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I. INTRODUCTION 

Throughout this paper R will be a commutative ring with identity, 
usually an integral domain. Bourbaki [8] has defined an integral domain 
R to be pseudo-principal if every divisorial ideal of R is principal. We 
define an integral domain R to be pseudo-Dedekind if every divisorial ideal 
of R is invertible. In the second section of this paper, we give several alter- 
native characterizations of pseudo-Dedekind domains. For example, for an 
integral domain R the following conditions are equivalent: (1) R is pseudo- 
Dedekind, (2) (AB)-’ =A --‘R-’ for all nonzero fractional ideals A and B 
of R, (3) is completely integrally closed and the product of divisorial ideals 
is divisorial, and (4) (0 (a,))(n (bg)) = n (a,bB) where {a,}, {bB} c K, the 
quotient field of R. 

In the third section, we investigate divisorial ideals in R[X], where 
2-z IV, = (j-6 R[X] / (A/), = R) is a multiplicatively closed subset of 
R[X]. The main result of this section is that if R is an essential domain 
and J is a divisorial ideal of REX],, then Jn R[X] is a divisorial ideal of 
R[X]. This result is then used in the fourth section to show that R is 
pseudo-Dedekind if and only if R(X) is pseudo-principal, 

In general, our terminology and notation will follow that given in 
Gilmer [9]. The reader is referred there for terms and notation not defined 
in this paper. 

II. PSEUDO-DEDEKINU DOMAINS 

If R is a Dedekind domain, then the set of nonzero fractional ideals of R 

forms a group; so (AB)- ’ = A-‘B- ’ for all nonzero fractional ideals A and 
B of R. This paper began with the following question. If R is an integral 
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domain, when is (AB)) ’ = A _ ‘K’ for all nonzero fractional ideals A and 
B of R? We begin by considering this question in a slightly more general 
context. 

Thus let R be a commutative ring with identity having total quotient 
ring T(R). Let *q(R) be the set of regular fractional ideals of R. As usual, 
for AE$(R), A-‘={ XE T(R)lxA cRjeFr(R). We denote (A-‘))’ by 
A, and call A divisorial if A = A,,. If A E E(R), then A sA,c 
fl {RX 1 Rx 3 A for Rx E 9$(R) 3. If R is an integral domain (more generally 
a Marot ring), then A, = fi {Rx 1 Rx 1 A for Rx E Fr(R) 1, but in general c 
may be proper [7]. 

A E%(R) is said to be u-invertible if A is a unit in the divisor monoid 
9(R) of divisorial ideals with the u-product A * B= (AB),; i.e., there exists 
BEAM with (AB),=R. But then ABc(AB),= R so BcA-‘. Hence 
R= (AB), c (AA -i)U c R, so R = (AA -I)&,. It is well known that every 
element of S$(R) is u-invertibie o 9(R) is a group o R is completely 
integrally closed. 

Let A, BESZ;(R). Now (A-‘B-‘)AB=(A-‘A)(B-‘B)cR.R=R, so we 
have A-‘Be“ c(AB))‘. Since (AB))’ is divisorial, we even have 
A-‘B-k(A--‘B-‘),&(AB)-‘. W e b egin by considering when either of 
these two containments may be replaced by equality. 

THEOREM 2.1. For A E F,(R), the following statements are equivalent. 

(1) (AB))’ = (A’B-‘),for all BE%(R). 
(2) (AI?-’ = (A-‘B-‘),for all divisoriaI ideals B. 
(3) (AA--‘)-‘=(A’A,J,>(=(AA-‘),). 
(4) A is v-invertible. 

Proof: (l)=+(2)+(3). Clear. (3)*(4). Now AA-’ E R, so (AA-‘))’ 2 R. 
However, (AA-‘f-‘=(A-‘A,),=(A-‘A),c:R, so (AA-‘)-‘=R and 
hence (AA-‘), = R. Therefore A is ~-invertible. (4) * (I). Suppose that A is 
v-invertible. We always have (AB)’ 2 (A-‘B-I),. Now (A(AB)-‘) BG R, 
so A(AB)-’ c B-‘. Hence A-‘A(AB)-’ E A-‘B-l, so (AB))‘= 
(AB);’ = (A -‘A(AB)-‘), c (A-‘B-‘)U. Therefore (AB))’ = (A-‘B-I),. 

COROLLARY 2.2. For a ring R, the,following statements are equivalent. 

(1) (~-‘B-‘)~=(~B)-‘~or A, BEE(R). 
(2) R is compietely integrally closed. 

LEMMA 2.3. For a ring R, the following statements are equivalent. 

(I) A-‘B-‘=(A-‘B-‘),for A, BE%(R). 
(2) The product of divisorial ideals is divisorial. 
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Proof: (2) * (1). This is clear since A -’ and B- ’ are divisorial. 
(l)*(2). Let Cand D bedivisorialideals.Then CD=((C’)-‘(D-l))‘), 
is divisorial. 

THEOREM 2.4. For a ring R and A E p?(R), the following statements are 
equiuazent. 

(1) (AB))‘=A-‘B-^‘for all BE*(R). 
(2) (AB))’ = A-‘B-’ for all divisorial ideals B of R. 
(3) (AA-‘f-‘=A-“(A-‘))‘. 
(4) A, is invertible. 

Proof (i)+(2)*(3). Clear. (3)*(4). Now AA-‘zR so 
RE(AA-‘)-‘=A-‘A,. But A-*A,=A;-‘A,ER, so A-‘A,=R. Hence 
A, is invertible. (4) * (1). We always have (AB)-’ 2 A-‘BP’. Now 
A(AB)-’ Bc R so A(AB)-*” E B-‘. Hence A,(AB)-’ c (A(AB)-‘),G B-‘. 
But A, is invertible, so (A&- ’ c A -‘B- I. 

COROLLARY 2.5. For a commutative ring R, the following statements are 
equivalent. 

(1) (AB)-‘=A-‘B-‘for all A, BEF~(R), 
(2) For each AEON, A, is invertible. 
(3) R is completely integrally closed and the product of divisoria~ 

ideals is divisorial. 
(4) 9(R) is a group under the usual ideal product. 

Proof (1) o (2). Theorem 2.4. (2) * (4). Clear. (4) * (3). 9(R) is a 
group under the usual product implies that A * B = (AB), = AB, so the 
product of divisorial ideals is divisorial. Since 9(R) is a group, R is 
completely integrally closed. (3)* (2). R = (AA-‘),= (A,A-‘), = A,A-’ 
since A, and A -’ are divisorial. Hence A, is invertible. 

R can be completely integrally closed without having the property that 
the product of divisorial ideals is divisorial. For example, a Krull domain is 
completely integrally closed but the product of divisorial ideals is divisorial 
if and only if R is locally factorial. Also, the product of divisorial ideals can 
be divisorial without R being completly integrally closed. For example, let 
R be a one-dimensional Gorenstein domain that is not regular. Then every 
nonzero ideal of R is divisorial so certainly the product of divisorial ideals 
is divisorial. 

Let us now restrict ourselves to integral domains. A domain R is pseudo- 
Dedekind if every divisorial ideal is invertible. If actually every divisorial 
ideal is principal, R is called pseudo-principal [S]. So by Corollary 2.5, 
(AB) - ’ = A -‘B-l for all nonzero fractional ideals A and B of R if and 
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only if R is pseudo-Dedekind. Another characterization of pseudo- 
Dedekind domains may be obtained by considering products of intersec- 
tions of principal fractional ideals. 

Let R be an integral domain with quotient field K. Let {a,}, {6/,) c K. 
Then certainly (fl, (a,))(np (b,)) c n,,p (a,!~~). A natural question is when 
do we actually have equality. Observe that if na (a,) = 0, then we always 
have equality. (Now (n, (a,))(& (bB)) = 0. Let XE n,., (a,bg). Fix h, E 
{ba}, Then xE& (a,&,)=b,(n, (a,))=0 so x=0. Hence n,,p (a,bJ=O 
also.) Thus we can assume that n, (a,) # 0 and nP (bp) # 0; in particular, 
(a,>, (b,) SK-- p>. 

Suppose that (a,>, jb,}~K-(0). Let A=((u;‘)) and B=((~B’)). 
Then A-l=& (a,) and BP’=n,(b,). Since AB= ((u;‘b,‘)), we also 
have that WV’ = CL,, (Ofi). Hence (fL ~~,Htn, tbp)) = CL,, ta,b,d 
translates to the statement that A-‘B-’ = (AB)-‘. 

THEOREM 2.6. For an integral domain R, the following statements are 
equivalent. 

( 1) R is pseudo-Dedekind. 

(2) cn, (amp (b,))=n,B (d,d.for ali C4, @,I SK. 
(3) (n,(a,))(n,(b,))=n,.,(u,bg)for ali ld lk&K- Pt. 

Proof We have already noted that (2) * (3). (I ) * (3). If R is pseudo- 
Dedekind, then A P’E’ = (A&-’ for all fractional ideals A and. B of R. 
Hence by the above paragraph, (& (a,))(& (b,))= n,.@ (a,bp) for 
n, (a,) #0 and n, (b,) #O. But as previously noted, if fi, (a,) =0 or 
/Js (b,) =O, the result is trivial. (2) =+ (1). This again follows from the 
above paragraph. 

Note that we always have tn, @,Mnp tbs)) c ((CI, t4)tfXbs)))v c 
n, p (a,b,). What is somewhat surprising is that (n, (u,))(nB (b@)) can be 
divisoria! wthout being equal to n,,@ (a,b,). Let R be a one-dimensional 
Gorenstein domain that is not regular. Since every nonzero ideal of R is 
divisorial, (n, (a,))( fts (b,)) is divisorial. Since R is not pseudo-Dedekind, 
we must have SOme tfL tu~))tn~ tbpH f CLg ta,b). 

The following interesting lemma gives an alternative proof of Theorem 
2.6. 

LEMMA 2.7. Let R be an integrai domain. Then fi, (x,) # 0 is invertible 
ifandonb if(fL tx,))tn&,))= fi tx,y,hfor all bB&K (or K- UW 

Proof. ( + ). Suppose that n, (x,) # 0 is invertible. Then (n, (x,)) 
mp ha= n, cn, whd= n, cn, ma))= n,,8(x,ys).(~erewehave 
used the fact that if I is an invertible ideal, then I( n, A,) = n, IA, for any 
collection (A,] of fractional ideals of R [9, p. 803.) 
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(c: ). NOW (0, (x,))-’ is divisorial, so (n, (x,)))’ = n, (ya) for some 
{yli} E: K- (0). Now R2 cn, tX,))n (Xx’ = tnz (m-b tYs))= 
n,,p (x,Y&. NOW for each way b,,)~ fl, tx,)=+$F 0’7, b,))-’ = 
n, bp)wgh so R= cn, banp(Ya))= mm km bW and 
hence n, (x,) is invertible. 

In view of Theorem 2.6, the following question is natural. Let R be an 
integral domain that satisfies (n (~~~)(n (h,)) = n (~~~~) for all subsets 
(a,], {ha) c R. Is R pseudo-Dedekind? While we have not been able to 
answer this question in general, we remark that the answer is affirmative 
under additional hypothesis such as R having ACC on divisorial ideals or 
R being a GCD domain. 

Recall that one of the many conditions equivalent to R being a GCD 
domain is that every finite-type divisorial ideal is principal. R is said to be a 
G-GCD domain (generalized GCD domain) if every finite type divisorial 
ideal of R is invertible. For results on G-GCD domains, the reader is 
referred to [3]. 

Suppose that R is pseudo-Dedekind. Then R is a G-GCD domain and R 
is completely integrally closed. Since R is a G-GCD domain, Inv(R), the 
group of invertible ideals of R, is a lattice ordered group where as usual 
I< Je JE Z, Z v J= In .Z and I A J= (I+ J),. Since every divisorial ideal 
is invertible, Inv(R) is even complete. For let (I, 1 z Inv(R), with I, < B. 
Then Ben I,, so n Z1 # 0 and since each I, is invertible, 0 I, is a 
divisorial ideal and hence invertible since R is pseudo-Dedekind. Hence 
VI,= n I,. 

The converse is also true. Suppose that Inv(R) is a complete lattice 
ordered group. Let Z be a divisorial ideal, so I= 0, Rr,. Now I# 0, so for 
0 # x E Z, xR c RF-, so Rr, d xR. Hence (Rr, f is a collection of invertible 
ideals that is bounded above, so V Rr, = J, say, where J is an invertible 
ideal. But Rr, d V Rr, = J, so Jr: Rr,. Hence Jc n Rr, = I. But, if 
0 # 4’ E I, then yR c I E Rr,. Thus Rr, < yR, so J = V Rr, d yR, and hence 
yR c J. Hence I= J is invertible. So R is pseudo-Dedekind. 

Now if R is a G-GCD domain, Inv(R) is order isomorphic to G(R”), the 
group of divisibility of R” (see [ 3, p. 2191). So if R is pseudo-Dedekind, 
Inv(R”) is a complete lattice ordered group (every invertible ideal of R” is 
principal), so R” is pseudo-principal So R pseudo-Dedekind implies that R” 
is pseudo-principal. The converse is false. If R is a Krull domain, R” is 
always a PID and hence pseudo-principal. However, for R a G-GCD 
domain, it is easily seen that R is pseudo-Dedekind (Inv(R) is complete) if 
and only if R” is pseudo-principal (G(R”) is complete). In particular, a 
valuation domain is pseudo-principal if and only if its value group is 
isomorphic to a complete subgroup of the real numbers, 

Another characterization of pseudo-Dedekind domains is as follows. R is 



328 ANDERSONANDKANG 

pseudo-Dedekind if and only if Cl(R) = Pit(R), Here Cl(R) is the divisor 
class monoid of R, that is, Cl(R) = 9(R)/Princ(R) where Princf R) is the 
subgroup of Inv(R) consisting of principal fractional ideals. Also, Pit(R) = 
Inv(R)/Princ(R) is the Picard group of R. Indeed, if R is pseudo-Dedekind, 
R is completely integrally closed, so 9(R) is a group and hence Cl(R) is a 
group. Since every divisorial ideal of R is invertible, clearly Cl(R) = Pit(R). 
Conversely, suppose that the divisor class monoid g(R)/Princ( R) = Pic( R). 
This says that every divisorial ideal is invertible and hence R is pseudo- 
Dedekind. 

The following theorem gives a summary of our various characterizations 
of pseudo-Dedekind domains. 

THEOREM 2.8. For an integral domain R, the following conditions are 
equivalent. 

(1) R is a pseudo-Dedekind domain; i.e., every divisorial ideal of R is 
invertible. 

(2) (AB))’ = A-‘B-l for all nonzero fractional ideals A and B of R. 

(3) (17 fa,))(CI (bp))=fl (a,b,dfor k>, tbl&K. 
(4) R is completely integrally closed and the product of diuisorial 

ideals is divisoria~. 

(5 ) The divisor monoid 93(R) is a group under the usual ideal product. 

(6) Cl(R) = Pit(R). 
(7) inv(R), the group of invertible ideals of R, is a complete lattice 

ordered group. 

Zafrullah [12] has defined an integral domain R to be a *-domain 
if ((7yB1 (a,))(@?=, (bi))=nij(aibj) for all a, ,..., an,bl, . . . . b,,,fR (or 
equivalently, E K). We observed that R is a *-domain if and only if 
(AB))’ = A -IBe for all finitely generated nonzero fractional ideals A and 
B of R. This lead us to investigate domains satisfying (AB)-’ = A-‘B-’ for 
all nonzero fractional ideals. After our research was completed, we learned 
that Zafrullah [ 131 had independently obtained the equivalence of (1 ), (2), 
(4), and (5) of Theorem 2.8 and the result (proved in the final section) that 
R pseudo-Dedekind implies that R[X] is pseudo-Dedekind. 

We end this section with some examples of pseudo-Dedekind domains. 
Clearly a Dedekind domain is a pseudo-Dedekind domain. More generally, 
a locally factorial Krull domain (sometimes called a n-domain) is pseudo- 
Dedekind [a]. Under certain finiteness conditions, the converse is true. 
Suppose, for example, that R is a pseudo-Dedekind domain with ACC on 
divisorial ideals. Then since R is also completely integrally closed, R is a 
Krull domain. It then follows from [2] that R is a locally factorial Krull 
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domain. In Section 4 we show that the following statements are equivalent: 
(1) R is pseudo-Dedekind, (2) R[X] is pseudo-Dedekind, (3) R(X) is 
pseudo-Dedekind, (4) R(X) is pseudo-principal. We also give an example 
to show that R being pseudo-Dedekind does not imply that R, is pseudo- 
Dedekind. 

III. DIVISORIAL IDEALS IN R[X], 

Throughout this section, R will denote an integral domain with quotient 
field K. Forf=a,+a’X+ ... + a,X” E K[X], the content Af off is the 
fractional ideal of R generated by a,, a,, . . . . a,. N, will denote the mul- 
tiplicatively closed subset {f~ R[X] 1 (Af), = R) of R[X]. T will usually 
denote a multiplicatively closed subset of N,. An integral domain R is said 
to be essential if there is a set of prime ideals {Pl} of R with R = 0 Rpz 
and each R,% is a valuation domain. The main result of this section is 
Theorem 3.10 which states that if R is an essential domain and J is a 
divisorial ideal of RIXlr, then Jn R[X] is a divisorial ideal of R[X]. 
However, our first result gives an important case when the extension of a 
divisorial ideal remains divisorial. 

PROPOSITION 3.1. Let R be an integral domain and T a multiplicutively 
closed subset of R[X] contained in N, . Let I be a nonzero fractional ideal of 
R. Then 

(1) (Z[X].)-‘=Z-‘[Xl., and 

(2) (~Cxl.),~=~,CxlT. 

Proof: (1) It is clear that ZZ’[X]T~(Z[X]T))‘. Let Ofu~l. Then 
aR[X]TCZ[X]T, so (Z[X].)-‘~a-‘R[X].sK[X].. Hence an element 
of (Z[X].))’ has the form f/h where .f~ K[X] and hE T. Moreover, 
fg (Z[X].)-‘. Hence fZcfZIXITs RIXlr. So for bEZ, bfE R[X].. 
Hence bfgE R[X] for some gE N,,. Then bA,= Ahfs (Ahf)” = (A&A,),), = 
(Ab,.A,), = (Ab,k)c. c R. (Here (Abl-Ag)U = (Ablg)c via the Dedekind-Mertens 
Theorem [9, Theorem 28.11 and the fact that (A,), = R.) Since bA,c R for 
all beZ, we have A,zZ-‘. Hence feZI-‘[Xl, so f/h EZ-‘[XI.. Therefore 
(Z[X].)-’ = ZP’[XIT. (2) (Z[X].), = ((Z[X].)-I)-’ = (I-‘[xl,)-’ = 
(I-‘)-‘[X]*=Z,[X].. 

Let A c B be integral domains. Let T be a multiplicatively closed subset 
of B. T is said to be weakly saturated in B with respect to A, if 
Tn A = Tn A where Tn A is the saturation of Tr\ A in A and T is the 
saturation of T in B. T is said to be locally weakly saturated in B with 
respect to A if T, as a multiplicatively closed subset of B,, is weakly 
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saturated in B, with respect to A, for each prime ideal P of A such that 
P n (Tn A) = 0. Lemma 3.2 gives two conditions equivalent to T being 
weakly saturated in B with respect to A. 

LEMMA 3.2. The following statements are equivalent for domains A E B 
and for a multiplicatively closed subset T of B. 

(1) T is weakly saturated in B with repect to A. 
(2) BanT#%impliesAanT#%foreveryaEA. 
(3) ah E T, a E A, b E B implies aa’ E T for some a' E A. 

Proof (1) * (2). Let a E A. Suppose Ba n T # @. Then a E T. Hence 
aETnA=TnA.ThusaAnT#%. 

(2) * (1). Tn A is saturated since it is the contraction of the saturated 
set T. Hence T n A E Tn A implies Tn A c T n A. Conversely, let 
aETnA. Then aBnT#@. Hence AanT#% by assumption, and 
therefore a E Tn A. (2) o (3). Obvious. 

As previously mentioned, we will be mainly interested in the case where 
TG N,. The next two lemmas show that in this case T is both weakly 
saturated and locally weakly saturated in R[X] with respect to R. 

LEMMA 3.3. Let T be a multiplicatively closed subset of R[X] such that 
T G N, and 1 E T. Then T is weakly saturated in R[X] with respect to R. 

Proof Let af e T where aE R and f E R[X]. Then (a) 2 (aAf)” = R 
since TG N,. So (a) = R, i.e., a is a unit. Thus 1 E aR n T. Hence by Lemma 
3.2, T is weakly saturated in R[X] with respect to R. 

LEMMA 3.4. Let T be a multiplicatively closed subset of R[X] such that 
1 E T and TE N,. Then T is locally weakly saturated in R[X] with respect 
to R. 

Proof: Let P be a prime ideal of R. First note that N,(R) c N,(R,). 
Hence TG N,(R,). By Lemma 3.3, T is weakly saturated in Rr[X] with 
respect to R,. 

LEMMA 3.5. Let A be a nonempty subset of Spec(R) such that 
R= L/J R,. Let TG N, be a multiplicatively closed subset of R[X]. Then 
l-be/i (RPCXIT)=NXIT. 

Proof Clearly R[ X] r c nrG ,, (R, [X] T). Conversely, let f/t E 
n PE,, (RPIXIT), where f~ K[X] and t E T. Then f E R, [Xl, for each 
PEA. Sofg=h for some gE T and heR,[X]. Now (A,),=(A,),= (Ah)” 
by the Dedekind-Mertens Theorem since (A,),. = R. We will show that 
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(Ah)a 5 R, which implies that A,.z R,. There exists an SE R\P such that 
s/z E R[X]. Then So = (sA~)~ = (Arh)” c R since sh E R[X]. Hence 
(Ah)a c s-‘R c R,. Therefore f~ A/[X] E (n,,, R,)[X] = R[X]. Hence 
f/t~R[Xl~. Therefore nPt,, (R,[X].)= R[X].. 

The next two technical lemmas are used in proving Theorems 3.8 and 
3.10 which are the main results of this section. 

LEMMA 3.6. Let R be a domain with quotient field K and let T be a 
weakly saturated subset of R[X] with respect to R. Let S= Tn R, R(X) = 
R[X] T, and f, g E R [Xl. Zf R, is a GCD domain, then 

(1) fR{X} ngRCX1 =f,R{X) ngRCX1 =f,R,CXI ngRCX1 (~0 
that fR{X) ngR,CXl =f,R{X} n&CXI =.f~R~C~l~d?~[~l) for 
any f, E R, [A’] which has the minimal degree with respect to f =f, t for some 
fE T. 

(2) Moreouer, ifdegf=degf,, then,fR{X)ngR,[X]=,fR,[X]n 
gR.5 CU. 

Proof (1) If A is an R-module, then we denote AIXIr. by A(X). We 
may assume that T is saturated in R[X] since RTnR= Rm= Rs= R,. 
Hence assume that T is saturated in R[X] and that R, is a GCD domain. 
LetB={.flER.~CXIIf=fitf orsometET}.NowB#@sincefEB.Letf, 
be an element of B which has the minimal degree among the elements of B. 
Then fR{X} ngR[X] =f,R{X} ngR[X] since we have f=f, t where 
te T is a unit in R{X}. We will show that fiR{X}ngR[X]= 
f,R,[X]ngR[X]. Let fig’/s’=hEfiR{X}ngR[X] where g’ER[X], 
s’ E T, and h E gR[X]. Let (g’,s’) be the GCD of g’ and s’ in R, [Xl. 
(Note that Rs[X] is a GCD domain since R, is a GCD domain). 
Now g’=(g’,s’)gl and s’=(g’,s’)s, for some g,,slER,[X]. Also 
s”(g’, s’), s”g,, and s”s, E R[X] for some s” E S. And (s”(g’, s’))(s”s,) = 
(s”)~s’ E S2T= T. Hence s”sl E T since T is saturated in R[X]. So g’/s’ = 
g,/s,=s”g,/s”s,, (s”g,,s”s,)=(g,,s,)=l in R,[X], and s”s,~T. Hence 
we may assume that (g’, s’) = 1 in R, [Xl. Now f, g’ = s’h = s’ Ifig’ in 
R,[X]. Since (s’, g’) = 1 in R,[X], we have s’/J’, in R,[X]. Hence 
deg s’ = 0 by the minimality of deg fi. So s’ E Tn R = S and hence 
h=flg’/s’EflRs[X]ngRIX]. Thus f,R{X)ngR[X]cf,R,[X]n 
gR[X]. Since the reverse containment is obvious, we have f, R(X) n 
gR[X] =fi R,[X] ngR[X]. Hence fR{X} ngR[X] =f, R(X) ngR[X] 
= fi R, [X] n gR[X]. Localizing the previous equalities by S, we get 

fR{XSn&CXI =flR{X) n@,CXl =f,&CXl ngR,CJ’l. 
(2) Moreover, if degf= degf,, then tE Tn R = s where f=f, t. 

Hence f=f,t, tE??. Then fR,[X]=fRs[X]=flR,[X]=flR,[X] so 
thatfR(Xf ng&CXl =f&CXl n&CU. 
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&MMA 3.7. Let R be a domain with quotient ,field K. Let T be a locally 
weakly saturated subset of R[X’] with respect to R. Let S= T n R, 
f,gEK[X]\{O} and R{X}=R[X].. IfRR,is locally aGCD domain, then 
fR{ X} ngR,[X] is a divisorial ideal of R,[X]. 

Proof We may assume that f, gE R[X] and (f, g)= 1 in K[X]. Let 
Max(&)= {MasLEn where each M, is a prime ideal of R which is 
maximal with respect to M, n S= 0. If A is an Rsmodule, then 
A,~s=A,~sinceM,nS=0.WewilldenoteA,?,=A,~byA..IfAisan 
R-module, then we also denote A ,,,, by A, and A [X] T by A {X}. Hence 
R,{X;=R,CXI.=(R{X)),. 

Now (fR{Xj n gR,CXI), = fR,{X) n g(R&CXI = fR,{X) n 
gR,[X].Also, R,{X}=R,[X].and TnR,=TnR,=S(since TnR,s 
R[X]nK=R, we have TnR,=TnR=S), so that (R,)r,R,=(RE)s= 
( Rl)s = R, where S is the saturation of S in R,. Hence by Lemma 3.6, there 
exist f,ER,[X] such that fR,{X} ngR,[X] =f,R,{X} ngR,[X] = 
f,(R,)s[X]ngR,[X]=f,R,[X]ngR,[X]andf~f,R,[X].Hencethere 
exist S,E S, = R\M, so that fEf,/s,R[X]. Hence fR{Xj cf,/s,R{X}. 
So IfR{X} n gR,[X] z n, (,f,/s,R{X} n gRs[X]) = J. Now J, c 
(f,ls,R, {X) n gR,CXl), = fARS 1X> n g(R& [Xl = f&R, {Xl n 
gR,[X] = f,R,{X} ngR,[X] = fR,{X} ngR,[X] =I,. Thus J,cI,. 
Hence JE I as R,-modules. Hence Z=J. So fR{X}ngR,[X] = 
n, (f,/s,R{X} ngR,[X]). We have the following claim. 

Claim. deg f, = deg fp for every c(, a E A. 

Now fRo, {X} n gR, [X] = f, R, [X] n gR, [X]. Localizing both sides by 
R\(O), we get fKIXITngKIX] =f,K[X] ngK[X] =f,gK[X] since 
(f,, g) = 1 in K[X] because f, 1 f and (A g) = 1 in K[X]. So f, gK[X] = 
fD gK[ X] and therefore ,f, K[ X] = fp K[ X]. 

Suppose that degf = deg f, for some CC, then by the above claim, 
degf=degf, for every CIE A. Then by Lemma 3.6, fR, {X} ngR,[X] = 
f(Ra)s[X] ng(R,)s[X] =fR,[X] ngR,[X] for every aEA. Hence 
(fR(X) ngRs[X]),= (fRs[X] ngR,[X]), as R,-modules for every 
aEA. Hence fR{Xj ngR,[X] =fRs[X] ngR,[X], which is a divisorial 
ideal of R,[X]. Thus we may assume that degf > degf, for every a E A. 
Then by induction on degf, fR{X} ngR,[X] = n (f,/s,R{X} n 
gR, [Xl) is a divisorial deal of R, [X] since it is an intersection of 
divisorial ideals of R, [Xl. (Note that if degf = 0, then degf = degf, for 
every a, hence this case has already been handled.) 

THEOREM 3.8. Let T be a locally weakly saturated subset of R[X] with 
respect to R. Let S= Tn R. Suppose that R, is locally a GCD domain. If J 
is a divisorial ideal of R[X] T, then J n R, [IX] is a divisorial ideal of 
Rs [Xl. 
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Proof. We can assume that J is an integral divisorial ideal of R[X],. 
Then J= o&g (f/gR[X].) where j’/gR[X].? J and ~,~E:R[X]. Now 
J~~CXI = n wdwiT n Rs IX1 I= c7 MfW7 T n & [Xl) is a 
divisorial ideal of Rs[X] since it is an intersection of divisorial ideals by 
Lemma 3.7. 

Recall that an integral domain R is called an essential domain if 
R=rh/i R, for some collection A of prime ideals and each R, is a 
valuation domain, 

LEMMA 3.9. Let R be an essential domain and let TG N, be a mul- 
t~p~icatively closed subset of R[X]. Let f, ge K[X]\(O}. Then fRIXlrn 
gR[X] is a divisorial ideal of R[X]. 

Proof. Let R = nP, En R,, A cSpec(R), where each R,= R, is a 
valuation domain. For an R-module A, A (X} is defined to be A [X] T. 
Now Tn R c N, n R = the units of R and T is a locally weakly saturated 
multipli~atively closed subset of R[X] with respect to R by Lemma 3.4. 
(We can assume that 1 E T.) Hence by Lemma 3.6 applied to R,, there 
exist fdl~R, [X] such that fRm{X} ngR, [X] =fzR.(X> ngR, [X] = 
f,R, [X] n gR, [X], where f E f,R, [Xl. Now there exist s, E R\P, 
such that f~f,/s,R[X]. Then fR{X} cf,/s,R(X). Hence fR(Xf n 
sRCX3 c 0% U&AX) n @I-U) c: I-L K/‘s,&(Xf 0 gR,lXI) c 
Mf,&tXt n&EXlI c f-M.fR,(~) ngR,CXl) =f(fL R,(X)) n 
g(n, R,[X])=fR(X)ngR[X] where the last equality follows from 
Lemma 3.5. Thus fR(X) ngR[Xf = n, (f,/s,R{X) ngR[X]). Then as 
in the proof of Lemma 3.7, we conclude that fRf X> n gR[X] is a 
divisorial ideal of R[X] by induction on the degree of f under the 
assumption that (f, g) = 1 in K[X] and S, ge R[X]. 

THEOREM 3.10. Let R he an essential domain and /et Tc N, he a mul- 
tip~~cativel~ closed subset of R[X]. If J is a divisoria~ ideal of REX] Tt then 
Jn R[X] is a div~soria~ ideal of RCA’]. 

Proof: Similar to the proof of Theorem 3.8. 

COROLLARY 3.11. Suppose that R is an essential domain. Let 
R(X)=R[X], where N=(~ER[X]IA,.=R), R(X)=R[X]. where 
T= {fgR[X]J the leading coefficient off is a unit), and R(X) =R[X],,,,;. 
If J is a divisorial ideal of R(X), R(X), or R(X), then JnR[X] is a 
divisorial ideal of R[X]. 

Pro@ This foilows from Theorem 3.10. 
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IV. EXTENSIONS OF PSEUDO-DEDEKINL) DOMAINS 

The purpose of this section is to show that the domains R, R[X], and 
R(X) are simultaneously pseudo-Dedekind domains. We begin with some 
slightly more general results. 

THEOREM 4.1. If R is pseudo-Dedekind, then R[X] 7 is a pseudo- 
Dedekind domain for any multiplicatively closed subset TE N,. 

Proof Let J be an integral divisorial ideal of R[X] T. Then by 
Theorem 3.10, J n R[X] is a divisorial ideal of R[X]. Since R is integrally 
closed, Jn R[X] =fI[X] for some 0 #f~ K[X] and a divisorial ideal I of 
R [ 11, Lemma 3.2.1. Since R is pseudo-Dedekind, I is invertible and hence 
Jn R[X] = f I[X] is invertible. Therefore J= (Jn R[X]), is invertible. 

THEOREM 4.2. Let T be a multiplicatively closed subset of R[X] such 
that TS N = {f E R[X] 1 A,-= R}. Then R is pseudo-Dedekind tf and only tf 
R[ X] T is pseudo-Dedekind. 

Proof. ( * ). This follows from Theorem 4.1. 
( t= ). Suppose that R[X17 is a pseudo-Dedekind domain. Let I be a 

divisorial ideal of R. By Proposition 3.1, I[ X] T is a divisorial ideal of R [ X] T 
and so I[X].(Z[X].)- ’ = R[X]r. Also by Proposition 3.1, (i[X]7.).u’ = 
1-l [X] T. Hence ~~~‘[X]~=~[X]=I.-l[X]~=z[X]~(~[X]~)-’= 
R[X]., Since TcN,ZI ‘=IZ-‘[X17.nR=R[XlrnR=R. Hence I is 
invertible and therefore R is a pseudo-Dedekind domain. 

COROLLARY 4.3. Let R be an integral domain. Then the following 
statements are equivalent. 

( 1) R is pseudo-Dedekind. 

(2) REX] is pseudo-Dedekind. 

(3 ) R(X) is pseudo-princ~al. 

Proof. Since Pic(R(X)) =0 [l, Theorem 21, (3) is equivalent to R(X) 
being pseudo-Dedekind. Then by Theorem 4.2, (I), (2), and (3) are 
equivalent. 

It is not however the case that R pseudo-Dedekind implies that R[[X]] 
is pseudo-Dedekind. Samuel has given an example of a Noetherian UFD 
for which R[ [X]] is not a UFD. Now R being a UFD is certainly pseudo- 
Dedekind. Now R[ [Xl] is also still a Gull domain. But if R[ [X] ] were 
pseudo-Dedekind, it would have to be locally factorial and hence even 
factorial since Pic(R[ [IX]]) = Pic( R) = 0. Also, the localization of a 
pseudo-Dedekind need not be a pseudo-Dedekind domain: The ring E of 
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entire functions is pseudo-principal, but dim E> 1 [9, pp. 147-1481. Let Q 
be a prime ideal of E with ht Q > 1. Then E, is a valuation domain with 
dim E, > 1, so E, is not completely integrally closed. Hence E, is not 
pseudo-Dedekind by Corollary 2.5. 

A domain R is defined to be locally pseudo-Dedekind if R, is pseudo- 
Dedekind for every prime ideal P of R. Although R is pseudo-Dedekind 
does not necessarily imply that R, is pseudo-Dedekind, we can extend this 
local property to R[X] and R(X). 

THEOREM 4.4. The following are equivalent for a domain R. 

( 1) R is locally pseudo-Dedekind. 

(2 ) R [ X] is locally pseudo- Dedekind. 

(3) R(X) is locally pseudo-Dedekind. 

Proof: (1) = (2). Suppose that R is locally pseudo-Dedekind. Let Q 
be a prime ideal of R[X] and let P= Q n R. We will show that 
T9V(R,)=(f~R,[X]IA,=R,} h w ere T= R[X]\Q. Let fE T. Then 
f $ P[X] and hence A, & P. So (A-f)P = R, and therefore A,,= R, if we 
consider ,f as a polynomial over R,. Thus TS N(R,). Clearly Tn R = 
(R[X]\Q) n R=R\P. Hence R[X].=(R[X].).=(R,[X]).so RIXlv 
= R, [X] r is a pseudo-Dedekind domain by Theorem 4.1. (2) == (3). 
Suppose that R[X] is locally pseudo-Dedekind and let QN be a prime ideal 
of R(X) = R[X], where N= {f E R[X] 1 A,= R} and Q is a prime ideal of 
R[X] such that Qn N=@. Now R(X),, = (R[X]N),,v= RIXIQ is 
pseudo-Dedekind by assumption. (3) * (1). Let P be a prime ideal of R. 
Clearly PCXI n N= 0. Now NJ’)PCxI,V = (N~IN)PCXl,v = NJ4pcxI = 
Rp(J3. Hence Rp(X) = NWPlxlu is pseudo-Dedekind by assumption. 
Hence R, is a pseudo-Dedekind domain by Corollary 4.3. 

In [lo], Matsuda proved that the group ring R[X; G] is a pseudo- 
principal domain if and only if R is a pseudo-principal domain and G has 
type (0, 0, . ..). We extend this result to pseudo-Dedekind domains. 

THEOREM 4.5. R[X; G] is a pseudo-Dedekind domain if and only if R is 
a pseudo-Dedekind domain and G has type (0, 0, . ..). 

Proof: Suppose R is a pseudo-Dedekind domain and G has type 
(0, 0, . ..). Let N’ = {f E R[ Y] 1 A,.= R} and N = (f~ D[ Y] 1 A,.= D} where 
D=R[X;GJ Clearly N’c N. Now D[Y]N,=R[X;G][Y]Ns= 
R[ Y][F, GINS = RI: YIN! [X; G] = R( Y)[X; G] is a pseudo-principal 
domain. Since N’ c N, D is a pseudo-Dedekind domain by Theorem 4.2. 

Conversely, suppose that D = R[X; G] is pseudo-Dedekind. Then 
D[ Y],. = R( Y)[X; G] is pseudo-Dedekind by Theorem 4.2. Since 



336 ANDERSON AND KANG 

R( Y)[X G] is integrally closed, Pic(R( Y)[X; G]) = Pic(R( Y)) =0 where 
the first equality follows from [4, Corollary 5.63 and the second equality 
follows from [ 1, Theorem 23. Hence R( Y)[X; G] is pseudo-principal. By 
[ 10, Theorem 81, R(Y) is pseudo-principal and G has type (0, 0, . ..). By 
Theorem 4.2, R is pseudo-Dedekind. 
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