Un
h ,U

n
h ) (72)

as an adequate approximation to the time derivative u̇h(tn).
For the analysis of the errors u(t)−Ũn and p(t)−P̃n we follow [24], where theMFE approximations to the Stokes problem

(70)–(71) are analyzed. We start by decomposing the errors u(t)− Ũn and p(t)− P̃n as follows,

u(tn)− Ũn
= (u(t)− ũ(tn))+ ẽn, (73)

p(tn)− P̃n
= (p(tn)− p̃(tn))+ π̃n, (74)
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where ẽn = ũ(tn) − Ũn and π̃n
= p̃(tn) − P̃n are the temporal errors of the IDTD-postprocessed velocity and pressure

(Ũn, P̃n). The first terms on the right-hand sides of (73)–(74) are the errors of the postprocessed approximation that were
studied in the previous section.

Let us denote by enh = uh(tn)−Un
h , the temporal error of theMFE approximation to the velocity, and by πn

h = ph(tn)−Pn
h ,

the temporal error of the MFE approximation to the pressure. In the present section we bound (ẽn − enh) and (π̃
n
− πn

h ) in
terms of enh.

The error bounds in the following lemma are similar to those of [24, Proposition 3.1] where error estimates for MFE
approximations of the Stokes problem (70)–(71) are obtained.

Lemma 5. There exists a positive constant C = C(max0≤t≤T ‖Ahuh(t)‖0) such that for 1 ≤ n ≤ N the following bounds hold

‖ẽn − enh‖j ≤ Ch2−j(‖enh‖1 + ‖enh‖
3
1 + ‖Ahenh‖0), j = 0, 1 (75)

‖π̃n
− πn

h ‖L2/R ≤ Ch(‖enh‖1 + ‖enh‖
3
1 + ‖Ahenh‖0). (76)

Proof. Let us first observe that, due to (28), max0≤t≤T ‖Ahuh(t)‖0 is bounded independently of h. Let us denote by l =

g + (d∗
t U

n
h − u̇h(tn)) where g = F(Un

h ,U
n
h ) − F(uh(tn), uh(tn)). Subtracting (70)–(71) from (26)–(27) we have that the

temporal errors (ẽn, π̃n) of the IDTD-postprocessed velocity and pressure are the solution of the following Stokes problem

(∇ ẽn,∇φ)+ (∇π̃n, φ) = (l, φ), ∀φ ∈ H1
0 (Ω)

d, (77)

(∇ · ẽn, ψ) = 0, ∀ψ ∈ L2(Ω)/R. (78)

On the other hand, subtracting (68)–(69) from (22)–(23) and taking into account that, thanks to definition (72), dtUn
h = d∗

t U
n
h ,

we get that the temporal errors (enh, π
n
h ) of the fully discrete MFE approximation satisfy

(∇enh,∇φh)+ (∇πn
h , φh) = (l, φh), ∀φh ∈ Xh,r ,

(∇ · enh, ψh) = 0, ∀ψh ∈ Qh,r−1,

and, thus, (enh, π
n
h ) is the MFE approximation to the solution (ẽn, π̃n) of (77)–(78). Using then (21) we get

‖ẽn − enh‖j ≤ Ch2−j
‖l‖0.

For the pressure we apply (18) and (20) to obtain

‖π̃n
− πn

h ‖L2/R ≤ Ch‖π̃n
‖H1/R ≤ Ch‖l‖0.

Then, to finish the proof, it only remains to bound ‖l‖0. From the definition of d∗
t U

n
h it is easy to see that

d∗

t U
n
h − u̇h(tn) = Ahenh −Πh(F(Un

h ,U
n
h )− F(uh(tn), uh(tn))),

so that

‖d∗

t U
n
h − u̇h(tn)‖0 ≤ ‖Ahenh‖0 + ‖g‖0.

Now, by writing g as

g = F(enh, uh(tn))+ F(uh(tn), enh)− F(enh, e
n
h),

and using (29)–(30) we get

‖g‖0 ≤ (‖Ahuh(tn)‖0‖enh‖1 + ‖enh‖
3/2
1 ‖Ahenh‖

1/2
0 ),

from which we finally conclude (75) and (76). �

Let us consider the quantitiesUn
−Un

h andPn
−Pn

h as a posteriori indicators of the error in the fully discrete approximations
to the velocity and pressure respectively. Then, we obtain the following result:

Theorem 7. Let (u, p) be the solution of (1)–(2) and let (9) hold. Assume that the fully discrete MFE approximations (Un
h , P

n
h ),

n = 0, . . . ,N = T/k are obtained by the backward Euler method or the two-step BDF (68)–(69), and let (Un,Pn) be the solution
of (70)–(71). Then, for n = 1, . . . ,N,

‖Un
− Un

h‖j ≤ ‖ũ(tn)− uh(tn)‖j + C ′

l0h
2−j k

l0

t l0n
, j = 0, 1, (79)

‖Pn
− Pn

h‖L2/R ≤ ‖p̃(tn)− ph(tn)‖L2/R + C ′

l0h
kl0

t l0n
, (80)

where C ′

l0
is the constant in (82)–(83), l0 = 1 for the backward Euler method and l0 = 2 for the two-step BDF.
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Proof. In [24, Theorems 5.4 and 5.7] we prove that if (9) and the case l = 2 in (17) hold, then, for k small enough, the errors
enh of these two time integration procedures satisfy that

‖enh‖0 + tn‖Ahenh‖0 ≤ Cl0
kl0

tnl0−1 , 1 ≤ n ≤ N, (81)

for a certain constants C1 and C2, where l0 = 1 for the backward Euler method and l0 = 2 for the two-step BDF. Since
‖A1/2

h enh‖0 ≤ ‖enh‖
1/2
0 ‖Ahenh‖

1/2
0 , and then ‖enh‖1 ≤ C‖enh‖

1/2
0 ‖Ahenh‖

1/2
0 , from (81) and (75)–(76) we finally reach that for k

small enough

‖ẽn − enh‖j ≤ C ′

l0h
2−j k

l0

t l0n
, j = 0, 1, 1 ≤ n ≤ N, (82)

‖π̃n
− πn

h ‖L2/R ≤ C ′

l0h
kl0

t l0n
, 1 ≤ n ≤ N, (83)

where C ′

l0
is a positive constant.

Let us decompose the estimators as follows:Un
− Un

h = (Un
− ũ(tn))+ (ũ(tn)− uh(tn))+ (uh(tn)− Un

h )
= (ũ(tn)− uh(tn))+ (enh − ẽn), (84)Pn

− Pn
h = (Pn

− p̃(tn))+ (p̃(tn)− ph(tn))+ (ph(tn)− Pn
h )

= (p̃(tn)− ph(tn))+ (πn
h − π̃n), (85)

which implies

‖Un
− Un

h‖j ≤ ‖ũ(tn)− uh(tn)‖j + ‖enh − ẽn‖j, j = 1, 2,

‖Pn
− Pn

h‖L2/R ≤ ‖p̃(tn)− ph(tn)‖L2/R + ‖πn
h − π̃n

‖L2/R.

Thus, in view of (82)–(83) we obtain (79) and (80). �

Let us comment on the practical implications of this theorem.Observe that from (84) and (85) the fully discrete estimatorsUn
− Un

h and Pn
− Pn

h can be both decomposed as the sum of two terms. The first one is the semidiscrete a posteriori
error estimator we have studied in the previous section (see Remark 1) and which we showed it is an asymptotically exact
estimator of the spatial error ofUn

h and Pn
h respectively. On the other hand, as shown in (82)–(83), the size of the second term

is in asymptotically smaller than the temporal error of Un
h and Pn

h respectively. We conclude that, as long as the spatial and
temporal errors are not too unbalanced (i.e., they are not of very different sizes), the first term in (84) and (85) is dominant
and then the quantities Un

− Un
h andPn

− Pn
h are a posteriori error estimators of the spatial error of the fully discrete

approximations to the velocity and pressure respectively. The control of the temporal error can be then accomplished by
standard and well established techniques in the field of numerical integration of ordinary differential equations.

Now, we remark that (Un,Pn) are obviously not computable. However, we observe that the fully discrete approximation
(Un

h , P
n
h ) of the evolutionary Navier–Stokes equation is also the approximation to the Stokes problem (70)–(71) whose

solution is (Un,Pn). This is true in the case of the backward Euler method and the two-step BDF since, as we commented in
the proof of Lemma 5, d∗

t U
n
h = dtUn

h . Then, one can use any of the available error estimators for a steady Stokes problem to
estimate the quantities ‖Un

− Un
h‖j and ‖Pn

− Pn
h‖L2/R, which, as we have already proved, are error indicators of the spatial

errors of the fully discrete approximations to the velocity and pressure, respectively.
To conclude, we show a procedure to get computable estimates of the error in the fully discrete approximations. We

define the fully discrete postprocessed approximation (Un
h ,
Pn
h ) as the solution of the following Stokes problem (see [24]):

(∇Un
h ,∇φ̃)+ (∇Pn

h , φ̃) = (f , φ̃)− b(Un
h ,U

n
h , φ̃)− (d∗

t U
n
h , φ̃) ∀φ̃ ∈X, (86)

(∇ ·Un
h , ψ̃) = 0 ∀ψ̃ ∈ Q , (87)

where (X,Q ) is as in (57)–(58).
Let us denote by ẽnh = ũh(tn) − Un

h and π̃n
h = p̃h(tn) − Pn

h the temporal errors of the fully discrete postprocessed
approximation (Ũn

h , P̃
n
h ) (observe that the semidiscrete postprocessed approximation (ũh, p̃h) is defined in (57)–(58)). Let us

denote, as before, by enh the temporal error of the MFE approximation to the velocity. Then, we have the following bounds.

Lemma 6. There exists a positive constant C = C(max0≤t≤T ‖Ahuh(t)‖0) such that for 1 ≤ n ≤ N the following bounds hold

‖ẽnh − enh‖j ≤ Ch2−j(‖enh‖1 + ‖enh‖
3
1 + ‖Ahenh‖0), j = 0, 1, (88)

‖π̃n
h − πn

h ‖L2(Ω)/R ≤ Ch(‖enh‖1 + ‖enh‖
3
1 + ‖Ahenh‖0). (89)
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Proof. The bound (88) is proved in [24, Proposition 3.1]. To prove (89) we decompose

‖π̃n
h − πn

h ‖L2(Ω)/R ≤ ‖π̃n
h − π̃n

‖L2(Ω)/R + ‖π̃n
− πn

h ‖L2(Ω)/R.

The second term above is bounded in (76) of Lemma 5. For the first we observe that π̃n
h is the MFE approximation in Q to

the pressure π̃n in (77)–(78) so that the same arguments used in the proof of Lemma 5 allow us to obtain

‖π̃n
h − π̃n

‖L2(Ω)/R ≤ Ch‖π̃n
‖H1/R ≤ Ch(‖enh‖1 + ‖enh‖

3
1 + ‖Ahenh‖0). �

Using (81) as before, we get the analogous to (82) and (83), i.e., for k small enough the following bound holds

‖ẽnh − enh‖j ≤ C ′

l0h
2−j k

l0

t l0n
, j = 0, 1, 1 ≤ n ≤ N, (90)

‖π̃n
h − πn

h ‖L2/R ≤ C ′

l0h
kl0

t l0n
, 1 ≤ n ≤ N (91)

where C ′

l0
is a positive constant.

Similarly to (84)–(85) we writeUn
h − Un

h = (ũh(tn)− uh(tn))+ (enh − ẽnh) andPn
h − Pn

h = (p̃h(tn)− ph(tn))+ (πn
h − π̃n

h ),
so that in view of (90)–(91) we have the following result.

Theorem 8. Let (u, p) be the solution of (1)–(2) and let (9) hold. Assume that the fully discrete MFE approximations (Un
h , P

n
h ),

n = 0, . . . ,N = T/k are obtained by the backward Euler method or the two-step BDF (68)–(69), and let (Un
h ,
Pn
h ) be the solution

of (86)–(87). Then, for n = 1, . . . ,N,

‖Un
h − Un

h‖j ≤ ‖ũh(tn)− uh(tn)‖j + C ′

l0h
2−j k

l0

t l0n
, j = 0, 1, (92)

‖Pn
h − Pn

h‖L2/R ≤ ‖p̃h(tn)− ph(tn)‖L2/R + C ′

l0h
kl0

t l0n
, (93)

where C ′

l0
is the constant in (90)–(91), l0 = 1 for the backward Euler method and l0 = 2 for the two-step BDF.

The practical implications of this result are similar to those of Theorem 7, that is, the first term on the right-hand side
of (92) is an error indicator of the spatial error (see Theorem 6) while the second one is asymptotically smaller than the
temporal error. As a consequence, the quantity (Un

h − Un
h ) is a computable estimator of the spatial error of the fully discrete

velocity Un
h whenever the temporal and spatial errors of Un

h are more or less of the same size. As before, similar arguments
apply for the pressure. We remark that having balanced spatial and temporal errors in the fully discrete approximation is
the more common case in practical computations since one usually looks for a final solution with small total error.

As in the semidiscrete case, the advantage of these error estimators is that they produce enhanced (in space)
approximations when they are added to the Galerkin MFE approximations.

5. Numerical experiments

We consider the equations

ut − ν1u + (u · ∇)u + ∇p = f , (94)
div(u) = 0,

in the domainΩ = [0, 1]×[0, 1] subject to homogeneous Dirichlet boundary conditions. For the numerical experiments of
this section we approximate the equations using the mini-element [33] over a regular triangulation ofΩ induced by the set
of nodes (i/N, j/N), 0 ≤ i, j ≤ N , where N = 1/h is an integer. For the time integration we use the two-step BDF method
with fixed time step. For the first step we apply the backward Euler method. In the first numerical experiment we study the
semidiscrete in space case. To this end in the numerical experiments we integrate in time with a time-step small enough in
order to have negligible temporal errors. We take the forcing term f (t, x) such that the solution of (94) with ν = 0.05 is

u1(x, y, t) = 2πϕ(t) sin2(πx) sin(πy) cos(πy),

u2(x, y, t) = −2πϕ(t) sin2(πy) sin(πx) cos(πx), (95)
p(x, y, t) = 20ϕ(t)x2y.

We chose ϕ(t) = t in the first numerical experiment.
When using the mini-element it has been observed and reported in the literature (see for instance [12,43,8,44–46]) that

the linear part of the approximation to the velocity, ul
h, is a better approximation to the solution u than uh itself. The bubble
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Fig. 1. Errors (solid lines) and estimations (dashed lines) in L2 (asterisks) and H1 (circles) for h = 1/10, 1/12, 1/14, 1/16 and 1/18 and h′
= 1/24, 1/30,

1/34, 1/38 and 1/40 respectively. On the left, error estimations for the first component of the velocity. On the right, error estimations for the pressure.

Table 1
Efficiency indexes.

h ‖θvel‖0 ‖θvel‖1 ‖θpre‖L2/R

1/10 1.3640 0.7721 1.2588
1/12 1.3280 1.0197 1.1602
1/14 1.1695 1.0068 1.1084
1/16 1.3259 0.9290 1.0526
1/18 1.2741 1.0438 1.0167

part of the approximation is only introduced for stability reasons and does not improve the approximation to the velocity
and pressure terms. For this reason in the numerical experiments of this section we only consider the errors in the linear
approximation to the velocity. Also, following [19], we postprocess only the linear approximation to the velocity, i.e., we
solve the Stokes problem (57)–(58) with ul

h and u̇l
h on the right-hand-side instead of uh and u̇h. The finite element space

at the postprocessed step is the same mini-element defined over a refined mesh of size h′. We show the Galerkin errors
and the a posteriori error estimates obtained at time t∗ = 0.5 by taking the difference between the postprocessed and the
standard approximations to the velocity and the pressure. In Fig. 1, we have represented the errors in the first component of
the velocity of the Galerkin approximation in the L2 and H1 norms and the errors for the pressure in the L2 norm using solid
lines.We have used dashed lines to represent the error estimations. The results for the second component of the velocity are
completely analogous and they are not reported here. The L2 errors of the pressure, on the right of Fig. 1, are approximately
twice as those of theH1 errors of the velocity, on the left of Fig. 1, in this example.We can observe thatwith the procedurewe
propose in this paper we get very accurate estimations of the errors, especially in theH1 norm of the velocity. The difference
between the behavior of the error estimations in the L2 and H1 norms of the velocity are due to the fact that for first order
approximations the postprocessed procedure increases the rate of convergence of the standardmethod only in theH1 norm
for the velocity and the L2 norm for the pressure. However, since the postprocessed method produces smaller errors than
the Galerkin method also in the L2 norm it can also be used to estimate the errors in this norm, as it can be checked in the
experiment. On the right of Fig. 1 we can clearly observe the asymptotically exact behavior of the estimator in the L2 errors
in the pressure in agreement with (66) of Theorem 6.

Let us denote by

θvel =
ũ1
h(t

∗)− u1
h(t

∗)

u1(t∗)− u1
h(t∗)

, θpre =
p̃h(t∗)− p(t∗)
p(t∗)− ph(t∗)

,

the efficiency indexes for the first component of the velocity and for the pressure. In Table 1 we have represented the values
of the L2 and H1 norms of the velocity index and the L2/R norm of the pressure index for the experiments in Fig. 1. We
deduce again from the values of the efficiency indexes that the a posteriori error estimates are very accurate, all the values
are remarkably close to 1, which is the optimal value for the efficiency index. More precisely, we can observe that the values
of the efficiency index in the L2 norm for the velocity in this experiment belong to the interval [1.1695, 1.3640]. The values
in the H1 norm for the velocity lie on the interval [0.7721, 1.0438] and, finally, the values for the pressure are in the interval
[1.0167, 1.2588].

We next show that the a posteriori error estimators we propose can also be used to compute indicators of the local
errors. The idea is the following. To estimate the error in, for example, the first component of the velocity, on an element
of the partition, τ hi , or on a patch of elements, ∪i∈I τ

h
i , we propose to compute the quantities ‖ũ1

h(t
∗) − u1

h(t
∗)‖j,τhi

, or
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Fig. 2. On the left: true errors for the first component of the velocity for h = 1/10. On the right: estimated errors for the first component of the velocity
for h′

= 1/20.
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Fig. 3. Errors (solid lines) and estimations (dashed lines) in L2 (asterisks) and H1 (circles) for h = 1/18. On the left: Euler; on the right: two-step BDF for
k = 1/10–k = 1/160.

‖ũ1
h(t

∗) − u1
h(t

∗)‖j,∪i∈I τ
h
i
, respectively, for j = 0, 1. In Fig. 2 we have represented, on the left, the distribution of the true

errors, u1
h(0.5)−u(0.5), for h = 1/10, over the full domain [0, 1]×[0, 1]. On the right, we have represented the distribution

of the estimated errors u1
h(0.5)− ũ1

h(0.5), i.e., the difference between the Galerkin approximation computed with h = 1/10
and the postprocessed approximation computed with h′

= 1/20. We can observe in the figure that both distributions are
very similar and, as a consequence, our error indicators not only compute very accurate global error estimations but also
reproduce very well the local behavior of the errors. A proof for the local error bounds following the lines of [21] will be the
subject of future research.

To conclude, we show a numerical experiment to check the behavior of the estimators in the fully discrete case. We
choose the forcing term f such that the solution of (94) is (95) with ϕ(t) = sin((2π +π/2)t). The value of ν = 0.05 and the
final time t∗ = 0.5 are the same as before. In Fig. 3, on the left, we have represented the errors obtained using the implicit
Euler method as a time integrator for different values of the fixed time step k ranging from k = 1/10 to k = 1/160 halving
each time the value of k. For the spacial discretizationwe use themini-element with always the same value of h = 1/18.We
use solid lines for the errors in the Galerkin method and dashed lines for the estimations, as before. The L2 norm errors are
marked with asterisks while the H1 norm errors are marked with circles. We estimate the errors using the postprocessed
method computed with the same mini-element over a refined mesh of size h′

= 1/40. We observe that the Galerkin errors
decrease as k decreases until a value that corresponds to the spatial error of the approximation. On the contrary, the error
estimations lie on an almost horizontal line, both for the velocity in the L2 and H1 norms and for the pressure. This means,
that the error estimations we propose are a measure of the spatial errors, even when the errors in the Galerkin method
are polluted by errors coming from the temporal discretization. In this experiment the error estimations are very accurate
for the spatial errors of the velocity in the H1 norm and for the errors in the pressure. As commented above, the fact that
postprocessing linear elements does not increase the convergence rate in the L2 norm is reflected in the precision of the
error estimations in the L2 norm. On the right of Fig. 3 we have represented the errors obtained when we integrate in time
with the two-step BDF and fixed time step. The only remarkable difference is that, as we expected from the second order
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rate of convergence of themethod in time, the temporal errors are smaller for the same values of the fixed time step k. Again,
the estimations lie on a horizontal line being essentially the same as in the experiment on the left.
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