Pseudo-Dedekind Domains and Divisorial Ideals in $R[X]_{\tau}$

D. D. ANDERSON AND B. G. KANG

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242

> Communicated by Richard G. Swan Received September 13, 1987

I. INTRODUCTION

Throughout this paper R will be a commutative ring with identity, usually an integral domain. Bourbaki [8] has defined an integral domain R to be pseudo-principal if every divisorial ideal of R is principal. We define an integral domain R to be pseudo-Dedekind if every divisorial ideal of R is invertible. In the second section of this paper, we give several alternative characterizations of pseudo-Dedekind domains. For example, for an integral domain R the following conditions are equivalent: (1) R is pseudo-Dedekind, (2) $(AB)^{-1} = A^{-1}B^{-1}$ for all nonzero fractional ideals A and B of R, (3) is completely integrally closed and the product of divisorial ideals is divisorial, and (4) $((a_{\alpha}))((b_{\beta})) = ((a_{\alpha}b_{\beta}))$ where $\{a_{\alpha}\}, \{b_{\beta}\} \subseteq K$, the quotient field of R.

In the third section, we investigate divisorial ideals in $R[X]_T$ where $T \subseteq N_v = \{f \in R[X] | (A_f)_v = R\}$ is a multiplicatively closed subset of R[X]. The main result of this section is that if R is an essential domain and J is a divisorial ideal of $R[X]_T$, then $J \cap R[X]$ is a divisorial ideal of $R[X]_T$. This result is then used in the fourth section to show that R is pseudo-Dedekind if and only if R(X) is pseudo-principal.

In general, our terminology and notation will follow that given in Gilmer [9]. The reader is referred there for terms and notation not defined in this paper.

II. PSEUDO-DEDEKIND DOMAINS

If R is a Dedekind domain, then the set of nonzero fractional ideals of R forms a group; so $(AB)^{-1} = A^{-1}B^{-1}$ for all nonzero fractional ideals A and B of R. This paper began with the following question. If R is an integral

481/122/2-5

323

domain, when is $(AB)^{-1} = A^{-1}B^{-1}$ for all nonzero fractional ideals A and B of R? We begin by considering this question in a slightly more general context.

Thus let R be a commutative ring with identity having total quotient ring T(R). Let $\mathscr{F}_r(R)$ be the set of *regular* fractional ideals of R. As usual, for $A \in \mathscr{F}_r(R)$, $A^{-1} = \{x \in T(R) | xA \subseteq R\} \in \mathscr{F}_r(R)$. We denote $(A^{-1})^{-1}$ by A_v and call A divisorial if $A = A_v$. If $A \in \mathscr{F}_r(R)$, then $A \subseteq A_v \subseteq$ $\bigcap \{Rx | Rx \supseteq A \text{ for } Rx \in \mathscr{F}_r(R)\}$. If R is an integral domain (more generally a Marot ring), then $A_v = \bigcap \{Rx | Rx \supseteq A \text{ for } Rx \in \mathscr{F}_r(R)\}$, but in general \subseteq may be proper [7].

 $A \in \mathscr{F}_r(R)$ is said to be *v*-invertible if A is a unit in the divisor monoid $\mathscr{D}(R)$ of divisorial ideals with the *v*-product $A * B = (AB)_v$; i.e., there exists $B \in \mathscr{F}_r(R)$ with $(AB)_v = R$. But then $AB \subseteq (AB)_v = R$ so $B \subseteq A^{-1}$. Hence $R = (AB)_v \subseteq (AA^{-1})_v \subseteq R$, so $R = (AA^{-1})_v$. It is well known that every element of $\mathscr{F}_r(R)$ is *v*-invertible $\Leftrightarrow \mathscr{D}(R)$ is a group $\Leftrightarrow R$ is completely integrally closed.

Let $A, B \in \mathscr{F}_r(R)$. Now $(A^{-1}B^{-1})AB = (A^{-1}A)(B^{-1}B) \subseteq R \cdot R = R$, so we have $A^{-1}B^{-1} \subseteq (AB)^{-1}$. Since $(AB)^{-1}$ is divisorial, we even have $A^{-1}B^{-1} \subseteq (A^{-1}B^{-1})_v \subseteq (AB)^{-1}$. We begin by considering when either of these two containments may be replaced by equality.

THEOREM 2.1. For $A \in \mathcal{F}_r(R)$, the following statements are equivalent.

- (1) $(AB)^{-1} = (A^{-1}B^{-1})_v$ for all $B \in \mathscr{F}_r(R)$.
- (2) $(AB)^{-1} = (A^{-1}B^{-1})_v$ for all divisorial ideals B.
- (3) $(AA^{-1})^{-1} = (A^{-1}A_v)_v (= (AA^{-1})_v).$
- (4) A is v-invertible.

Proof. (1) \Rightarrow (2) \Rightarrow (3). Clear. (3) \Rightarrow (4). Now $AA^{-1} \subseteq R$, so $(AA^{-1})^{-1} \supseteq R$. However, $(AA^{-1})^{-1} = (A^{-1}A_v)_v = (A^{-1}A)_v \subseteq R$, so $(AA^{-1})^{-1} = R$ and hence $(AA^{-1})_v = R$. Therefore A is v-invertible. (4) \Rightarrow (1). Suppose that A is v-invertible. We always have $(AB)^{-1} \supseteq (A^{-1}B^{-1})_v$. Now $(A(AB)^{-1}) B \subseteq R$, so $A(AB)^{-1} \subseteq B^{-1}$. Hence $A^{-1}A(AB)^{-1} \subseteq A^{-1}B^{-1}$, so $(AB)^{-1} = (A^{-1}A(AB)^{-1})_v \subseteq (A^{-1}B^{-1})_v$. Therefore $(AB)^{-1} = (A^{-1}B^{-1})_v$.

COROLLARY 2.2. For a ring R, the following statements are equivalent.

- (1) $(A^{-1}B^{-1})_v = (AB)^{-1}$ for $A, B \in \mathscr{F}_r(R)$.
- (2) R is completely integrally closed.

LEMMA 2.3. For a ring R, the following statements are equivalent.

- (1) $A^{-1}B^{-1} = (A^{-1}B^{-1})_v$ for $A, B \in \mathscr{F}_r(R)$.
- (2) The product of divisorial ideals is divisorial.

Proof. (2) \Rightarrow (1). This is clear since A^{-1} and B^{-1} are divisorial. (1) \Rightarrow (2). Let C and D be divisorial ideals. Then $CD = ((C^{-1})^{-1}(D^{-1})^{-1})_v$ is divisorial.

THEOREM 2.4. For a ring R and $A \in \mathcal{F}_r(R)$, the following statements are equivalent.

- (1) $(AB)^{-1} = A^{-1}B^{-1}$ for all $B \in \mathscr{F}_r(R)$.
- (2) $(AB)^{-1} = A^{-1}B^{-1}$ for all divisorial ideals B of R.
- (3) $(AA^{-1})^{-1} = A^{-1}(A^{-1})^{-1}$.
- (4) A_v is invertible.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$. Clear. $(3) \Rightarrow (4)$. Now $AA^{-1} \subseteq R$ so $R \subseteq (AA^{-1})^{-1} = A^{-1}A_v$. But $A^{-1}A_v = A_v^{-1}A_v \subseteq R$, so $A^{-1}A_v = R$. Hence A_v is invertible. $(4) \Rightarrow (1)$. We always have $(AB)^{-1} \supseteq A^{-1}B^{-1}$. Now $A(AB)^{-1} B \subseteq R$ so $A(AB)^{-1} \subseteq B^{-1}$. Hence $A_v(AB)^{-1} \subseteq (A(AB)^{-1})_v \subseteq B^{-1}$. But A_v is invertible, so $(AB)^{-1} \subseteq A^{-1}B^{-1}$.

COROLLARY 2.5. For a commutative ring R, the following statements are equivalent.

- (1) $(AB)^{-1} = A^{-1}B^{-1}$ for all $A, B \in \mathcal{F}_{r}(R)$.
- (2) For each $A \in \mathcal{F}_r(R)$, A_v is invertible.

(3) R is completely integrally closed and the product of divisorial ideals is divisorial.

(4) $\mathscr{D}(R)$ is a group under the usual ideal product.

Proof. (1) \Leftrightarrow (2). Theorem 2.4. (2) \Rightarrow (4). Clear. (4) \Rightarrow (3). $\mathscr{D}(R)$ is a group under the usual product implies that $A * B = (AB)_v = AB$, so the product of divisorial ideals is divisorial. Since $\mathscr{D}(R)$ is a group, R is completely integrally closed. (3) \Rightarrow (2). $R = (AA^{-1})_v = (A_vA^{-1})_v = A_vA^{-1}$ since A_v and A^{-1} are divisorial. Hence A_v is invertible.

R can be completely integrally closed without having the property that the product of divisorial ideals is divisorial. For example, a Krull domain is completely integrally closed but the product of divisorial ideals is divisorial if and only if R is locally factorial. Also, the product of divisorial ideals can be divisorial without R being completly integrally closed. For example, let R be a one-dimensional Gorenstein domain that is not regular. Then every nonzero ideal of R is divisorial so certainly the product of divisorial ideals is divisorial.

Let us now restrict ourselves to integral domains. A domain R is *pseudo-Dedekind* if every divisorial ideal is invertible. If actually every divisorial ideal is principal, R is called *pseudo-principal* [8]. So by Corollary 2.5, $(AB)^{-1} = A^{-1}B^{-1}$ for all nonzero fractional ideals A and B of R if and

only if R is pseudo-Dedekind. Another characterization of pseudo-Dedekind domains may be obtained by considering products of intersections of principal fractional ideals.

Let *R* be an integral domain with quotient field *K*. Let $\{a_{\alpha}\}, \{b_{\beta}\} \subseteq K$. Then certainly $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) \subseteq \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$. A natural question is when do we actually have equality. Observe that if $\bigcap_{\alpha} (a_{\alpha}) = 0$, then we always have equality. (Now $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) = 0$. Let $x \in \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$. Fix $b_0 \in$ $\{b_{\beta}\}$. Then $x \in \bigcap_{\alpha} (a_{\alpha}b_0) = b_0(\bigcap_{\alpha} (a_{\alpha})) = 0$ so x = 0. Hence $\bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta}) = 0$ also.) Thus we can assume that $\bigcap_{\alpha} (a_{\alpha}) \neq 0$ and $\bigcap_{\beta} (b_{\beta}) \neq 0$; in particular, $\{a_{\alpha}\}, \{b_{\beta}\} \subseteq K - \{0\}$.

Suppose that $\{a_{\alpha}\}, \{b_{\beta}\} \subseteq K - \{0\}$. Let $A = (\{a_{\alpha}^{-1}\})$ and $B = (\{b_{\beta}^{-1}\})$. Then $A^{-1} = \bigcap_{\alpha} (a_{\alpha})$ and $B^{-1} = \bigcap_{\beta} (b_{\beta})$. Since $AB = \{\{a_{\alpha}^{-1}b_{\beta}^{-1}\}\}$, we also have that $(AB)^{-1} = \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$. Hence $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) = \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$ translates to the statement that $A^{-1}B^{-1} = (AB)^{-1}$.

THEOREM 2.6. For an integral domain R, the following statements are equivalent.

- (1) R is pseudo-Dedekind.
- (2) $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) = \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta}) \text{ for all } \{a_{\alpha}\}, \{b_{\beta}\} \subseteq K.$
- (3) $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) = \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta}) \text{ for all } \{a_{\alpha}\}, \{b_{\beta}\} \subseteq K \{0\}.$

Proof. We have already noted that $(2) \Leftrightarrow (3)$. $(1) \Rightarrow (3)$. If R is pseudo-Dedekind, then $A^{-1}B^{-1} = (AB)^{-1}$ for all fractional ideals A and B of R. Hence by the above paragraph, $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) = \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$ for $\bigcap_{\alpha} (a_{\alpha}) \neq 0$ and $\bigcap_{\beta} (b_{\beta}) \neq 0$. But as previously noted, if $\bigcap_{\alpha} (a_{\alpha}) = 0$ or $\bigcap_{\beta} (b_{\beta}) = 0$, the result is trivial. $(2) \Rightarrow (1)$. This again follows from the above paragraph.

Note that we always have $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) \subseteq ((\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})))_{\nu} \subseteq \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$. What is somewhat surprising is that $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta}))$ can be divisorial wthout being equal to $\bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$. Let *R* be a one-dimensional Gorenstein domain that is not regular. Since every nonzero ideal of *R* is divisorial, $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta}))$ is divisorial. Since *R* is not pseudo-Dedekind, we must have some $(\bigcap_{\alpha} (a_{\alpha}))(\bigcap_{\beta} (b_{\beta})) \neq \bigcap_{\alpha,\beta} (a_{\alpha}b_{\beta})$.

The following interesting lemma gives an alternative proof of Theorem 2.6.

LEMMA 2.7. Let R be an integral domain. Then $\bigcap_{\alpha} (x_{\alpha}) \neq 0$ is invertible if and only if $(\bigcap_{\alpha} (x_{\alpha}))(\bigcap_{\beta} (y_{\beta})) = \bigcap_{\alpha} (x_{\alpha}y_{\beta})$ for all $\{y_{\beta}\} \subseteq K$ (or $K - \{0\}$).

Proof. (\Rightarrow). Suppose that $\bigcap_{\alpha} (x_{\alpha}) \neq 0$ is invertible. Then $(\bigcap_{\alpha} (x_{\alpha}))$ $(\bigcap_{\beta} (y_{\beta})) = \bigcap_{\beta} (\bigcap_{\alpha} (x_{\alpha}) y_{\beta})) = \bigcap_{\beta} (\bigcap_{\alpha} (x_{\alpha} y_{\beta})) = \bigcap_{\alpha,\beta} (x_{\alpha} y_{\beta})$. (Here we have used the fact that if *I* is an invertible ideal, then $I(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} IA_{\alpha}$ for any collection $\{A_{\alpha}\}$ of fractional ideals of *R* [9, p. 80].) $(\Leftarrow). \text{ Now } (\bigcap_{\alpha} (x_{\alpha}))^{-1} \text{ is divisorial, so } (\bigcap_{\alpha} (x_{\alpha}))^{-1} = \bigcap_{\beta} (y_{\beta}) \text{ for some} \{y_{\beta}\} \subseteq K - \{0\}. \text{ Now } R \supseteq (\bigcap_{\alpha} (x_{\alpha}))(\bigcap_{\alpha} (x_{\alpha}))^{-1} = (\bigcap_{\alpha} (x_{\alpha}))(\bigcap_{\beta} (y_{\beta})) = \bigcap_{\alpha,\beta} (x_{\alpha}y_{\beta}). \text{ Now for each } \alpha_{0}, (x_{\alpha}) \supseteq \bigcap_{\alpha} (x_{\alpha}) \Rightarrow (x_{\alpha}^{-1}) \subseteq (\bigcap_{\alpha} (x_{\alpha}))^{-1} = \bigcap_{\beta} (y_{\beta}) \subseteq (y_{\beta}). \text{ So } R = (\bigcap_{\alpha} (x_{\alpha}))(\bigcap_{\beta} (y_{\beta})) = (\bigcap_{\alpha} (x_{\alpha}))(\bigcap_{\alpha} (x_{\alpha}))^{-1} \text{ and} hence } \bigcap_{\alpha} (x_{\alpha}) \text{ is invertible.}$

In view of Theorem 2.6, the following question is natural. Let R be an integral domain that satisfies $(\bigcap (a_{\alpha}))(\bigcap (b_{\beta})) = \bigcap (a_{\alpha}b_{\beta})$ for all subsets $\{a_{\alpha}\}, \{b_{\beta}\} \subseteq R$. Is R pseudo-Dedekind? While we have not been able to answer this question in general, we remark that the answer is affirmative under additional hypothesis such as R having ACC on divisorial ideals or R being a GCD domain.

Recall that one of the many conditions equivalent to R being a GCD domain is that every finite-type divisorial ideal is principal. R is said to be a G-GCD domain (generalized GCD domain) if every finite type divisorial ideal of R is invertible. For results on G-GCD domains, the reader is referred to [3].

Suppose that R is pseudo-Dedekind. Then R is a G-GCD domain and R is completely integrally closed. Since R is a G-GCD domain, Inv(R), the group of invertible ideals of R, is a lattice ordered group where as usual $I \leq J \Rightarrow J \subseteq I, I \lor J = I \cap J$ and $I \land J = (I+J)_v$. Since every divisorial ideal is invertible, Inv(R) is even complete. For let $\{I_x\} \subseteq Inv(R)$, with $I_x \leq B$. Then $B \subseteq \bigcap I_x$, so $\bigcap I_x \neq 0$ and since each I_x is invertible, $\bigcap I_x$ is a divisorial ideal and hence invertible since R is pseudo-Dedekind. Hence $\bigvee I_x = \bigcap I_x$.

The converse is also true. Suppose that Inv(R) is a complete lattice ordered group. Let *I* be a divisorial ideal, so $I = \bigcap_{\alpha} Rr_{\alpha}$. Now $I \neq 0$, so for $0 \neq x \in I$, $xR \subseteq Rr_{\alpha}$ so $Rr_{\alpha} \leq xR$. Hence $\{Rr_{\alpha}\}$ is a collection of invertible ideals that is bounded above, so $\bigvee Rr_{\alpha} = J$, say, where *J* is an invertible ideal. But $Rr_{\alpha} \leq \bigvee Rr_{\alpha} = J$, so $J \subseteq Rr_{\alpha}$. Hence $J \subseteq \bigcap Rr_{\alpha} = I$. But, if $0 \neq y \in I$, then $yR \subseteq I \subseteq Rr_{\alpha}$. Thus $Rr_{\alpha} \leq yR$, so $J = \bigvee Rr_{\alpha} \leq yR$, and hence $yR \subseteq J$. Hence I = J is invertible. So *R* is pseudo-Dedekind.

Now if R is a G-GCD domain, Inv(R) is order isomorphic to $G(R^v)$, the group of divisibility of R^v (see [3, p. 219]). So if R is pseudo-Dedekind, $Inv(R^v)$ is a complete lattice ordered group (every invertible ideal of R^v is principal), so R^v is pseudo-principal So R pseudo-Dedekind implies that R^v is pseudo-principal. The converse is false. If R is a Krull domain, R^v is always a PID and hence pseudo-principal. However, for R a G-GCD domain, it is easily seen that R is pseudo-Dedekind (Inv(R) is complete) if and only if R^v is pseudo-principal ($G(R^v)$ is complete). In particular, a valuation domain is pseudo-principal if and only if its value group is isomorphic to a complete subgroup of the real numbers.

Another characterization of pseudo-Dedekind domains is as follows. R is

pseudo-Dedekind if and only if Cl(R) = Pic(R). Here Cl(R) is the divisor class monoid of R, that is, $Cl(R) = \mathcal{D}(R)/Princ(R)$ where Princ(R) is the subgroup of Inv(R) consisting of principal fractional ideals. Also, Pic(R) =Inv(R)/Princ(R) is the Picard group of R. Indeed, if R is pseudo-Dedekind, R is completely integrally closed, so $\mathcal{D}(R)$ is a group and hence Cl(R) is a group. Since every divisorial ideal of R is invertible, clearly Cl(R) = Pic(R). Conversely, suppose that the divisor class monoid $\mathcal{D}(R)/Princ(R) = Pic(R)$. This says that every divisorial ideal is invertible and hence R is pseudo-Dedekind.

The following theorem gives a summary of our various characterizations of pseudo-Dedekind domains.

THEOREM 2.8. For an integral domain R, the following conditions are equivalent.

(1) R is a pseudo-Dedekind domain; i.e., every divisorial ideal of R is invertible.

(2) $(AB)^{-1} = A^{-1}B^{-1}$ for all nonzero fractional ideals A and B of R.

(3) $(\cap (a_{\alpha}))(\cap (b_{\beta})) = \cap (a_{\alpha}b_{\beta})$ for $\{a_{\alpha}\}, \{b_{\beta}\} \subseteq K$.

(4) *R* is completely integrally closed and the product of divisorial ideals is divisorial.

(5) The divisor monoid $\mathcal{D}(R)$ is a group under the usual ideal product.

(6) $\operatorname{Cl}(R) = \operatorname{Pic}(R)$.

(7) Inv(R), the group of invertible ideals of R, is a complete lattice ordered group.

Zafrullah [12] has defined an integral domain R to be a *-domain if $(\bigcap_{i=1}^{n} (a_i))(\bigcap_{j=1}^{m} (b_j)) = \bigcap_{i,j} (a_i b_j)$ for all $a_1, ..., a_n, b_1, ..., b_m \in R$ (or equivalently, $\in K$). We observed that R is a *-domain if and only if $(AB)^{-1} = A^{-1}B^{-1}$ for all finitely generated nonzero fractional ideals A and B of R. This lead us to investigate domains satisfying $(AB)^{-1} = A^{-1}B^{-1}$ for all nonzero fractional ideals. After our research was completed, we learned that Zafrullah [13] had independently obtained the equivalence of (1), (2), (4), and (5) of Theorem 2.8 and the result (proved in the final section) that R pseudo-Dedekind implies that R[X] is pseudo-Dedekind.

We end this section with some examples of pseudo-Dedekind domains. Clearly a Dedekind domain is a pseudo-Dedekind domain. More generally, a locally factorial Krull domain (sometimes called a π -domain) is pseudo-Dedekind [2]. Under certain finiteness conditions, the converse is true. Suppose, for example, that R is a pseudo-Dedekind domain with ACC on divisorial ideals. Then since R is also completely integrally closed, R is a Krull domain. It then follows from [2] that R is a locally factorial Krull domain. In Section 4 we show that the following statements are equivalent: (1) R is pseudo-Dedekind, (2) R[X] is pseudo-Dedekind, (3) R(X) is pseudo-Dedekind, (4) R(X) is pseudo-principal. We also give an example to show that R being pseudo-Dedekind does not imply that R_S is pseudo-Dedekind.

III. DIVISORIAL IDEALS IN $R[X]_T$

Throughout this section, R will denote an integral domain with quotient field K. For $f = a_0 + a_1 X + \cdots + a_n X^n \in K[X]$, the content A_f of f is the fractional ideal of R generated by $a_0, a_1, ..., a_n$. N_v will denote the multiplicatively closed subset $\{f \in R[X] | (A_f)_v = R\}$ of R[X]. T will usually denote a multiplicatively closed subset of N_v . An integral domain R is said to be essential if there is a set of prime ideals $\{P_{\alpha}\}$ of R with $R = \bigcap R_{P_{\alpha}}$ and each $R_{P_{\alpha}}$ is a valuation domain. The main result of this section is Theorem 3.10 which states that if R is an essential domain and J is a divisorial ideal of $R[X]_T$, then $J \cap R[X]$ is a divisorial ideal of R[X]. However, our first result gives an important case when the extension of a divisorial ideal remains divisorial.

PROPOSITION 3.1. Let R be an integral domain and T a multiplicatively closed subset of R[X] contained in N_v . Let I be a nonzero fractional ideal of R. Then

- (1) $(I[X]_T)^{-1} = I^{-1}[X]_T$, and
- $(2) \quad (I[X]_T)_v = I_v [X]_T.$

Proof. (1) It is clear that $I^{-1}[X]_T \subseteq (I[X]_T)^{-1}$. Let $0 \neq a \in I$. Then $aR[X]_T \subseteq I[X]_T$, so $(I[X]_T)^{-1} \subseteq a^{-1}R[X]_T \subseteq K[X]_T$. Hence an element of $(I[X]_T)^{-1}$ has the form f/h where $f \in K[X]$ and $h \in T$. Moreover, $f \in (I[X]_T)^{-1}$. Hence $fI \subseteq fI[X]_T \subseteq R[X]_T$. So for $b \in I, bf \in R[X]_T$. Hence $bfg \in R[X]$ for some $g \in N_v$. Then $bA_f = A_{bf} \subseteq (A_{bf})_v = (A_{bf}(A_g)_v)_v = (A_{bf}A_g)_v = (A_{bfg})_v \subseteq R$. (Here $(A_{bf}A_g)_v = (A_{bfg})_v$ via the Dedekind–Mertens Theorem [9, Theorem 28.1] and the fact that $(A_g)_v = R$.) Since $bA_f \subseteq R$ for all $b \in I$, we have $A_f \subseteq I^{-1}$. Hence $f \in I^{-1}[X]$, so $f/h \in I^{-1}[X]_T$. Therefore $(I[X]_T)^{-1} = I^{-1}[X]_T$. (2) $(I[X]_T)_v = ((I[X]_T)^{-1})^{-1} = (I^{-1}[X]_T)^{-1} = (I^{-1}[X]_T)^{-1}$.

Let $A \subseteq B$ be integral domains. Let T be a multiplicatively closed subset of B. T is said to be weakly saturated in B with respect to A, if $\overline{T \cap A} = \overline{T} \cap A$ where $\overline{T \cap A}$ is the saturation of $T \cap A$ in A and \overline{T} is the saturation of T in B. T is said to be locally weakly saturated in B with respect to A if T, as a multiplicatively closed subset of B_P , is weakly saturated in B_P with respect to A_P for each prime ideal P of A such that $P \cap (T \cap A) = \emptyset$. Lemma 3.2 gives two conditions equivalent to T being weakly saturated in B with respect to A.

LEMMA 3.2. The following statements are equivalent for domains $A \subseteq B$ and for a multiplicatively closed subset T of B.

- (1) T is weakly saturated in B with repect to A.
- (2) $Ba \cap T \neq \emptyset$ implies $Aa \cap T \neq \emptyset$ for every $a \in A$.
- (3) $ab \in T, a \in A, b \in B$ implies $aa' \in T$ for some $a' \in A$.

Proof. (1) \Rightarrow (2). Let $a \in A$. Suppose $Ba \cap T \neq \emptyset$. Then $a \in \overline{T}$. Hence $a \in \overline{T} \cap A = \overline{T \cap A}$. Thus $aA \cap T \neq \emptyset$.

 $(2) \Rightarrow (1)$. $\overline{T} \cap A$ is saturated since it is the contraction of the saturated set \overline{T} . Hence $T \cap A \subseteq \overline{T} \cap A$ implies $\overline{T \cap A} \subseteq \overline{T} \cap A$. Conversely, let $a \in \overline{T} \cap A$. Then $aB \cap T \neq \emptyset$. Hence $Aa \cap T \neq \emptyset$ by assumption, and therefore $a \in \overline{T \cap A}$. (2) \Leftrightarrow (3). Obvious.

As previously mentioned, we will be mainly interested in the case where $T \subseteq N_v$. The next two lemmas show that in this case T is both weakly saturated and locally weakly saturated in R[X] with respect to R.

LEMMA 3.3. Let T be a multiplicatively closed subset of R[X] such that $T \subseteq N_v$ and $1 \in T$. Then T is weakly saturated in R[X] with respect to R.

Proof. Let $af \in T$ where $a \in R$ and $f \in R[X]$. Then $(a) \supseteq (aA_f)_v = R$ since $T \subseteq N_v$. So (a) = R, i.e., a is a unit. Thus $1 \in aR \cap T$. Hence by Lemma 3.2, T is weakly saturated in R[X] with respect to R.

LEMMA 3.4. Let T be a multiplicatively closed subset of R[X] such that $1 \in T$ and $T \subseteq N_v$. Then T is locally weakly saturated in R[X] with respect to R.

Proof. Let P be a prime ideal of R. First note that $N_v(R) \subseteq N_v(R_P)$. Hence $T \subseteq N_v(R_P)$. By Lemma 3.3, T is weakly saturated in $R_P[X]$ with respect to R_P .

LEMMA 3.5. Let Λ be a nonempty subset of Spec(R) such that $R = \bigcap_{P \in \Lambda} R_P$. Let $T \subseteq N_v$ be a multiplicatively closed subset of R[X]. Then $\bigcap_{P \in \Lambda} (R_P[X]_T) = R[X]_T$.

Proof. Clearly $R[X]_T \subseteq \bigcap_{P \in A} (R_P[X]_T)$. Conversely, let $f/t \in \bigcap_{P \in A} (R_P[X]_T)$, where $f \in K[X]$ and $t \in T$. Then $f \in R_P[X]_T$ for each $P \in A$. So fg = h for some $g \in T$ and $h \in R_P[X]$. Now $(A_f)_v = (A_{fg})_v = (A_h)_v$ by the Dedekind-Mertens Theorem since $(A_g)_v = R$. We will show that

 $(A_h)_v \subseteq R_P$ which implies that $A_f \subseteq R_P$. There exists an $s \in R \setminus P$ such that $sh \in R[X]$. Then $s(A_h)_v = (sA_h)_v = (A_{sh})_v \subseteq R$ since $sh \in R[X]$. Hence $(A_h)_v \subseteq s^{-1}R \subseteq R_P$. Therefore $f \in A_f[X] \subseteq (\bigcap_{P \in A} R_P)[X] = R[X]$. Hence $f/t \in R[X]_T$. Therefore $\bigcap_{P \in A} (R_P[X]_T) = R[X]_T$.

The next two technical lemmas are used in proving Theorems 3.8 and 3.10 which are the main results of this section.

LEMMA 3.6. Let R be a domain with quotient field K and let T be a weakly saturated subset of R[X] with respect to R. Let $S = T \cap R$, $R\{X\} = R[X]_T$, and f, $g \in R[X]$. If R_S is a GCD domain, then

(1) $fR{X} \cap gR[X] = f_1R{X} \cap gR[X] = f_1R_S[X] \cap gR[X]$ (so that $fR{X} \cap gR_S[X] = f_1R{X} \cap gR_S[X] = f_1R{X} \cap gR_S[X] \cap gR_S[X]$) for any $f_1 \in R_S[X]$ which has the minimal degree with respect to $f = f_1t$ for some $t \in \overline{T}$.

(2) Moreover, if deg $f = \text{deg } f_1$, then $fR\{X\} \cap gR_S[X] = fR_S[X] \cap gR_S[X]$.

Proof. (1) If A is an R-module, then we denote $A[X]_T$ by $A\{X\}$. We may assume that T is saturated in R[X] since $R_{\overline{T} \cap R} = R_{\overline{T} \cap R} = R_{\overline{S}} = R_{\overline{S}}$. Hence assume that T is saturated in R[X] and that R_s is a GCD domain. Let $B = \{f_1 \in R_S[X] | f = f_1 t \text{ for some } t \in T\}$. Now $B \neq \emptyset$ since $f \in B$. Let f_1 be an element of B which has the minimal degree among the elements of B. Then $fR{X} \cap gR[X] = f_1R{X} \cap gR[X]$ since we have $f = f_1t$ where $t \in T$ is a unit in $R\{X\}$. We will show that $f_1 R\{X\} \cap gR[X] =$ $f_1 R_S[X] \cap gR[X]$. Let $f_1 g'/s' = h \in f_1 R\{X\} \cap gR[X]$ where $g' \in R[X]$, $s' \in T$, and $h \in gR[X]$. Let (g', s') be the GCD of g' and s' in $R_s[X]$. (Note that $R_S[X]$ is a GCD domain since R_S is a GCD domain). Now $g' = (g', s')g_1$ and $s' = (g', s')s_1$ for some $g_1, s_1 \in R_S[X]$. Also $s''(g', s'), s''g_1$, and $s''s_1 \in R[X]$ for some $s'' \in S$. And $(s''(g', s'))(s''s_1) =$ $(s'')^2 s' \in S^2 T = T$. Hence $s'' s_1 \in T$ since T is saturated in R[X]. So g'/s' = $g_1/s_1 = s''g_1/s''s_1$, $(s''g_1, s''s_1) = (g_1, s_1) = 1$ in $R_s[X]$, and $s''s_1 \in T$. Hence we may assume that (g', s') = 1 in $R_s[X]$. Now $f_1g' = s'h \Rightarrow s'|f_1g'$ in $R_{S}[X]$. Since (s', g') = 1 in $R_{S}[X]$, we have $s' \mid f_{1}$ in $R_{S}[X]$. Hence deg s' = 0 by the minimality of deg f_1 . So $s' \in T \cap R = S$ and hence $h = f_1 g'/s' \in f_1 R_S[X] \cap gR[X]$. Thus $f_1 R\{X\} \cap gR[X] \subseteq f_1 R_S[X] \cap gR[X]$ gR[X]. Since the reverse containment is obvious, we have $f_1R\{X\} \cap$ $gR[X] = f_1R_S[X] \cap gR[X]$. Hence $fR\{X\} \cap gR[X] = f_1R\{X\} \cap gR[X]$ $=f_1R_S[X] \cap gR[X]$. Localizing the previous equalities by S, we get $fR{X} \cap gR_{S}[X] = f_{1}R{X} \cap gR_{S}[X] = f_{1}R_{S}[X] \cap gR_{S}[X].$

(2) Moreover, if deg $f = \text{deg } f_1$, then $t \in \overline{T} \cap R = \overline{S}$ where $f = f_1 t$. Hence $f = f_1 t$, $t \in \overline{S}$. Then $fR_S[X] = fR_{\overline{S}}[X] = f_1R_{\overline{S}}[X] = f_1R_S[X]$ so that $fR\{X\} \cap gR_S[X] = fR_S[X] \cap gR_S[X]$. LEMMA 3.7. Let R be a domain with quotient field K. Let T be a locally weakly saturated subset of R[X] with respect to R. Let $S = T \cap R$, f, $g \in K[X] \setminus \{0\}$ and $R\{X\} = R[X]_T$. If R_S is locally a GCD domain, then $fR\{X\} \cap gR_S[X]$ is a divisorial ideal of $R_S[X]$.

Proof. We may assume that $f, g \in R[X]$ and (f, g) = 1 in K[X]. Let $Max(R_S) = \{M_{\alpha S}\}_{\alpha \in A}$ where each M_{α} is a prime ideal of R which is maximal with respect to $M_{\alpha} \cap S = \emptyset$. If A is an R_S -module, then $A_{M_{\alpha S}} = A_{M_{\alpha}}$ since $M_{\alpha} \cap S = \emptyset$. We will denote $A_{M_{\alpha S}} = A_{M_{\alpha}}$ by A_{α} . If A is an R-module, then we also denote $A_{M_{\alpha}}$ by A_{α} and $A[X]_T$ by $A\{X\}$. Hence $R_{\alpha}\{X\} = R_{\alpha}[X]_T = (R\{X\})_{\alpha}$.

Now $(fR{X} \cap gR_S[X])_{\alpha} = fR_{\alpha}{X} \cap g(R_S)_{\alpha}[X] = fR_{\alpha}{X} \cap gR_{\alpha}[X]$. Also, $R_{\alpha}{X} = R_{\alpha}[X]_{T}$ and $\overline{T} \cap R_{\alpha} = \overline{T} \cap \overline{R}_{\alpha} = \overline{S}$ (since $T \cap R_{\alpha} \subseteq R[X] \cap K = R$, we have $T \cap R_{\alpha} = T \cap R = S$), so that $(R_{\alpha})_{\overline{T} \cap R_{\alpha}} = (R_{\alpha})_{\overline{S}} = (R_{\alpha})_{\overline{S}} = R_{\alpha}$ where \overline{S} is the saturation of S in R_{α} . Hence by Lemma 3.6, there exist $f_{\alpha} \in R_{\alpha}[X]$ such that $fR_{\alpha}{X} \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}{X} \cap gR_{\alpha}[X] = f_{\alpha}(R_{\alpha})_{\overline{S}}[X] \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}[X] \cap gR_{\alpha}[X] = f_{\alpha}(R_{\alpha})_{\overline{S}}[X] \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}[X] \cap gR_{\alpha}[X] = f_{\alpha}(R_{\alpha})_{\overline{S}}[X] \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}[X]$. Hence there exist $s_{\alpha} \in S_{\alpha} = R \setminus M_{\alpha}$ so that $f \in f_{\alpha}/s_{\alpha}R[X]$. Hence $fR{X} \subseteq f_{\alpha}/s_{\alpha}R{X}$. So $I \equiv fR{X} \cap gR_{S}[X] \subseteq \bigcap_{\alpha} (f_{\alpha}/s_{\alpha}R{X} \cap gR_{S}[X]) \equiv J$. Now $J_{\alpha} \subseteq (f_{\alpha}/s_{\alpha}R_{\alpha}{X} \cap gR_{S}[X])_{\alpha} = f_{\alpha}/s_{\alpha}R_{\alpha}{X} \cap gR_{\alpha}[X] = f_{\alpha}/s_{\alpha}R_{\alpha}{X} \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] \cap gR_{\alpha}[X] \cap gR_{\alpha}[X] \cap gR_{\alpha}[X] = fR_{\alpha}X \cap gR_{\alpha}[X] \cap gR_{$

Claim. deg $f_{\alpha} = \text{deg } f_{\beta}$ for every $\alpha, \beta \in A$.

Now $fR_{\alpha}\{X\} \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}[X] \cap gR_{\alpha}[X]$. Localizing both sides by $R \setminus \{0\}$, we get $fK[X]_T \cap gK[X] = f_{\alpha}K[X] \cap gK[X] = f_{\alpha}gK[X]$ since $(f_{\alpha}, g) = 1$ in K[X] because $f_{\alpha}|f$ and (f, g) = 1 in K[X]. So $f_{\alpha}gK[X] = f_{\beta}gK[X]$ and therefore $f_{\alpha}K[X] = f_{\beta}K[X]$.

Suppose that deg $f = \text{deg } f_{\alpha}$ for some α , then by the above claim, deg $f = \text{deg } f_{\alpha}$ for every $\alpha \in \Lambda$. Then by Lemma 3.6, $fR_{\alpha}\{X\} \cap gR_{\alpha}[X] = f(R_{\alpha})_{S}[X] \cap g(R_{\alpha})_{S}[X] = fR_{\alpha}[X] \cap gR_{\alpha}[X]$ for every $\alpha \in \Lambda$. Hence $(fR\{X\} \cap gR_{S}[X])_{\alpha} = (fR_{S}[X] \cap gR_{S}[X])_{\alpha}$ as R_{S} -modules for every $\alpha \in \Lambda$. Hence $fR\{X\} \cap gR_{S}[X] = fR_{S}[X] \cap gR_{S}[X]$, which is a divisorial ideal of $R_{S}[X]$. Thus we may assume that deg $f > \text{deg } f_{\alpha}$ for every $\alpha \in \Lambda$. Then by induction on deg f, $fR\{X\} \cap gR_{S}[X] = \bigcap (f_{\alpha}/s_{\alpha}R\{X\} \cap gR_{S}[X])$ is a divisorial deal of $R_{S}[X]$ since it is an intersection of divisorial ideals of $R_{S}[X]$. (Note that if deg f = 0, then deg $f = \text{deg } f_{\alpha}$ for every α , hence this case has already been handled.)

THEOREM 3.8. Let T be a locally weakly saturated subset of R[X] with respect to R. Let $S = T \cap R$. Suppose that R_s is locally a GCD domain. If J is a divisorial ideal of $R[X]_T$, then $J \cap R_s[X]$ is a divisorial ideal of $R_s[X]$. *Proof.* We can assume that J is an integral divisorial ideal of $R[X]_T$. Then $J = \bigcap_{f,g} (f/gR[X]_T)$ where $f/gR[X]_T \supseteq J$ and $f, g \in R[X]$. Now $J \cap R_S[X] = \bigcap (f/gR[X]_T \cap R_S[X]) = \bigcap 1/g(fR[X]_T \cap gR_S[X])$ is a divisorial ideal of $R_S[X]$ since it is an intersection of divisorial ideals by Lemma 3.7.

Recall that an integral domain R is called an essential domain if $R = \bigcap_{P \in A} R_P$ for some collection Λ of prime ideals and each R_P is a valuation domain.

LEMMA 3.9. Let R be an essential domain and let $T \subseteq N_v$ be a multiplicatively closed subset of R[X]. Let $f, g \in K[X] \setminus \{0\}$. Then $f R[X]_T \cap gR[X]$ is a divisorial ideal of R[X].

Proof. Let $R = \bigcap_{P_{\alpha} \in A} R_{P_{\alpha}}$, $A \subseteq \operatorname{Spec}(R)$, where each $R_{P_{\alpha}} = R_{\alpha}$ is a valuation domain. For an *R*-module *A*, $A\{X\}$ is defined to be $A[X]_T$. Now $T \cap R \subseteq N_v \cap R$ = the units of *R* and *T* is a locally weakly saturated multiplicatively closed subset of R[X] with respect to *R* by Lemma 3.4. (We can assume that $1 \in T$.) Hence by Lemma 3.6 applied to R_{α} , there exist $f_{\alpha} \in R_{\alpha}[X]$ such that $fR_{\alpha}\{X\} \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}\{X\} \cap gR_{\alpha}[X] = f_{\alpha}R_{\alpha}[X] \cap gR_{\alpha}[X]$, where $f \in f_{\alpha}R_{\alpha}[X]$. Now there exist $s_{\alpha} \in R \setminus P_{\alpha}$ such that $f \in f_{\alpha}/s_{\alpha}R[X]$. Then $fR\{X\} \subseteq f_{\alpha}/s_{\alpha}R\{X\}$. Hence $fR\{X\} \cap gR[X] \subseteq \bigcap_{\alpha} (f_{\alpha}/s_{\alpha}R\{X\} \cap gR[X]) \subseteq \bigcap_{\alpha} (f_{\alpha}/s_{\alpha}R\{X\} \cap gR_{\alpha}[X]) = f(\bigcap_{\alpha}R_{\alpha}\{X\}) \cap gR[X] = f(\bigcap_{\alpha}R_{\alpha}[X]) = fR\{X\} \cap gR[X] = \bigcap_{\alpha} (f_{\alpha}/s_{\alpha}R\{X\} \cap gR[X]) = f(\bigcap_{\alpha}R_{\alpha}\{X\}) \cap gR[X] = f(\bigcap_{\alpha}R_{\alpha}\{X\}) \cap gR[X] = f(\bigcap_{\alpha}R_{\alpha}\{X\}) \cap gR[X] = f(\bigcap_{\alpha}R_{\alpha}\{X\}) \cap gR[X] = f(\bigcap_{\alpha}R_{\alpha}\{X\}) \cap gR[X]$ where the last equality follows from Lemma 3.5. Thus $fR\{X\} \cap gR[X] = \bigcap_{\alpha} (f_{\alpha}/s_{\alpha}R\{X\} \cap gR[X])$. Then as in the proof of Lemma 3.7, we conclude that $fR\{X\} \cap gR[X]$ is a divisorial ideal of R[X] by induction on the degree of f under the assumption that (f, g) = 1 in K[X] and $f, g \in R[X]$.

THEOREM 3.10. Let R be an essential domain and let $T \subseteq N_v$ be a multiplicatively closed subset of R[X]. If J is a divisorial ideal of $R[X]_T$, then $J \cap R[X]$ is a divisorial ideal of R[X].

Proof. Similar to the proof of Theorem 3.8.

COROLLARY 3.11. Suppose that R is an essential domain. Let $R(X) = R[X]_N$ where $N = \{f \in R[X] | A_f = R\}, R \langle X \rangle = R[X]_T$ where $T = \{f \in R[X] | \text{ the leading coefficient of } f \text{ is a unit} \}$, and $R\{X\} = R[X]_{Nv}$. If J is a divisorial ideal of $R(X), R \langle X \rangle$, or $R\{X\}$, then $J \cap R[X]$ is a divisorial ideal of R[X].

Proof. This follows from Theorem 3.10.

ANDERSON AND KANG

IV. EXTENSIONS OF PSEUDO-DEDEKIND DOMAINS

The purpose of this section is to show that the domains R, R[X], and R(X) are simultaneously pseudo-Dedekind domains. We begin with some slightly more general results.

THEOREM 4.1. If R is pseudo-Dedekind, then $R[X]_T$ is a pseudo-Dedekind domain for any multiplicatively closed subset $T \subseteq N_r$.

Proof. Let J be an integral divisorial ideal of $R[X]_T$. Then by Theorem 3.10, $J \cap R[X]$ is a divisorial ideal of R[X]. Since R is integrally closed, $J \cap R[X] = fI[X]$ for some $0 \neq f \in K[X]$ and a divisorial ideal I of R [11, Lemma 3.2.]. Since R is pseudo-Dedekind, I is invertible and hence $J \cap R[X] = fI[X]$ is invertible. Therefore $J = (J \cap R[X])_T$ is invertible.

THEOREM 4.2. Let T be a multiplicatively closed subset of R[X] such that $T \subseteq N = \{f \in R[X] | A_f = R\}$. Then R is pseudo-Dedekind if and only if $R[X]_T$ is pseudo-Dedekind.

Proof. (\Rightarrow). This follows from Theorem 4.1.

(\Leftarrow). Suppose that $R[X]_T$ is a pseudo-Dedekind domain. Let *I* be a divisorial ideal of *R*. By Proposition 3.1, $I[X]_T$ is a divisorial ideal of $R[X]_T$ and so $I[X]_T(I[X]_T)^{-1} = R[X]_T$. Also by Proposition 3.1, $(I[X]_T)^{-1} = I^{-1}[X]_T$. Hence $II^{-1}[X]_T = I[X]_T I^{-1}[X]_T = I[X]_T (I[X]_T)^{-1} = R[X]_T$. Since $T \subseteq N$, $II^{-1} = II^{-1}[X]_T \cap R = R[X]_T \cap R = R$. Hence *I* is invertible and therefore *R* is a pseudo-Dedekind domain.

COROLLARY 4.3. Let R be an integral domain. Then the following statements are equivalent.

- (1) R is pseudo-Dedekind.
- (2) R[X] is pseudo-Dedekind.
- (3) R(X) is pseudo-principal.

Proof. Since Pic(R(X)) = 0 [1, Theorem 2], (3) is equivalent to R(X) being pseudo-Dedekind. Then by Theorem 4.2, (1), (2), and (3) are equivalent.

It is not however the case that R pseudo-Dedekind implies that R[[X]] is pseudo-Dedekind. Samuel has given an example of a Noetherian UFD for which R[[X]] is not a UFD. Now R being a UFD is certainly pseudo-Dedekind. Now R[[X]] is also still a Krull domain. But if R[[X]] were pseudo-Dedekind, it would have to be locally factorial and hence even factorial since Pic(R[[X]]) = Pic(R) = 0. Also, the localization of a pseudo-Dedekind need not be a pseudo-Dedekind domain: The ring E of

entire functions is pseudo-principal, but dim E > 1 [9, pp. 147–148]. Let Q be a prime ideal of E with ht Q > 1. Then E_Q is a valuation domain with dim $E_Q > 1$, so E_Q is not completely integrally closed. Hence E_Q is not pseudo-Dedekind by Corollary 2.5.

A domain R is defined to be locally pseudo-Dedekind if R_P is pseudo-Dedekind for every prime ideal P of R. Although R is pseudo-Dedekind does not necessarily imply that R_P is pseudo-Dedekind, we can extend this local property to R[X] and R(X).

THEOREM 4.4. The following are equivalent for a domain R.

- (1) R is locally pseudo-Dedekind.
- (2) R[X] is locally pseudo-Dedekind.
- (3) R(X) is locally pseudo-Dedekind.

Proof. (1) \Rightarrow (2). Suppose that *R* is locally pseudo-Dedekind. Let *Q* be a prime ideal of R[X] and let $P = Q \cap R$. We will show that $T \subseteq N(R_P) = \{f \in R_P[X] | A_f = R_P\}$ where $T = R[X] \setminus Q$. Let $f \in T$. Then $f \notin P[X]$ and hence $A_f \notin P$. So $(A_f)_P = R_P$ and therefore $A_f = R_P$ if we consider *f* as a polynomial over R_P . Thus $T \subseteq N(R_P)$. Clearly $T \cap R = (R[X] \setminus Q) \cap R = R \setminus P$. Hence $R[X]_T = (R[X]_P)_T = (R_P[X])_T$ so $R[X]_Q = R_P[X]_T$ is a pseudo-Dedekind domain by Theorem 4.1. (2) \Rightarrow (3). Suppose that R[X] is locally pseudo-Dedekind and let Q_N be a prime ideal of $R(X) = R[X]_N$ where $N = \{f \in R[X] \mid A_f = R\}$ and *Q* is a prime ideal of R[X] such that $Q \cap N = \emptyset$. Now $R(X)_{Q_N} = (R[X]_N)_{Q_N} = R[X]_Q$ is pseudo-Dedekind by assumption. (3) \Rightarrow (1). Let *P* be a prime ideal of *R*. Clearly $P[X] \cap N = \emptyset$. Now $R(X)_{P[X]_N} = (R[X]_N)_{P[X]_N} = R[X]_{P[X]} = R_P(X)$. Hence $R_P(X) = R(X)_{P[X]_N}$ is pseudo-Dedekind by assumption. Hence R_P is a pseudo-Dedekind domain by Corollary 4.3.

In [10], Matsuda proved that the group ring R[X; G] is a pseudoprincipal domain if and only if R is a pseudo-principal domain and G has type (0, 0, ...). We extend this result to pseudo-Dedekind domains.

THEOREM 4.5. R[X; G] is a pseudo-Dedekind domain if and only if R is a pseudo-Dedekind domain and G has type (0, 0, ...).

Proof. Suppose R is a pseudo-Dedekind domain and G has type (0, 0, ...). Let $N' = \{f \in R[Y] | A_f = R\}$ and $N = \{f \in D[Y] | A_f = D\}$ where D = R[X; G]. Clearly $N' \subseteq N$. Now $D[Y]_{N'} = R[X; G][Y]_{N'} = R[Y][X; G]_{N'} = R[Y]_{N'}[X; G] = R(Y)[X; G]$ is a pseudo-principal domain. Since $N' \subseteq N$, D is a pseudo-Dedekind domain by Theorem 4.2. Conversely, suppose that D = R[X; G] is pseudo-Dedekind. Then

 $D[Y]_{N'} = R(Y)[X;G]$ is pseudo-Dedekind by Theorem 4.2. Since

R(Y)[X; G] is integrally closed, Pic(R(Y)[X; G]) = Pic(R(Y)) = 0 where the first equality follows from [4, Corollary 5.6] and the second equality follows from [1, Theorem 2]. Hence R(Y)[X; G] is pseudo-principal. By [10, Theorem 8], R(Y) is pseudo-principal and G has type (0, 0, ...). By Theorem 4.2, R is pseudo-Dedekind.

References

- 1. D. D. ANDERSON, Some remarks on the ring *R(X)*, *Comment. Math. Univ. St. Pauli* 26, No. 2 (1977), 137–140.
- D. D. ANDERSON, Globalization of some local properties in Krull domains, Proc. Amer. Math. Soc. 85, No. 2 (1982), 141-145.
- 3. D. D. ANDERSON AND D. F. ANDERSON, Generalized GCD domains, Comment. Math. Univ. St. Pauli 28, No. 2 (1979), 215-221.
- 4. D. D. ANDERSON AND D. F. ANDERSON, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), 549-569.
- 5. D. D. ANDERSON, D. F. ANDERSON, AND E. W. JOHNSON, Some ideal-theoretic conditions on a Noetherian ring, *Houston J. Math.* 7, No. 1 (1981), 1–9.
- 6. D. D. ANDERSON, D. F. ANDERSON, AND R. MARKANDA, The rings R(X) and $R\langle X \rangle$, J. Algebra 95 (1985), 96-115.
- 7. D. D. ANDERSON AND R. MARKANDA, Unique factorization rings with zero divisors: Corrigendum, Houston J. Math. 11 (1985), 423-426.
- 8. N. BOURBAKI, "Commutative Algebra," Addison-Wesley, Reading, MA 1972.
- 9. R. GILMER, "Multiplicative Ideal Theory," Dekker, New York, 1972.
- R. MATSUDA, On the content condition of a graded integral domain, Comment. Math. Univ. St. Pauli 33, No. 1 (1984), 79-85.
- 11. J. QUERRE, Idéaux divisoriels d'un anneau de polynômes, J. Algebra 64 (1980), 270-284.
- 12. M. ZAFRULLAH, On a property of pre-Schrier domains, Com. Alg. 15 (1987), 1895-1920.
- 13. M. ZAFRULLAH, On generalized Dedekind domains, Mathematika 33 (1986), 285-295.

336