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I. INTRODUCTION

Throughout this paper R will be a commutative ring with identity,
usually an integral domain. Bourbaki [87] has defined an integral domain
R to be pseudo-principal if every divisorial ideal of R is principal. We
define an integral domain R to be pseudo-Dedekind if every divisorial ideal
of R is invertible. In the second section of this paper, we give several alter-
native characterizations of pseudo-Dedekind domains. For example, for an
integral domain R the following conditions are equivalent: (1) R is pseudo-
Dedekind, (2) (4B) ™' = A" 'B~! for all nonzero fractional ideals 4 and B
of R, (3) is completely integrally closed and the product of divisorial ideals
is divisorial, and (4) (N (@, ))(N (bp)) = (a,bp) where {a,}, {bs} S K, the
quotient field of R.

In the third section, we investigate divisorial ideals in R[X], where
TS N,={feR[X]|(4;),=R} is a multiplicatively closed subset of
R[X7]. The main result of this section is that if R is an essential domain
and J is a divisorial ideal of R[X ], then J~ R[X] is a divisorial ideal of
R[X7]. This result is then used in the fourth section to show that R is
pseudo-Dedekind if and only if R(X) is pseudo-principal.

In general, our terminology and notation will follow that given in
Gilmer [9]. The reader is referred there for terms and notation not defined
in this paper.

II. Pseupo-DEDEKIND DOMAINS

If R is a Dedekind domain, then the set of nonzero fractional ideals of R
forms a group; so (4B) ' =4 "'B ! for all nonzero fractional ideals 4 and
B of R This paper began with the following question. If R is an integral
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domain, when is (4B) " '=4"'B~! for all nonzero fractional ideals 4 and
B of R? We begin by considering this question in a slightly more general
context.

Thus let R be a commutative ring with identity having total quotient
ring T(R). Let #.(R) be the set of regular fractional ideals of R. As usual,
for Ae Z(R), A7 '={xeT(R)|xA< R} e F(R). We denote (4~")"! by
A, and call A4 divisorial if 4=4, I Ae#(R), then Ac4,c
N {Rx|Rx2 A4 for Rxe Z(R)}. If R is an integral domain (more generally
a Marot ring), then 4, =) {Rx|Rx2 A4 for Rxe #(R)}, but in general <
may be proper {7].

AeZ(R) is said to be v-invertible if 4 is a unit in the divisor monoid
%(R) of divisorial ideals with the v-product 4 * B= (4B),; i.e., there exists
Be #(R) with (4B),=R. But then AB<(4B),=R so B A~ Hence
R=(AB),=(447"),<R, so R=(4A4"),. It is well known that every
element of Z(R) is v-invertible < Z(R) is a group<> R is completely
integrally closed.

Let 4, Be Z(R). Now (4~ 'B~")AB=(4"'4)(B"'B)c R-R=R, so we
have A 'B~'<(4B) " '. Since (4B)~' is divisorial, we even have
A7 'B 'c(47'B~'),=(4B)"'. We begin by considering when either of
these two containments may be replaced by equality.

THEOREM 2.1. For A € #(R), the following statements are equivalent.
(1) (AB)~'=(4"'B"), for all Be F(R).
(2) (4B) '=(A4'B™"), for all divisorial ideals B.
(3) (44" '=(47'4,), (=(447"),).
(4) A is v-invertible.

Proof. (1)=>(2)=(3).Clear. (3)=(4). Now A4 "'=R,s0 (44" ")"'2R.
However, (44" ") '=(47'4,),=(47'4),SR, so (A4~")"'=R and
hence (44 '), = R. Therefore A is v-invertible. (4) => (1). Suppose that 4 is
v-invertible. We always have (4B) " '2(4 'B™'),. Now (4(4B) ') BSR,
s0 A(AB)"'<B”'. Hence A 'A(AB)"'c A 'B7', so (AB) '=
(AB);'=(A"'4(4AB) "), (4 'B™"),. Therefore (4B) '=(4"'B"),.

CoROLLARY 2.2. For a ring R, the following statements are equivalent.
(1) (A7'B™"),=(4B)~" for 4, Be Z(R).
(2) R is completely integrally closed.

LEMMA 2.3. For a ring R, the following statements are equivalent.

(1) A7'B '=(47'B~ "), for 4, Be Z(R).
(2Y The product of divisorial ideals is divisorial.
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Proof. (2)=(1). This is clear since 4A~' and B™' are divisorial.
(1)= (2). Let C and D be divisorial ideals. Then CD= ((C~*)"(D" ")),
is divisorial.

THEOREM 2.4. For a ring R and A € F(R), the following statements are
equivalent.

(1) (4B)"'=A"'B~" for all Be Z(R).

(2) (AB) '=A"'B~! for all divisorial ideals B of R.
(3) (447 '=a"N4a" )"

{4) A, is invertible.

Proof. (1)=(2)=(3). Clear. (3)=(4). Now AA4'SR so
Rc(AA™')"'=4""'4,. But A7 '4,=A7'4,<R, so A~'4,=R. Hence
A, is invertible. (4)=(1). We always have (4B)"'24 'B~'. Now
A(AB)"'B< Rso A(AB)"'< B~ ' Hence A,(AB) ' < (A4(4B) '), = B\
But A4, is invertible, so (4B) "' A7'B™ 1,

CoROLLARY 2.5. For a commutative ring R, the following statements are
equivalent.

(1) (AB)"'=A"'B~! for all A, Be #(R).
(2) For each Ae F(R), A, is invertible.

(3) R is completely integrally closed and the product of divisorial
ideals is divisorial.

(4) Z(R) is a group under the usual ideal product.

Proof. (1}<>(2). Theorem 2.4. (2)=>(4). Clear. (4)=(3). Z(R) is a
group under the usual product implies that 4 * B=(A4B),= AB, so the
product of divisorial ideals is divisorial. Since 2(R) is a group, R is
completely integrally closed. (3)=(2). R=(44""),=(4,47 ), =A,A"}
since A, and 4 ' are divisorial. Hence A4, is invertible.

R can be completely integrally closed without having the property that
the product of divisorial ideals is divisorial. For example, a Krull domain is
completely integrally closed but the product of divisorial ideals is divisorial
if and only if R is locally factorial. Also, the product of divisorial ideals can
be divisorial without R being completly integrally closed. For example, let
R be a one-dimensional Gorenstein domain that is not regular. Then every
nonzero ideal of R is divisorial so certainly the product of divisorial ideals
is divisorial.

Let us now restrict ourselves to integral domains. A domain R is pseudo-
Dedekind if every divisorial ideal is invertible. If actually every divisorial
ideal is principal, R is called pseudo-principal [8]. So by Corollary 2.5,
(AB) '=A"'B~! for all nonzero fractional ideals 4 and B of R if and
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only if R is pseudo-Dedekind. Another characterization of pseudo-
Dedekind domains may be obtained by considering products of intersec-
tions of principal fractional ideals.

Let R be an integral domain with quotient field K. Let {a,}, {b;} S K.
Then certainly (), (a,)(Ng (bg)) S .5 (a,bp). A natural question is when
do we actually have equality. Observe that if (), (a,) =0, then we always
have equality. (Now ([, (@,))(Ns (b)) =0. Let xe ), 4 (a,b;). Fix bye
{bg}. Then xe ), (a,by)=bo(, (a,)) =0 so x=0. Hence N, 5 (a,b;)=0
also.) Thus we can assume that [, (a,) #0 and (; (by)#0; in particular,
{a,}, (b} S K— {0},

Suppose that {a,}, {by} S K~ {0}. Let A=({a,'}) and B=({b;'}).
Then 4~ "=\, (a,) and B~ '=(\;(by). Since AB={{a;'b;'}), we also
have that (4B)~'={\,,(a,bs). Hence (N, (a,))(Nj(b5)=p(a,by)
translates to the statement that 4 'B~'=(4B) .

THEOREM 2.6. For an integral domain R, the following statements are
equivalent.

(1) R is pseudo-Dedekind.

(2} (Na @0 (bp)) = Nap (anby) for all {a,}, {bs} =K.

(3} (Na (@ Np (bg)) =N p (axby) for all {aa}’ {bs} =K— {0}

Proof. We have already noted that (2) <« (3). (1}=(3). If R is pseudo-

Dedekind, then 4 'B~'=(4B8)""' for all fractional ideals 4 and. B of R.
Hence by the above paragraph, (), (@ )/(Ns (b)) =N, pla,by) for
Naz{a,)#0 and N, (by)#0. But as previously noted, if ), {a,)=0 or
g (bg)=0, the result is trivial. (2)=(1). This again follows from the
above paragraph.

Note that we always have (), (a, )(ﬂﬂ (bp)) = ((Ne (@aN(N(bp)), =
Mg (a,bg). What is somewhat surprising is that (ﬂa a,))Ng (bg)) can be
divisorial wthout being equal to (), 4 (a,b,). Let R be a one-dimensional
Gorenstein domain that is not regular. Since every nonzero ideal of R is
divisorial, (N, (a,)}(N; (bp)) is divisorial. Since R is not pseudo-Dedekind,
we must have some ([, (a,))(p (bp)) # N p (a.bp)

The following interesting lemma gives an alternative proof of Theorem
26.

LemMa 2.7. Let R be an integral domain. Then (\, (x,)#0 is invertible
if and only if (N (XN (¥5)) =N (x,pp) for all {y,} <K (or K—{0}).
Proof. (=). Suppose that N, (x,)#0 is invertible. Then ([, (x,))

(Np (ra)) =N (Na (x2) ¥5)) = Np (N (x2¥5)) = NN, p (x.¥p). (Here we have
used the fact that if [ is an invertible ideal, then I(, 4,) =, I4, for any
collection {A4,} of fractional ideals of R [9, p. 807].)
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(<=). Now ([, (x,))~!is divisorial, so (ﬂa (x)) "' =N (yp) for some
{ypreK—={0}. Now R=2(N, (x NN, (x))" " =(N.(x, )ﬂp()ﬁz))—-
Map (xy5). Now for each oco,(wc%)Dﬂ (x )= (x-Ys(N, (x)
Np(re)S(yp) So R=(N, (xD(Np(¥p))=(No (x NN (x, Nt and

hence [, (x,) is invertible.

In view of Theorem 2.6, the following question is natural. Let R be an
integral domain that satisfies () (a, )} (b)) =1 (a,b;) for all subsets
{a,}, {bs} = R. Is R pseudo-Dedekind? While we have not been able to
answer this question in general, we remark that the answer is affirmative
under additional hypothesis such as R having ACC on divisorial ideals or
R being a GCD domain.

Recall that one of the many conditions equivalent to R being a GCD
domain is that every finite-type divisorial ideal is principal. R is said to be a
G-GCD domain (generalized GCD domain) if every finite type divisorial
ideal of R is invertible. For resuits on G-GCD domains, the reader is
referred to [31.

Suppose that R is pseudo-Dedekind. Then R is a G-GCD domain and R
is completely integrally closed. Since R is a G-GCD domain, Inv(R), the
group of invertible ideals of R, is a lattice ordered group where as usual
ISieJcLIvJ=InJand I A J={(I+J),. Since every divisorial ideal
is invertible, Inv(R) is even complete. For let {I,} < Inv(R), with I, <B.
Then B 1,, so N1,#0 and since each I, is invertible, (1, is a
divisorial ideal and hence invertible since R is pseudo-Dedekind. Hence
VI,=N1,

The converse is also true. Suppose that Inv(R) is a complete lattice
ordered group. Let I be a divisorial ideal, so 7=, Rr,. Now I#0, so for
0#xel, xRS Rr, so Rr,<xR. Hence {Rr,} is a collection of invertible
ideals that is bounded above, so \/ Rr,=J, say, where J is an invertible
ideal. But Rr,<\/ Rr,=J, so J<Rr,. Hence J=<[VRr,=1 But, if
O#yel, then yRSI< Rr,. Thus Rr,<yR, so J=Y Rr,<yR, and hence
yR< J. Hence I=J is invertible. So R is pseudo-Dedekind.

Now if Ris a G-GCD domain, Inv(R) is order isomorphic to G({R"), the
group of divisibility of R” (see [3, p. 219]). So if R is pseudo-Dedekind,
Inv(R") is a complete lattice ordered group (every invertibie ideal of R® is
principal), so R" is pseudo-principal So R pseudo-Dedekind implies that R
is pseudo-principal. The converse is false. If R is a Krull domain, R® is
always a PID and hence pseudo-principal. However, for R a G-GCD
domain, it is easily seen that R is pseudo-Dedekind (Inv(R) is complete) if
and only if R” is pseudo-principal (G(R") is complete). In particular, a
valuation domain is pseudo-principal if and only if its value group is
isomorphic to a complete subgroup of the real numbers.

Another characterization of pseudo-Dedekind domains is as follows. R is
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pseudo-Dedekind if and only if CI(R)= Pic(R). Here CI(R) is the divisor
class monoid of R, that is, Cl{R) = 2(R)/Princ(R} where Princ(R) is the
subgroup of Inv(R) consisting of principal fractional ideals. Also, Pic(R) =
Inv(R)/Princ(R) is the Picard group of R. Indeed, if R is pseudo-Dedekind,
R is completely integrally closed, so Z(R) is a group and hence CI(R) is a
group. Since every divisorial ideal of R is invertible, clearly CI(R) = Pic(R).
Conversely, suppose that the divisor class monoid 2(R)/Princ(R) = Pic(R).
This says that every divisorial ideal is invertible and hence R is pseudo-
Dedekind.

The following theorem gives a summary of our various characterizations
of pseudo-Dedekind domains.

THEOREM 2.8. For an integral domain R, the following conditions are
equivalent.

(1) R is a pseudo-Dedekind domain; i.e., every divisorial ideal of R is
invertible.

(2) (AB)~'=A"'B~! for all nonzero fractional ideals A and B of R.

(3) (N (@)N (bg)) = (aby) for {a.}, (b} =K.
(4) R is completely integrally closed and the product of divisorial
ideals is divisorial.

(5) The divisor monoid 2(R) is a group under the usual ideal product.

(6) CHR)=Pic(R).

(7) Inv(R), the group of invertible ideals of R, is a complete lattice
ordered group.

Zafrullah [12] has defined an integral domain R to be a *-domain
if (N7= @D, (B))=Ny,(a;b;) for all ay,..a, by, ...b,eR (or
equivalently, € K). We observed that R is a #-domain if and only if
(AB) '=A4"'B~! for all finitely generated nonzero fractional ideals 4 and
B of R. This lead us to investigate domains satisfying (4B)~'=4"'B~' for
all nonzero fractional ideals. After our research was completed, we learned
that Zafrullah [137 had independently obtained the equivalence of (1), (2),
(4), and (5) of Theorem 2.8 and the result (proved in the final section) that
R pseudo-Dedekind implies that R[X'] is pseudo-Dedekind.

We end this section with some examples of pseudo-Dedekind domains.
Clearly a Dedekind domain is a pseudo-Dedekind domain. More generally,
a locally factorial Krull domain (sometimes called a n-domain) is pseudo-
Dedekind [2]. Under certain finiteness conditions, the converse is true.
Suppose, for example, that R is a pseudo-Dedekind domain with ACC on
divisorial ideals. Then since R is also completely integrally closed, R is a
Krull domain. It then follows from [2] that R is a locally factorial Krull
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domain. In Section 4 we show that the following statements are equivalent:
(1) R is pseudo-Dedekind, (2) R[X] is pseudo-Dedekind, (3) R(X) is
pseudo-Dedekind, (4) R(X) is pseudo-principal. We also give an example
to show that R being pseudo-Dedekind does not imply that R is pseudo-
Dedekind.

II1. DivisorIAL IDEALS IN R[ X ]

Throughout this section, R will denote an integral domain with quotient
field K. For f=a,+a, X+ --- +a,X"€ K[X], the content 4, of f is the
fractional ideal of R generated by a,a,, .., a,. N, will denote the mul-
tiplicatively closed subset {fe R[X]|(4,),=R} of R[X]. T will usually
denote a multiplicatively closed subset of N,. An integral domain R is said
to be essential if there is a set of prime ideals {P,} of R with R={) R,
and each R, is a valuation domain. The main result of this section is
Theorem 3.10 which states that if R is an essential domain and J is a
divisorial ideal of R[X],, then JA R[X] is a divisorial ideal of R[X].
However, our first result gives an important case when the extension of a
divisorial ideal remains divisorial.

PropoSITION 3.1.  Let R be an integral domain and T a multiplicatively
closed subset of R[ X'] contained in N,. Let I be a nonzero fractional ideal of
R. Then

() U[X17) '=I"'[X]s, and
2) (LX) =1.[X]s.

Proof. (1) It is clear that I"'[X],<(I[X],) '. Let 0#ael Then
aR[X]r<I[X]) s, 50 (I[X]),) 'ca 'R[X],< K[X]T Hence an element
of (ITX];) ' has the form f/h where fe K[X] and he T. Moreover,
fe(I[X];)~". Hence fISfI[X];<R[X],. So for bel bfe R[X],.
Hence bfg e R[ X] for some ge N,. Then hA,—A,,,_(A,,f) = (A (A4,).), =
(AprAg)s=(Ay), S R (Here (4,,A4,),=(A,y,), via the Dedekind-Mertens
Theorem [9, Theorem 28.1] and the fact that (4,), = R.) Since bA4,< R for
all bel, we have 4,21~ '. Hence fel '[X], sof/heI ‘[X]T Therefore
I[x1p) ' =1 1[X]r () U[X]p), = (X)) D) ' = '[X]) !

X =L[X ]

Let 4 < B be integral domains. Let 7 be a multiplicatively closed subset
of B. T is said to be weakly saturated in B with respect to A, if
TnA=TnN A where Tn A4 is the saturation of Tn A in 4 and T is the
saturation of T in B. T is said to be locally weakly saturated in B with
respect to A4 if T, as a multiplicatively closed subset of B, is weakly
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saturated in B, with respect to A, for each prime ideal P of 4 such that
PN (TnA)=. Lemma 3.2 gives two conditions equivalent to T being
weakly saturated in B with respect to A.

LEMMA 3.2.  The following statements are equivalent for domains A< B
and for a multiplicatively closed subset T of B.

(1) T is weakly saturated in B with repect to A.
(2) Ban T+# & implies Aan T+# J for every ae A.
(3) abeT,ae A, be B implies aa’ € T for some a’ € A.

Proof. (1)=(2). Let ae A. Suppose Ban T+# . Then ae T. Hence
aeTnA=TnA Thus adnT# .

(2)=(1). T A4 is saturated since it is the contraction of the saturated
set 7. Hence TnA=TnA implies Tn A< Tn A. Conversely, let
acTnA Then aBnT# . Hence Aan T# S by assumption, and
therefore ae TN A. (2) <> (3). Obvious.

As previously mentioned, we will be mainly interested in the case where
T<N,. The next two lemmas show that in this case T is both weakly
saturated and locally weakly saturated in R[X'] with respect to R.

LEMMA 3.3. Let T be a multiplicatively closed subset of R[X] such that
TcN,and 1e€T. Then T is weakly saturated in R[ X'] with respect to R.

Proof. Let afeT where ae R and fe R[X]. Then (a)=2(ad,),=R
since T& N,. So (a)=R, i.e,, ais a unit. Thus 1 eaRn T. Hence by Lemma
3.2, T is weakly saturated in R[X] with respect to R.

LemMMa 3.4. Let T be a multiplicatively closed subset of R[X] such that
leT and TS N,. Then T is locally weakly saturated in R[ X'] with respect
to R

Proof. Let P be a prime ideal of R. First note that N,(R)= N,(Rp).
Hence T< N,(Rp). By Lemma 3.3, T is weakly saturated in R,[X] with
respect to Rp.

LEMMA 3.5. Let A be a nonempty subset of Spec(R) such that
R=pc s Rp. Let TS N, be a multiplicatively closed subset of R[X]. Then
ﬂPe/t (Rp [X] r)=R[X];.

Proof. Clearly R[X]r < Npea(Rp[X];). Conversely, let f/te
Npcs (Rp[X]17), where fe K[X] and teT. Then fe Rp[X]+ for each
PeA. So fg=hforsome geT and he Rp[X]. Now (4,),=(A4.,),=(4,),
by the Dedekind—Mertens Theorem since (4,),=R. We will show that
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(4,), < Rp which implies that A,= Rp. There exists an se R\P such that
she R[X]. Then s(A4,),=(s4,),=(A,), SR since she R[X]. Hence
(4,), S5 'RS Rp. Therefore fe A,[X]1<=(Npes Rp)[X]=R[X]. Hence
f/te R[X] ;. Therefore Np. 4 (Rp[X]7)=R[X]+.

The next two technical lemmas are used in proving Theorems 3.8 and
3.10 which are the main results of this section.

LEMMA 3.6. Let R be a domain with quotient field K and let T be a
weakly saturated subset of R[X] with respect to R. Let S=Tn R, R{X} =
R[X]);, and f,ge R[X]. If Rg is a GCD domain, then

(1) fR{X}ngRIXT=/iR{X}ngR[X]=/iRs[X]ngR[X] (s0
that fR{X}ngRs[X]1=fiR{X}ngRs[X]=/f Rs[X]1ngRs[X]) for
any f, € Rg[ X] which has the minimal degree with respect to f=f, t for some
teT.

(2) Moreover, if deg f=degf;, then fR{X} ngR;[X]=fRs[X]N
gRs[X]

Proof. (1) If A is an R-module, then we denote A[X], by A{X}. We
may assume that T is saturated in R[X ] since R, x= R+=z=Rs=R;.
Hence assume that 7 is saturated in R[ X'] and that R is a GCD domain.
Let B={f,e Rs[X]|f=f,tfor some te T}. Now B # F since f€ B. Let f,
be an element of B which has the minimal degree among the elements of B.
Then fR{X}ngR[X]=fR{X}ngR[X] since we have f=f,1 where
teT is a unit in R{X}. We will show that fiR{X}ngR[X]=
SIRs[X]ngR[X]. Let fig'/s'=hefiR{X}ngR[X] where g'e R[X],
s'eT, and hegR[X]. Let (g',s’) be the GCD of g’ and s in Rg[X].
(Note that R¢[X] is a GCD domain since Ry is a GCD domain).
Now g'=(g',s)g, and s'=(g’,s')s, for some g, s,e Rg[X]. Also
s"(g',s'), s"g,, and s"s,e R[X] for some s"€S. And (s"(g’, s'))(s"s,) =
(s")%s’ € S’T=T. Hence s"s, e T since T is saturated in R[X]. So g'/s' =
g1/s1=5"g,/s"sy, (s"81,8"s,)=1(g,,5,)=11n R;[X], and s"s, ¢ T. Hence
we may assume that (g,s')=1 in Rg[X]. Now f,g'=sh=s"|f,g in
R¢[X]. Since (s',g')=1 in RG[X], we have s'|f, in Rs[X] Hence
degs'=0 by the minimality of degf,. So s’e TnR=S and hence
h=f1g'/s'efiRs[X]TngR[X]. Thus fiR{X}ngR[X]ISf Rs[X]n
gR[X]. Since the reverse containment is obvious, we have f,R{X}n
gRIX])=/f Rs[X]1gR[X]. Hence fR{X}ngR[X]=fIR{X}gR[X]
=fiRs[X]1ngR[X]. Localizing the previous equalities by S, we get
SRIX} ngRs[X]=/f1R{X} ngRs[X]=/fRs[X]1ngRs[X].

(2) Moreover, if degf=degf,, then te TnR=3S5 where f={,t.
Hence f=f,1,teS Then fR [X]=fRs[X]=fRs[X]1=f,Rs[X] s0
that fR{X} ngRs[X]1=/Rs[X]ngRs[X].
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LEMMA 3.7. Let R be a domain with quotient field K. Let T be a locally
weakly saturated subset of R[X] with respect to R. Let S=TnR,
f,ge K[XIN\{0} and R{X}=R[X]+. If Ry is locally a GCD domain, then
SR{X} ngR[X] is a divisorial ideal of Rs[X].

Proof. We may assume that f,ge R[X] and (f,g)=1 in K[X]. Let
Max(Rgs)={M,s),. . where each M  is a prime ideal of R which is
maximal with respect to M, nS=¢f. If 4 is an Rgmodule, then
Ay = Apy, since M, " S= 3. We will denote 4,, .= A4,, by 4,.If Ais an
R-module, then we also denote 4,, by 4, and A[X], by 4{X}. Hence
RAX}=R,[X1,;=(R{X)),.

Now (fR{X) n gRs[X]), = fR,{X} A g(Re).[X] = fR{X} n
gR,[X]. Also, R,{X}=R,[X];and TnR,=Tn R,=8 (since Tn R, <
R[X]1nK=R, we have TnR,=Tn R=S5), so that (R,)r~x,=(R,)s=
(R,)s = R, where S is the saturation of S in R,. Hence by Lemma 3.6, there
exist f,€ R,[X] such that fR, {X}ngR,[X]=f,R,{X}ngR,[X]=
Juo(R)s[X1ngR, [X]1=/,R,[X]ngR,[X]and fef,R,[X] Hence there
exist s,€S,=R\M, so that fef,/s,R[LX]. Hence fR{X}</,/s,R{X}.
So I=fR{X} ngRs[X]<= N, (fu/s,RIX} ngRs[X])=J Now J, <
(fu/52R, (X} 0 gRS[XD), = f/5.R, (X} A g(Rs),[X] = fu/s,Re{X}
gR,[X] = f,R,{X}ngR,[X] = fR,{X}ngR,[X]1=1,. Thus J,C1,.
Hence J<1I as Rgmodules. Hence I=J. So fR{X}ngRs[X]=
Na (fa/s.R{X} 0 gRs[X]). We have the following claim.

Claim. degf,=degf; for every a, fe A.

Now fR,{X}ngR,[X]=f,R,[X]ngR,[X]. Localizing both sides by
R\{0}, we get fK[X]1rngK[X]1=/,K[X]ngK[X]=f,gK[X] since
(f,,g)=11in K[ X] because f,| fand (f,g)=1in K[X]. So f,gK[X] =
/5 gK[X] and therefore f, K[X]=f;K[X].

Suppose that degf=deg/f, for some a, then by the above claim,
deg f=degf, for every ae A. Then by Lemma 3.6, fR, {X} ngR,[X]=
fR)s[X]1ng(R)s[XT=fR,[XJngR,[X] for every aecA. Hence
(fR{X}ngRs[X]),=(fRs[X]ngRs[X]), as Rg-modules for every
aeA. Hence fR{X} ngR[X]=fRs[X]ngRs[X], which is a divisorial
ideal of Rg[X]. Thus we may assume that deg > deg f, for every a e A.
Then by induction on degf, fR{X}ngR[X]1=N(f./s.R{X}
gRs[X]) is a divisorial deal of Rg[X] since it is an intersection of
divisorial ideals of R;[X]. (Note that if deg /=0, then degf=degf, for
every a, hence this case has already been handled.)

THEOREM 3.8. Let T be a locally weakly saturated subset of R[X] with
respect to R. Let S= T R. Suppose that Ry is locally a GCD domain. If J
is a divisorial ideal of R[X]1,, then Jn R {X] is a divisorial ideal of
Rs[X]
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Proof. We can assume that J is an integral divisorial ideal of R[X ] ;.
Then J={\;, (f/gR[X];) where f/gR[X]r2J and f ge R[X]. Now
I Rs[XT=N(f/gR[X]r N Rs[X]) =N Y/g(fRIX]r " gRs[X])is a
divisorial ideal of Rg[ X'] since it is an intersection of divisorial ideals by
Lemma 3.7.

Recall that an integral domain R is called an essential domain if
R=p., Ry for some collection A of prime ideals and each R, is a
valuation domain.

LemMAa 39. Let R be an essential domain and let T N, be a mul-
tiplicatively closed subset of R[X]. Let f,ge K[XT\{0}. Then fR[X];0n
gR{ X7 is a divisorial ideal of R[X].

Proof. Let R={\p,.4 Rp, A<Spec(R), where each R, =R, is a
valuation domain. For an R-module 4, 4{X} is defined to be A[X],.
Now T'm R< N,n R=the units of R and T is a locally weakly saturated
multiplicatively closed subset of R[X] with respect to R by Lemma 3.4.
{(We can assume that 1eT.) Hence by Lemma 3.6 applied to R,, there
exist f,e R,[X] such that fR,{X}ngR,[X]=/f,R {X}ngR,[X]=
fRAIX]1ngR,[X], where fef,R,[X]. Now there exist s, R\P,
such that fef,/s,RIX]. Then fR{X}<f,/s,R{X}. Hence fR{X}n
gRIX] < (1, (f/s,RIX} N gRIXD) € M. (fu/s,RAX} 0 gR,IX]) €
N (fRAX} A gRIXT) € N, (FRX) 0 gR,IXD) = (N RAXD) A
g(N RIX])=fR{X}ngR[X] where the last equality follows from
Lemma 3.5. Thus fR{X} ngR[X]=, (f./s.R{X} ngR[X]). Then as
in the proof of Lemma 3.7, we conclude that fR{X}ngR[X] is a
divisorial ideal of R[X] by induction on the degree of f under the
assumption that (f,g)=1in K[X] and f, ge R[X].

THEOREM 3.10. Let R be an essential domain and let T< N, be a mul-
tiplicatively closed subset of R{X 1. If J is a divisorial ideal of R[X ], then
JNRLX] is a divisorial ideal of R[X].

Proof. Similar to the proof of Theorem 3.8.

CoroLLARY 3.11. Suppose that R is an essential domain. Let
R(X)=R[X]y where N={feR[X]|A;=R}, R{(X)=R[X]; where
T={fe R[X]| the leading coefficient of [ is a unit}, and R{X} = R[X],.
If J is a divisorial ideal of R(X), R{X>, or R{X}, then JAR[X] is a
divisorial ideal of R{ X 1.

Proof. This follows from Theorem 3.10.
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1V, EXTENSIONS OF PSEUDO-DEDEKIND DoMaiINs

The purpose of this section is to show that the domains R, R[X], and
R(X) are simultaneously pseudo-Dedekind domains. We begin with some
slightly more general results.

THEOREM 4.1. If R is pseudo-Dedekind, then R[X]; is a pseudo-
Dedekind domain for any multiplicatively closed subset TS N .

Proof. Let J be an integral divisorial ideal of R[X],. Then by
Theorem 3.10, J~ R[ X] is a divisorial ideal of R[X]. Since R is integrally
closed, Jn R[X]=fI[X] for some 0+ fe K[ X] and a divisorial ideal I of
R [11, Lemma 3.2.7. Since R is pseudo-Dedekind, 7 is invertible and hence
JAR[X]=/fI[X] is invertible. Therefore J = (Jn R[X 1) is invertible.

THEOREM 4.2. Let T be a multiplicatively closed subset of R[X] such
that TS N={fe R[X]|A,=R}. Then R is pseudo-Dedekind if and only if
R{X ]+ is pseudo-Dedekind.

Proof. (=) This follows from Theorem 4.1.

{<=). Suppose that R[ X ]+ is a pseudo-Dedekind domain. Let I be a
divisorial ideal of R. By Proposition 3.1, /[ X'}, is a divisorial ideal of R[ X'},
and so I[X],(I[X],) "= R[X],. Also by Proposition 3.1, (I[X],) '=
I7'[X7],. Hence H XY =1X1, 1 ' [X],=1X](I[X]) ' =
R[X];. Since TEN, I '=1I '[X];nR=R[X]};nR=R Hence [ is
invertible and therefore R is a pseudo-Dedekind domain.

COROLLARY 4.3. Let R be an integral domain. Then the following
Statements are equivalent.

(1) R is pseudo-Dedekind.
(2) RI[X] is pseudo-Dedekind.
(3) R(X) is pseudo-principal.

Proof. Since Pic(R{X))=0 [1, Theorem 2], (3) is equivalent to R(X)
being pseudo-Dedekind. Then by Theorem 4.2, (1), (2), and (3) are
equivalent.

It is not however the case that R pseudo-Dedekind implies that R[[X]]
is pseudo-Dedekind. Samuel has given an example of a Noetherian UFD
for which R[[X]] is not a UFD. Now R being a UFD is certainly pseudo-
Dedekind. Now R[[X]] is also still a Krull domain. But if R[[X]] were
pseudo-Dedekind, it would have to be locally factorial and hence even
factorial since Pic(R[{X]])=Pic(R)=0. Also, the localization of a
pseudo-Dedekind need not be a pseudo-Dedekind domain: The ring E of
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entire functions is pseudo-principal, but dim E> 1 [9, pp. 147-148]. Let Q
be a prime ideal of E with ht 0 > 1. Then E, is a valuation domain with
dim E,> 1, so E, is not completely integrally closed. Hence E, is not
pseudo-Dedekind by Corollary 2.5.

A domain R is defined to be locally pseudo-Dedekind if R, is pseudo-
Dedekind for every prime ideal P of R. Although R is pseudo-Dedekind
does not necessarily imply that R, is pseudo-Dedekind, we can extend this
local property to R[X] and R(X).

THEOREM 4.4.  The following are equivalent for a domain R.

(1) R is locally pseudo-Dedekind.
(2) R[X] is locally pseudo-Dedekind.
(3) R(X) is locally pseudo-Dedekind.

Proof. (1)=(2). Suppose that R is locally pseudo-Dedekind. Let Q
be a prime ideal of R[X] and let P=Q R We will show that
TS N(Rp)={feRy[X]|4,=Rp} where T=R[X]\Q. Let feT. Then
S¢P[X] and hence 4, & P. So (A;),= R, and therefore 4,= R, if we
consider f as a polynomial over R,. Thus T N(R,). Clearly Tn R=
(RIXN\Q)n R=R\P. Hence R[X]r=(R[X]p)r=(Rp[X])rso R[X],
=R,[X]; 1s a pseudo-Dedekind domain by Theorem 4.1. (2)=>(3).
Suppose that R[ X] is locally pseudo-Dedekind and let Q, be a prime ideal
of R(X)=R[X], where N={fe R[X]|A,= R} and Q is a prime ideal of
R{X] such that 9nN=@F. Now R(X),,=(R[X]y)o,=R[X], is
pseudo-Dedekind by assumption. (3)=>(1). Let P be a prime ideal of R.
Clearly P[X]nN=. Now R(X)prv1,=(R[XIN)prx1y=R[X1prx7=
Rp(X). Hence Rp(X)=R(X)prxy, is pseudo-Dedekind by assumption.
Hence R, is a pseudo-Dedekind domain by Corollary 4.3.

In [10], Matsuda proved that the group ring R[X;G] is a pseudo-
principal domain if and only if R is a pseudo-principal domain and G has
type (0,0, ...). We extend this result to pseudo-Dedekind domains.

THEOREM 4.5. R[X; G] is a pseudo-Dedekind domain if and only if R is
a pseudo-Dedekind domain and G has type (0,0, ..).

Proof. Suppose R is a pseudo-Dedekind domain and G has type
(0,0,..). Let N'={feR[Y]|A;=R} and N={feD[Y]|4,= D} where
D=R[X;G]. Clearly N'c&N. Now D[Y]y=R[X;G][Y]y=
RIYI[X;Gly=R[Y]n[X;G]=R(Y)[X;G] is a pseudo-principal
domain. Since N'S N, D is a pseudo-Dedekind domain by Theorem 4.2.

Conversely, suppose that D=R[X;G] is pseudo-Dedekind. Then
DEY]y =R(Y)[X;G] is pseudo-Dedekind by Theorem 4.2. Since
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R(Y)[X; G] is integrally closed, Pic(R(Y)[X; G])=Pic(R(Y))=0 where
the first equality follows from [4, Corollary 5.6] and the second equality
foliows from [1, Theorem 2]. Hence R(Y)[X; G] is pseudo-principal. By
[10, Theorem 8], R(Y) is pseudo-principal and G has type (0,0, ...). By
Theorem 4.2, R is pseudo-Dedekind.
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