Weyl submodules in restrictions of simple modules

Vladimir Shchigolev
Department of Algebra, Faculty of Mathematics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119899, Russia

ARTICLE INFO

Article history:

Received 12 October 2007
Available online 7 January 2009
Communicated by Martin Liebeck

Keywords:

Algebraic groups
Representations
Irreducible modules
Weyl modules
Semisimple groups

Abstract

Let \mathbb{F} be an algebraically closed field of characteristic $p>0$. Suppose that $\mathrm{SL}_{n-1}(\mathbb{F})$ is naturally embedded into $\mathrm{SL}_{n}(\mathbb{F})$ (either in the top left corner or in the bottom right corner). We prove that certain Weyl modules over $\mathrm{SL}_{n-1}(\mathbb{F})$ can be embedded into the restriction $L(\omega) \downarrow_{\mathrm{SL}_{n-1}(\mathbb{F})}$, where $L(\omega)$ is a simple $\mathrm{SL}_{n}(\mathbb{F})$-module. This allows us to construct new primitive vectors in $L(\omega) \downarrow_{\mathrm{SL}_{n-1}}(\mathbb{F})$ from any primitive vectors in the corresponding Weyl modules. Some examples are given to show that this result actually works. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=\mathrm{SL}_{n}(\mathbb{F})$, where \mathbb{F} is an algebraically closed field of characteristic $p>0$ and $n \geqslant 3$. Consider the subgroup $G^{(q)}$ of G generated by the root elements $x_{\alpha}(t), x_{-\alpha}(t)$, where α is a simple root distinct from a fixed terminal (simple) root α_{q}. It is a classical problem to describe the structure of the restriction $L \downarrow_{G^{(q)}}$, where L is a simple rational G-module.

In this paper, we focus on primitive (with respect to $G^{(q)}$) vectors of $L \downarrow_{G^{(q)}}$. The complete combinatorial description of these vectors is an open problem (stated in [BK1]), although lately there has been some progress in this direction [K,BKS,Sh2].

Another problem of equal importance is the description of primitive vectors in Weyl modules. Known methods of constructing such vectors [CL,CP] and methods of constructing primitive vectors in restrictions $L \downarrow_{G^{(q)}}$ [K,BKS,Sh1,Sh2] bear some similarity (e.g. similar lowering operators), which is still not fully understood.

The present paper contains a combinatorial condition under which all primitive vectors (regardless of their nature) of certain Weyl modules over $G^{(q)}$ become primitive vectors of $L \downarrow_{G^{(q)}}$. This result is proved by embedding the corresponding Weyl modules into $L \downarrow_{G^{(q)}}$ (Theorem A). Examples I and II show that our result actually works, that is, produces nonzero primitive vectors of $L \downarrow_{G^{(q)}}$.

[^0]We also hope that Theorem A will be useful for finding new composition factors of $L \downarrow_{G^{(q)}}$ and lower estimates of the dimensions of the weight spaces of L.

We order the simple roots $\alpha_{1}, \ldots, \alpha_{n-1}$ so that $x_{\alpha_{i}}(t)=E+t e_{i, i+1}$. Then $x_{\alpha_{i}+\cdots+\alpha_{j-1}}(t)=E+t e_{i, j}$ and $x_{-\alpha_{i}-\cdots-\alpha_{j-1}}(t)=E+t e_{j, i}$, where $1 \leqslant i<j \leqslant n$. Here and in what follows E is the identity $n \times n$ matrix and $e_{i, j}$ is the $n \times n$ matrix having 1 in the $i j$ th position and 0 elsewhere. The root system Φ of G consists of the roots $\pm\left(\alpha_{i}+\cdots+\alpha_{j-1}\right)$ and the positive root system Φ^{+}consists of the roots $\alpha_{i}+\cdots+\alpha_{j-1}$, where $1 \leqslant i<j \leqslant n$. Let $\omega_{1}, \ldots, \omega_{n-1}$ denote the fundamental weights corresponding to the roots $\alpha_{1}, \ldots, \alpha_{n-1}$.

In G, we fix the maximal torus T consisting of diagonal matrices and the Borel subgroup B consisting of upper triangular matrices.

The hyperalgebra of G is constructed as follows. Consider the following elements of $\mathfrak{s l}_{n}(\mathbb{C})$: $X_{\alpha_{i}+\cdots+\alpha_{j-1}}=e_{i, j}, X_{-\alpha_{i} \cdots-\alpha_{j-1}}=e_{j, i}$, where $1 \leqslant i<j \leqslant n$, and $H_{\alpha_{i}}=e_{i, i}-e_{i+1, i+1}$, where $1 \leqslant i<n$. Following [St, Theorem 2], we denote by $\mathcal{U}_{\mathbb{Z}}$ the subring of the universal enveloping algebra of $\mathfrak{s l}_{n}(\mathbb{C})$ generated by divided powers $X_{\alpha}^{m} / m!$, where $\alpha \in \Phi$ and $m \in \mathbb{Z}^{+}$(the set of nonnegative integers). The hyperalgebra of G is the tensor product $\mathcal{U}:=\mathcal{U}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{F}$. Elements $X_{\alpha, m}:=\left(X_{\alpha}^{m} / m!\right) \otimes 1_{\mathbb{F}}$ generate \mathcal{U} as an \mathbb{F}-algebra.

Every rational G-module V can be made into a \mathcal{U}-module by the rule

$$
\begin{equation*}
x_{\alpha}(t) v=\sum_{m=0}^{+\infty} t^{m} X_{\alpha, m} v \tag{1}
\end{equation*}
$$

We also need the elements $H_{\alpha_{i}, m}=\binom{H_{\alpha_{i}}}{m} \otimes 1_{\mathbb{F}}$. It is easy to show that these elements actually belong to \mathcal{U} (e.g., [St, Corollary to Lemma 5]). We shall often abbreviate $X_{\alpha}:=X_{\alpha, 1}$ and $H_{\alpha_{i}}:=H_{\alpha_{i}, 1}$ if this notation does not cause confusion.

For any integers $q_{1}, \ldots, q_{m} \in\{1, \ldots, n-1\}$, we denote by $G^{\left(q_{1}, \ldots, q_{m}\right)}$ the subgroup of G generated by the root elements $x_{\alpha_{i}}(t), x_{-\alpha_{i}}(t)$ with $i \in\{1, \ldots, n-1\} \backslash\left\{q_{1}, \ldots, q_{m}\right\}$. Note that $G^{\left(q_{1}, \ldots, q_{m}\right)}$ is the universal Chevalley group with root system $\Phi \cap \sum_{i \in\{1, \ldots, n-1\} \backslash\left\{q_{1}, \ldots, q_{m}\right\}} \mathbb{Z} \alpha_{i}$ [H, Theorem 27.3].

In $G^{\left(q_{1}, \ldots, q_{m}\right)}$, we fix the maximal torus $T^{\left(q_{1}, \ldots, q_{m}\right)}$ generated by the elements $h_{\alpha_{i}}(t)=\operatorname{diag}(1, \ldots, 1$, $t, t^{-1}, 1, \ldots, 1$), where $t \in \mathbb{F}^{*}$ is at the i th position and $i \in\{1, \ldots, n-1\} \backslash\left\{q_{1}, \ldots, q_{m}\right\}$, and the Borel subgroup generated by $T^{\left(q_{1}, \ldots, q_{m}\right)}$ and the root elements $x_{\alpha}(t)$ with $\alpha \in \Phi^{\left(q_{1}, \ldots, q_{m}\right)} \cap \Phi^{+}$.

We denote by $X(T)$ the set of T-weights and by $X^{+}(T)$ the set of dominant T-weights. For any $\omega \in X^{+}(T)$, we denote by $L(\omega)$ and $\Delta(\omega)$ the simple rational G-module with highest weight ω and the Weyl G-module with highest weight ω respectively. We fix nonzero vectors v_{ω}^{+}and e_{ω}^{+}of $L(\omega)$ and $\Delta(\omega)$ respectively having weight ω. Similar notations will be used for subtori $T^{\left(q_{1}, \ldots, q_{m}\right)}$. We shall often omit the prefix before the word "weight" if it is clear which torus we mean.

The terminal roots of Φ are α_{1} and α_{n-1}. Thus $q=1$ or $q=n-1$. For any weight $\varkappa \in X(T)$, we denote by \bar{x} and $\overline{\bar{x}}$ the restrictions of \varkappa to $T^{(1)}$ and $T^{(n-1)}$ respectively. The main results of the present paper are as follows.

Theorem A. Let $G=\operatorname{SL}_{n}(\mathbb{F}), \omega \in X^{+}(T)$ and $k=0, \ldots, p-1$.
(i) If $\left\langle\omega, \alpha_{1}\right\rangle-l \not \equiv 0(\bmod p)$ for any $l=0, \ldots, k-1$ and there is $m=0, \ldots, k$ such that $\Delta\left(\bar{\omega}+m \bar{\omega}_{2}\right)$ is simple, then the $G^{(1)}$-submodule of $L(\omega)$ generated by $X_{-\alpha_{1}, k} v_{\omega}^{+}$is isomorphic to $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$.
(ii) If $\left\langle\omega, \alpha_{n-1}\right\rangle-l \equiv \equiv 0(\bmod p)$ for any $l=0, \ldots, k-1$ and there is $m=0, \ldots, k$ such that $\Delta\left(\overline{\bar{\omega}}+m \overline{\bar{\omega}}_{n-2}\right)$ is simple, then the $G^{(n-1)}$-submodule of $L(\omega)$ generated by $X_{-\alpha_{n-1}, k} v_{\omega}^{+}$is isomorphic to $\Delta\left(\overline{\bar{\omega}}+k \overline{\bar{\omega}}_{n-2}\right)$.

Theorem B. Let $G=\operatorname{SL}_{n}(\mathbb{F}), \omega \in X^{+}(T), k=0, \ldots, p-1$ and $q=1$ or $q=n-1$. The $G^{(q)}$-submodule of $L(\omega)$ generated by $X_{-\alpha_{q}, k} v_{\omega}^{+}$is isomorphic to a Weyl module if and only if $\left\langle\omega, \alpha_{q}\right\rangle-l \not \equiv 0(\bmod p)$ for any $l=0, \ldots, k-1$ and
(i) any nonzero primitive vector of $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ has weight $\bar{\omega}+k \bar{\omega}_{2}-b_{2} \bar{\alpha}_{2}-\cdots-b_{n-1} \bar{\alpha}_{n-1}$ with $k \geqslant$ $b_{2} \geqslant \cdots \geqslant b_{n-1} \geqslant 0$ in the case $q=1$;
(ii) any nonzero primitive vector of $\Delta\left(\overline{\bar{\omega}}+k \overline{\bar{\omega}}_{n-2}\right)$ has weight $\overline{\bar{\omega}}+k \overline{\bar{\omega}}_{n-2}-b_{1} \overline{\bar{\alpha}}_{1}-\cdots-b_{n-2} \overline{\bar{\alpha}}_{n-2}$ with $0 \leqslant b_{1} \leqslant \cdots \leqslant b_{n-2} \leqslant k$ in the case $q=n-1$.

More precisely, we have $K G^{(1)} X_{-\alpha_{1}, k} v_{\omega}^{+} \cong \Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ in case (i) and $K G^{(n-1)} X_{-\alpha_{n-1}, k} v_{\omega}^{+} \cong \Delta\left(\overline{\bar{\omega}}+k \overline{\bar{\omega}}_{n-2}\right)$ in case (ii).

Theorem A can be viewed as a special case of the following more general problem (valid for an arbitrary semisimple group G) stated by Irina Suprunenko:

Problem 1. Let α_{q} be a terminal root of the Dynkin diagram of Φ and $k=0, \ldots, p-1$. Describe the weights $\omega \in X^{+}(T)$ such that the $G^{(q)}$-submodule of the simple module $L(\omega)$ generated by $X_{-\alpha_{q}, k} v_{\omega}^{+}$ is isomorphic to a Weyl module.

Theorem B solves this problem for $G=S L_{n}(\mathbb{F})$ in terms of the Hom-spaces between Weyl modules and is a more refined version of Theorem A giving a necessary and sufficient condition for $X_{-\alpha_{q}, k} v_{\omega}^{+}$ to generate a Weyl module.

Theorem A can easily be used in practice by virtue of the following irreducibility criterion of Weyl modules over groups of type A_{n-1} proved by J.C. Jantzen.

Proposition 2. (See [J, II.8.21].) The Weyl module $\Delta(\omega)$ is simple if and only if for each $\alpha \in \Phi^{+}$the following is satisfied: Write $\langle\omega+\rho, \alpha\rangle=a p^{s}+b p^{s+1}$, where $a, b, s \in \mathbb{Z}^{+}, 0<a<p$ and ρ is half the sum of the positive roots of Φ. Then there have to be $\beta_{0}, \beta_{1}, \ldots, \beta_{b} \in \Phi^{+}$with $\left\langle\omega+\rho, \beta_{i}\right\rangle=p^{s+1}$ for $1 \leqslant i \leqslant b$ and $\left\langle\omega+\rho, \beta_{0}\right\rangle=a p^{s}$, with $\alpha=\sum_{i=0}^{b} \beta_{i}$ and with $\alpha-\beta_{0} \in \Phi \cup\{0\}$.

Example I. Let $G=\operatorname{SL}_{3}(\mathbb{F})$ and $\omega=a_{1} \omega_{1}+a_{2} \omega_{2}$ be a dominant weight such that $a_{1}, a_{2}<p$ and $a_{1}+a_{2} \geqslant p+b$, where $b=0, \ldots, p-2$. We put $k:=p+b-a_{2}$. Note that for any $l=0, \ldots, k-1$, we have $0<a_{1}-l<p$ and thus $\left\langle\omega, \alpha_{1}\right\rangle-l \equiv 0(\bmod p)$. Notice also that $0<k<p$. Indeed, $k \geqslant p$ implies $b \geqslant a_{2}$ and $a_{1}+a_{2} \geqslant p+b \geqslant p+a_{2}$. Hence $a_{1} \geqslant p$, which is a contradiction. Since the Weyl module $\Delta(\bar{\omega})=\Delta\left(a_{2} \bar{\omega}_{2}\right)$ is simple, Theorem $A(\mathrm{i})$ (where $m=0$) shows that the $G^{(1)}$-submodule of $L(\omega)$ generated by $X_{-\alpha_{1}, k} v_{\omega}^{+}$is isomorphic to $\Delta\left((p+b) \bar{\omega}_{2}\right)$. The latter module is already not simple. For example, $X_{-\alpha_{2}, b+1} e_{(p+b) \bar{\omega}_{2}}^{+}$is a nonzero $G^{(1)}$-primitive vector. Thus $X_{-\alpha_{2}, b+1} X_{-\alpha_{1}, k} v_{\omega}^{+}$is a nonzero $G^{(1)}$-primitive vector of $L(\omega)$ of weight $\omega-\left(p+b-a_{2}\right) \alpha_{1}-(b+1) \alpha_{2}$.

There is an interesting connection between this example and [Su, Lemma 2.55], which is extensively used in that paper for calculation of degrees of minimal polynomials. In our notation, [Su, Lemma 2.55] is as follows:

Let M be an indecomposable $G^{(1)}$-module with highest weight $(p+b) \bar{\omega}_{2}$ and $0 \leqslant b<p-1$. Suppose that $X_{-\alpha_{2}, b+1} v^{+} \neq 0$, where v^{+}is a highest weight vector of M. Then $M \cong \Delta\left((p+b) \bar{\omega}_{2}\right)$.

Therefore, if we somehow prove that $X_{-\alpha_{2}, b+1} X_{-\alpha_{1}, k} v_{\omega}^{+} \neq 0$, then it will follow from this lemma that the $G^{(1)}$-submodule of $L(\omega)$ generated by $X_{-\alpha_{1}, k} v_{\omega}^{+}$is a Weyl module (without applying Theorem A).

Example II. Let $p=5, G=\mathrm{SL}_{5}(\mathbb{F})$ and $\omega=3 \omega_{1}+3 \omega_{2}+\omega_{3}+2 \omega_{4}$. Take any $k=1, \ldots, 4$ and apply Theorem $\mathrm{A}(\mathrm{i})$ for this k. The value $k=4$ does not fit, since $\left\langle\omega, \alpha_{1}\right\rangle-3=0$.

If we apply Theorem $\mathrm{A}(\mathrm{i})$ for $k=1$, then we obtain that $L(\omega)$ contains a $G^{(1)}$-submodule isomorphic to $\Delta\left(\bar{\omega}+\bar{\omega}_{2}\right)$. However, the last module is simple and we do not get any nonzero $G^{(1)}$-primitive vectors in this way except the trivial $X_{-\alpha_{1}} v_{\omega}^{+}$.

The cases $k=2$ and $k=3$ on the contrary give new vectors. In the former case, Theorem $\mathrm{A}(\mathrm{i})$ implies that $L(\omega)$ contains a $G^{(1)}$-submodule isomorphic to $\Delta\left(\bar{\omega}+2 \bar{\omega}_{2}\right)$. The last module contains nonzero primitive vectors of weights $\bar{\omega}+2 \bar{\omega}_{2}-\bar{\alpha}_{2}$ and $\bar{\omega}+2 \bar{\omega}_{2}-\bar{\alpha}_{2}-\bar{\alpha}_{3}-\bar{\alpha}_{4}$ by the Carter-Payne theorem [CP]. In the latter case, Theorem $\mathrm{A}(\mathrm{i})$ implies that $L(\omega)$ contains a $G^{(1)}$-submodule isomorphic
to $\Delta\left(\bar{\omega}+3 \bar{\omega}_{2}\right)$. The last module contains nonzero primitive vectors of weights $\bar{\omega}+3 \bar{\omega}_{2}-2 \bar{\alpha}_{2}$ and $\bar{\omega}+3 \bar{\omega}_{2}-2 \bar{\alpha}_{2}-2 \bar{\alpha}_{3}-2 \bar{\alpha}_{4}$ by the Carter-Payne theorem [CP].

Thus except trivial nonzero $G^{(1)}$-primitive vectors of weights $\omega-i \alpha_{1}$ with $i=0, \ldots, 3$, the module $L(\omega)$ (which is not a Weyl module) also contains nonzero $G^{(1)}$-primitive vectors of weights $\omega-2 \alpha_{1}-\alpha_{2}, \omega-2 \alpha_{1}-\alpha_{2}-\alpha_{3}-\alpha_{4}, \omega-3 \alpha_{1}-2 \alpha_{2}$ and $\omega-3 \alpha_{1}-2 \alpha_{2}-2 \alpha_{3}-2 \alpha_{4}$.

Computer calculations show that examples similar to Example II are quite abundant. Note that in both Examples I and II, we apply $X_{-\alpha_{1}, k}$ to v_{ω}^{+}only for $k>0$. The reason is that the case $k=0$ corresponds to Smith's theorem [Sm] and the only primitive vectors of $L \downarrow_{G^{(q)}}$ produced in this way are those proportional to v_{ω}^{+}.

We shall use the following result following directly from [St, Theorem 2].
Proposition 3. The products $\prod_{\alpha \in \Phi^{+}} X_{-\alpha, m_{-\alpha}} \cdot \prod_{i=1}^{n-1} H_{\alpha_{i}, n_{i}} \cdot \prod_{\alpha \in \Phi^{+}} X_{\alpha, m_{\alpha}}$, where $m_{-\alpha}, n_{i}, m_{\alpha} \in \mathbb{Z}^{+}$, taken in any fixed order form a basis of \mathcal{U}.

We denote by \mathcal{U}^{+}the subspace of \mathcal{U} spanned by the above products with unitary first and second factors. Given integers $q_{1}, \ldots, q_{m} \in\{1, \ldots, n-1\}$, we denote by $\mathcal{U}^{\left(q_{1}, \ldots, q_{m}\right)}$ the subspace of \mathcal{U} spanned by all the above products such that $m_{\alpha}=0$ unless $\alpha \in \Phi^{\left(q_{1}, \ldots, q_{m}\right)}$ and $n_{i}=0$ unless $i \in\{1, \ldots, n-1\} \backslash$ $\left\{q_{1}, \ldots, q_{m}\right\}$. One can easily see that \mathcal{U}^{+}and $\mathcal{U}^{\left(q_{1}, \ldots, q_{m}\right)}$ are subalgebras of \mathcal{U}. We let $\mathcal{U}^{\left(q_{1}, \ldots, q_{m}\right)}$ act on any rational $G^{\left(q_{1}, \ldots, q_{m}\right)}$-module according to (1). In the sequel, we shall mean the $X(T)$-grading of \mathcal{U} in which $X_{\alpha, m}$ has weight $m \alpha$ and $H_{\alpha_{i}, m}$ has weight 0 .

For each $\omega \in X^{+}(T)$, we denote by $\nabla(\omega)$ the module contravariantly dual to the Weyl module $\Delta(\omega)$ and denote by $\pi^{\omega}: \Delta(\omega) \rightarrow L(\omega)$ the G-module epimorphism such that $\pi^{\omega}\left(e_{\omega}^{+}\right)=v_{\omega}^{+}$. We also denote by V^{τ} for $\tau \in X(T)$ the τ-weight space of a rational T-module V.

A vector v of a rational G-module is called G-primitive if $\mathbb{F} v$ is fixed by the Borel subgroup B. We use similar terminology for $G^{\left(q_{1}, \ldots, q_{m}\right)}$ and omit the prefix when it is clear which group we mean. In view of the universal property of Weyl modules [J, Lemma II. 2.13 b], we can speak about primitive vectors of a rational module V instead of homomorphisms from Weyl modules to V (we use this language in Theorem B).

Note that Theorems A and B in the case $q=n-1$ are easy consequences of the theorems in the case $q=1$ by a standard argument involving twisting with the automorphism $g \mapsto w_{0}\left(g^{-1}\right)^{\mathrm{t}} w_{0}^{-1}$, where ${ }^{\mathrm{t}}$ stands for the transposition and w_{0} stands for the longest element of the Weyl group. Therefore in the remainder of the article we consider only the case $q=1$.

2. Proof of the main results

We fix a weight $\omega=a_{1} \omega_{1}+\cdots+a_{n-1} \omega_{n-1}$ of $X^{+}(T)$ and an integer $k \in \mathbb{Z}^{+}$. The restriction of ω to $T^{(1)}$ is $\bar{\omega}=a_{2} \bar{\omega}_{2}+\cdots+a_{n-1} \bar{\omega}_{n-1}$. Clearly, $X_{-\alpha_{1}, k} v_{\omega}^{+}$is a (possibly zero) $G^{(1)}$-primitive vector of $T^{(1)}$-weight $\bar{\omega}+k \bar{\omega}_{2}$. By the universal property of Weyl modules [J, Lemma II. 2.13 b], there exists the homomorphism $\varphi_{k}^{\omega}: \Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right) \rightarrow L(\omega)$ of $G^{(1)}$-modules that takes $e_{\bar{\omega}+k \bar{\omega}_{2}}^{+}$to $X_{-\alpha_{1}, k} v_{\omega}^{+}$. Obviously,

$$
\begin{equation*}
K G^{(1)} X_{-\alpha_{1}, k} v_{\omega}^{+} \cong \Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right) / \operatorname{ker} \varphi_{k}^{\omega} \tag{2}
\end{equation*}
$$

Problem 1 can now be reformulated as follows: Describe the weights $\omega \in X^{+}(T)$ such that $\operatorname{ker} \varphi_{k}^{\omega}=0$. The analog of this problem for $\Delta(\omega)$ has a trivial solution.

Lemma 4. The $G^{(1)}$-submodule of $\Delta(\omega)$ generated by $X_{-\alpha_{1}, k} e_{\omega}^{+}$is isomorphic to $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ if $0 \leqslant k \leqslant$ $\left\langle\omega, \alpha_{1}\right\rangle$ and is zero otherwise.

Proof. Suppose temporarily that char $\mathbb{F}=0$. Then $\Delta(\omega)$ is irreducible. Since $X_{\alpha_{1}, k} X_{-\alpha_{1}, k} e_{\omega}^{+}=\binom{a_{1}}{k} e_{\omega}^{+}$, we have (recall that α_{1} is simple)

$$
\operatorname{dim} \Delta(\omega)^{\omega-k \alpha_{1}}= \begin{cases}1 & \text { if } 0 \leqslant k \leqslant a_{1} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Now let us return to the situation where char $\mathbb{F}=p>0$. Since the character of a Weyl module does not depend on char \mathbb{F}, (3) holds again. Therefore, $X_{-\alpha_{1}, k} e_{\omega}^{+}=0$ if $k>a_{1}$. Thus we assume $0 \leqslant k \leqslant a_{1}$ for the rest of the proof. Consider the decomposition $\Delta(\omega)=\bigoplus_{b \in \mathbb{Z}^{+}} V^{(b)}$, where

$$
V^{(b)}=\bigoplus_{b_{2}, \ldots, b_{n-1} \in \mathbb{Z}^{+}} \Delta(\omega)^{\omega-b \alpha_{1}-b_{2} \alpha_{2}-\cdots-b_{n-1} \alpha_{n-1}}
$$

(the b th level of $\Delta(\omega)$). Note that each $V^{(b)}$ is a $G^{(1)}$-module. By (3), $X_{-\alpha_{1}, k} e_{\omega}^{+}$is a nonzero vector of $V^{(k)}$ having $T^{(1)}$-weight $\bar{\omega}+k \bar{\omega}_{2}$. Moreover, the weight space of $V^{(k)}$ corresponding to this weight is one-dimensional. Any other $T^{(1)}$-weight of $V^{(k)}$ is less than this weight. It follows from [M] (see also [J, Proposition II.4.24]) that $\Delta(\omega) \downarrow_{G^{(1)}}$ has a Weyl filtration. By [J, Proposition II.4.16(iii)], its direct summand $V^{(k)}$ also has a Weyl filtration (as a $G^{(1)}$-module). Any such filtration contains one factor isomorphic to $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ and, possibly, some other factors each isomorphic to $\Delta(\tau)$ with $\tau<\bar{\omega}+k \bar{\omega}_{2}$. Applying [J, II.4.16, Remark 4] to the dual module $V^{(k)^{*}}$, we obtain that $V^{(k)}$ contains a $G^{(1)}$-submodule isomorphic to $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$. Clearly, this submodule is generated by $X_{-\alpha_{1}, k} e_{\omega}^{+}$.

We deliberately did not use a basis of $\Delta(\omega)$ in the proof of the above theorem to make it valid for G of arbitrary type.

Lemma 5. The modules $K G^{(1)} X_{-\alpha_{1}, k} v_{\omega}^{+}$and $K G^{(1)} X_{-\alpha_{1}, k} e_{\omega}^{+}$decompose into direct sums of their T-weight subspaces. These sums are exactly the decompositions into $T^{(1)}$-weight subspaces.

Proof. The only fact we need to prove is that $\overline{\omega-b_{1} \alpha_{1}-\cdots-b_{n-1} \alpha_{n-1}}=\overline{\omega-c_{1} \alpha_{1}-\cdots-c_{n-1} \alpha_{n-1}}$ and $b_{1}=c_{1}$ imply $b_{i}=c_{i}$ for any $i=1, \ldots, n-1$. This is obvious, since the first equality is equivalent to $\bar{\omega}+b_{1} \bar{\omega}_{2}-b_{2} \bar{\alpha}_{2}-\cdots-b_{n-1} \bar{\alpha}_{n-1}=\bar{\omega}+c_{1} \bar{\omega}_{2}-c_{2} \bar{\alpha}_{2}-\cdots-c_{n-1} \bar{\alpha}_{n-1}$.

Before proving Theorem B, we need to describe the standard bases for Weyl modules over $G^{(1)}$. Let $\varkappa=d_{2} \bar{\omega}_{2}+\cdots+d_{n-1} \bar{\omega}_{n-1}$ be a weight of $X^{+}\left(T^{(1)}\right)$. A sequence $\lambda=\left(\lambda_{2}, \ldots, \lambda_{n}\right)$ of nonnegative integers is called coherent with \varkappa if $d_{i}=\lambda_{i}-\lambda_{i+1}$ for any $i=2, \ldots, n-1$. The diagram of λ is the set

$$
[\lambda]=\left\{(i, j) \in \mathbb{Z}^{2} \mid 2 \leqslant i \leqslant n \text { and } 1 \leqslant j \leqslant \lambda_{i}\right\} .
$$

We shall think of $[\lambda]$ as an array of boxes. For example, if $\lambda=(5,3,2,0)$ then

Note that in our terminology the top row of this diagram is the second row.
A λ-tableau is a function $t:[\lambda] \rightarrow\{2, \ldots, n\}$, which we regard as the diagram [λ] filled with integers in $\{2, \ldots, n\}$. A λ-tableau t is called row standard if its entries weakly increase along the rows, that is $t(i, j) \leqslant t\left(i, j^{\prime}\right)$ if $j<j^{\prime}$. A λ-tableau t is called regular row standard if it is row standard and every entry in row i of t is at least i. Finally, a λ-tableau t is called standard if it is row standard and its entries strictly increase down the columns, that is $t(i, j)<t\left(i^{\prime}, j\right)$ if $i<i^{\prime}$. For example,

$$
t=\begin{array}{|l|l|l|l|l|}
\hline 2 & 3 & 3 & 4 & 5 \\
\hline 3 & 4 & 4 & & \\
\hline 4 & 5 & & \\
\hline
\end{array}
$$

is a standard ($5,3,2,0$)-tableau. For any λ-tableau t, we put

$$
F_{t}:=\prod_{2 \leqslant a<b \leqslant n} X_{-\alpha_{a}-\cdots-\alpha_{b-1}, N_{a, b}},
$$

where $N_{a, b}$ is the number of entries b in row a of $t, X_{-\alpha_{a}-\ldots-\alpha_{b-1}, N_{a, b}}$ precedes $X_{-\alpha_{c}-\cdots-\alpha_{d-1}, N_{c, d}}$ if $b<d$ or $b=d$ and $a<c$.

Remark 6. One can easily see that the number of entries greater than 2 in the second (top) row of t is exactly minus the coefficient at α_{2} in the weight of F_{t}.

For t as in the above example, we have

$$
F_{t}=X_{-\alpha_{2}, 2} X_{-\alpha_{2}-\alpha_{3}} X_{-\alpha_{3}, 2} X_{-\alpha_{2}-\alpha_{3}-\alpha_{4}} X_{-\alpha_{4}} .
$$

Proposition 7. (See [CL].) Let \varkappa be a weight of $X^{+}\left(T^{(1)}\right)$ and $\lambda=\left(\lambda_{2}, \ldots, \lambda_{n}\right)$ be a sequence coherent with x. Then the vectors $F_{t} e_{\varkappa}^{+}$, where t is a standard λ-tableau, form a basis of $\Delta(\varkappa)$.

Now suppose that $m=3, \ldots, n$ and $\lambda_{2}-\lambda_{3}=d_{2} \geqslant 1$. For any regular row standard λ-tableau t, we define $\rho_{m}(t)$ to be the ($\lambda_{2}-1, \lambda_{3}, \ldots, \lambda_{n}$)-tableau obtained from t by removing one entry m from the second row, if such removal is possible, and shifting all elements of the resulting row to the left.

One can easily check that for any $2 \leqslant s<m \leqslant n$ and $N \in \mathbb{Z}^{+}$, there holds

$$
\begin{equation*}
\left[X_{\alpha_{1}+\cdots+\alpha_{m-1}}, X_{-\alpha_{s}-\cdots-\alpha_{m-1}, N}\right]=X_{-\alpha_{s}-\cdots-\alpha_{m-1}, N-1} X_{\alpha_{1}+\cdots+\alpha_{s-1}} . \tag{4}
\end{equation*}
$$

Note that (4) holds for any $N \in \mathbb{Z}$ if we define $X_{\alpha, N}:=0$ for $N<0$. Let I^{+}denote the left ideal of \mathcal{U} generated by the elements $X_{\alpha, N}$ with $\alpha \in \Phi^{+}$and $N>0$.

Lemma 8. Let $m=3, \ldots, n, \lambda_{2}-\lambda_{3}=d_{2} \geqslant 1, t$ be a regular row standard λ-tableau and $1 \leqslant k$. We have

$$
X_{\alpha_{1}+\cdots+\alpha_{m-1}} F_{t} X_{-\alpha_{1}, k} \equiv F_{\rho_{m}(t)} X_{-\alpha_{1}, k-1}\left(H_{\alpha_{1}}+1-k\right) \quad\left(\bmod I^{+}\right)
$$

if $\rho_{m}(t)$ is well-defined and

$$
X_{\alpha_{1}+\cdots+\alpha_{m-1}} F_{t} X_{-\alpha_{1}, k} \equiv 0 \quad\left(\bmod I^{+}\right)
$$

otherwise.
Proof. Let $N_{a, b}$ denote the number of entries b in row a of t. Consider the representation $F_{t}=$ $F_{3} \cdots F_{n}$, where

$$
F_{j}=X_{-\alpha_{2}-\cdots-\alpha_{j-1}, N_{2, j}} \cdots X_{-\alpha_{j-2}-\alpha_{j-1}, N_{j-2, j}} X_{-\alpha_{j-1}, N_{j-1, j}} .
$$

Clearly, $X_{\alpha_{1}+\cdots+\alpha_{m-1}}$ commutes with any F_{j} such that $j \neq m$. Using (4) and the fact that $X_{\alpha_{1}+\cdots+\alpha_{s-1}}$ commutes with any factor of F_{m} for $s=2, \ldots, m-1$, we obtain

$$
\begin{aligned}
X_{\alpha_{1}+\cdots+\alpha_{m-1}} F_{m}= & F_{m} X_{\alpha_{1}+\cdots+\alpha_{m-1}} \\
& +\sum_{s=2}^{m-1}\left(\prod_{l=2}^{m-1} X_{-\alpha_{l} \cdots-\alpha_{m-1}, N_{l, m}-\delta_{l, S}}\right) X_{\alpha_{1}+\cdots+\alpha_{s-1}} .
\end{aligned}
$$

Here and in what follows $\delta_{l, s}$ equals 1 if $l=s$ and equals 0 otherwise. Since $X_{\alpha_{1}+\cdots+\alpha_{s-1}}$ commutes with any F_{j} for $s=2, \ldots, m$ and $j=m+1, \ldots, n$, we obtain

$$
\begin{aligned}
X_{\alpha_{1}+\cdots+\alpha_{m-1}} F_{t} X_{-\alpha_{1}, k}= & F_{t} X_{\alpha_{1}+\cdots+\alpha_{m-1}} X_{-\alpha_{1}, k} \\
& +\sum_{s=2}^{m-1} F_{1} \cdots F_{m-1}\left(\prod_{l=2}^{m-1} X_{-\alpha_{l}-\cdots-\alpha_{m-1}, N_{l, m}-\delta_{l, s}}\right) F_{m+1} \cdots F_{n} X_{\alpha_{1}+\cdots+\alpha_{s-1}} X_{-\alpha_{1}, k} .
\end{aligned}
$$

Since $m \geqslant 3$ the first summand and any product under the summation sign for $s>2$ in the right-hand side of the above formula belongs to I^{+}. Hence

$$
\begin{aligned}
X_{\alpha_{1}+\cdots+\alpha_{m-1}} F_{t} X_{-\alpha_{1}, k} \equiv & F_{1} \cdots F_{m-1}\left(\prod_{l=2}^{m-1} X_{-\alpha_{l}-\cdots-\alpha_{m-1}, N_{l, m}-\delta_{l, 2}}\right) \\
& \times F_{m+1} \cdots F_{n} X_{-\alpha_{1}, k-1}\left(H_{\alpha_{1}}-k+1\right) \quad\left(\bmod I^{+}\right)
\end{aligned}
$$

If $N_{2, m}>0$ then the right-hand side of the above formula equals $F_{\rho_{m}(t)} X_{-\alpha_{1}, k-1}\left(H_{\alpha_{1}}+1-k\right)$. Otherwise it equals zero and $\rho_{m}(t)$ is not well-defined.

We also need the iterated version of ρ_{m}. Suppose that $M=\left(m_{1}, \ldots, m_{l}\right)$ is a sequence with entries in $\{3, \ldots, n\}$ and $\lambda_{2}-\lambda_{3}=d_{2} \geqslant l$. For any regular row standard λ-tableau t, we define $\rho_{M}(t)$ to be the $\left(\lambda_{2}-l, \lambda_{3}, \ldots, \lambda_{n}\right)$-tableau obtained from t by removing the entries m_{1}, \ldots, m_{l} (taking into account their multiplicities) from the second row, if such removal is possible, and shifting all elements of the resulting row to the left. We clearly have $\rho_{M}(t)=\rho_{m_{1}} \circ \cdots \circ \rho_{m_{l}}(t)$ if the second row of t contains entries m_{1}, \ldots, m_{l}. Hence applying Lemma 8 , we obtain the following result.

Corollary 9. Let $M=\left(m_{1}, \ldots, m_{l}\right)$ be a sequence with entries in $\{3, \ldots, n\}, \lambda_{2}-\lambda_{3}=d_{2} \geqslant l$, t be a regular row standard λ-tableau and $l \leqslant k$. We have

$$
\left(\prod_{i=1}^{l} X_{\alpha_{1}+\cdots+\alpha_{m_{i}-1}}\right) F_{t} X_{-\alpha_{1}, k} \equiv F_{\rho_{M}(t)} X_{-\alpha_{1}, k-l}\left(\prod_{i=1}^{l} H_{\alpha_{1}}+i-k\right) \quad\left(\bmod I^{+}\right)
$$

if $\rho_{M}(t)$ is well-defined and

$$
\left(\prod_{i=1}^{l} X_{\alpha_{1}+\cdots+\alpha_{m_{i}-1}}\right) F_{t} X_{-\alpha_{1}, k} \equiv 0 \quad\left(\bmod I^{+}\right)
$$

otherwise.

In what follows, $\operatorname{coeff}_{\alpha_{1}}(\beta)$ denotes the coefficient at α_{1} of a root $\beta \in \Phi$.
Proof of Theorem B. "Only if part." Suppose that the $G^{(1)}$-submodule of $L(\omega)$ generated by $X_{-\alpha_{1}, k} v_{\omega}^{+}$ is isomorphic to a Weyl module. Then $X_{-\alpha_{1}, k} v_{\omega}^{+} \neq 0$ and $X_{\alpha_{1}, k} X_{-\alpha_{1}, k} v_{\omega}^{+}=\binom{a_{1}}{k} v_{\omega}^{+} \neq 0$. Hence $a_{1}-l \not \equiv$ $0(\bmod p)$ for $l=0, \ldots, k-1$, since $k<p$.

Now let v be a nonzero $G^{(1)}$-primitive vector of $K G^{(1)} X_{-\alpha_{1}, k} v_{\omega}^{+}$. By Lemma $5, v$ is a T-weight vector. It has T-weight $\omega-\delta$, where δ is a sum of positive roots. Clearly, the coefficient at α_{1} of δ equals k. We claim that

$$
\begin{align*}
\delta \in E(1, k):= & \left\{\beta_{1}+\cdots+\beta_{l} \mid \beta_{1}, \ldots, \beta_{l} \in \Phi^{+}, \operatorname{coeff}_{\alpha_{1}}\left(\beta_{1}\right)>0, \ldots,\right. \\
& \left.\operatorname{coeff}_{\alpha_{1}}\left(\beta_{l}\right)>0, \operatorname{coeff}_{\alpha_{1}}\left(\beta_{1}\right)+\cdots+\operatorname{coeff}_{\alpha_{1}}\left(\beta_{l}\right)=k\right\} \tag{5}
\end{align*}
$$

Indeed, by Proposition 3, the products $\prod_{\alpha \in \Phi^{+}} X_{\alpha, m_{\alpha}}$ taken in any fixed order form a basis of \mathcal{U}^{+}. Let us assume now that this order is such that any factor $X_{\alpha, m_{\alpha}}$ with $\operatorname{coeff}_{\alpha_{1}}(\alpha)>0$ is situated to
the left of any factor $X_{\beta, m_{\beta}}$ with coeff ${ }_{\alpha_{1}}(\beta)=0$. Since $v \neq 0$, we have $\left(\prod_{\alpha \in \Phi^{+}} X_{\alpha, m_{\alpha}}\right) v=c v_{\omega}^{+}$for some $c \in \mathbb{F}^{*}$ and $m_{\alpha} \in \mathbb{Z}^{+}$such that $\sum_{\alpha \in \Phi^{+}} m_{\alpha} \alpha=\delta$. Since v is $G^{(1)}$-primitive, the order of factors we have chosen implies that $m_{\alpha}=0$ if $\operatorname{coeff}_{\alpha_{1}}(\alpha)=0$. On the other hand, $\sum_{\alpha \in \Phi^{+}} m_{\alpha} \operatorname{coeff}_{\alpha_{1}}(\alpha)=k$. Hence (5) directly follows.

Now it remains to notice that

$$
E(1, k)=\left\{b_{1} \alpha_{1}+\cdots+b_{n-1} \alpha_{n-1} \mid k=b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{n-1} \geqslant 0\right\} .
$$

"If part." We assume that $a_{1}-l \equiv \equiv(\bmod p)$ for any $l=0, \ldots, k-1$ and any nonzero primitive vector of $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ has weight as in (i). In particular, we have $k \leqslant a_{1}$. Suppose that $K G^{(1)} X_{-\alpha_{1}, k} v_{\omega}^{+}$ is not isomorphic to a Weyl module. Then by (2), we get $\operatorname{ker} \varphi_{k}^{\omega} \neq 0$. Since $\operatorname{ker} \varphi_{k}^{\omega}$ is a submodule of $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$, it contains a nonzero primitive vector u. Our assumption implies that u has weight $\bar{\omega}+k \bar{\omega}_{2}-b_{2} \bar{\alpha}_{2}-\cdots-b_{n-1} \bar{\alpha}_{n-1}$, where $k \geqslant b_{2} \geqslant \cdots \geqslant b_{n-1} \geqslant 0$.

The universal property of Weyl modules implies the existence of the $G^{(1)}$-module homomorphism $\gamma: \Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right) \rightarrow K G^{(1)} X_{-\alpha_{1}, k} e_{\omega}^{+}$such that $\gamma\left(e_{\bar{\omega}+k \bar{\omega}_{2}}^{+}\right)=X_{-\alpha_{1}, k} e_{\omega}^{+}$. Lemma 4 shows that γ is an isomorphism. Since $\pi^{\omega} \circ \gamma=\varphi_{k}^{\omega}$ (to prove it, apply both sides to $e_{\bar{\omega}+k \bar{\omega}_{2}}^{+}$), we have $\gamma(u) \in \operatorname{rad} \Delta(\omega)$.

Take any sequence $\lambda=\left(\lambda_{2}, \ldots, \lambda_{n}\right)$ of nonnegative integers coherent with $\bar{\omega}+k \bar{\omega}_{2}$. In particular, we have $\lambda_{2}-\lambda_{3}=\left\langle\bar{\omega}+k \bar{\omega}_{2}, \bar{\alpha}_{2}\right\rangle=a_{2}+k \geqslant b_{2}$. By Proposition 7, we have the representation $u=$ $\sum_{s \in S} c_{s} F_{s} e_{\bar{\omega}+k \bar{\omega}_{2}}^{+}$, where $c_{s} \in \mathbb{F}^{*}$ and S is a nonempty set consisting of standard λ-tableaux s such that F_{s} has weight $-b_{2} \alpha_{2}-\cdots-b_{n-1} \alpha_{n-1}$. Obviously, any tableau $s \in S$ has exactly b_{2} entries greater than 2 in the second row (see Remark 6).

Let us fix some tableau $t \in S$, denote be $m_{1}, \ldots, m_{b_{2}}$ all the entries greater than 2 in the second row of t (taking into account multiplicities) and put $M:=\left(m_{1}, \ldots, m_{b_{2}}\right)$. Clearly, $\rho_{M}(t)$ is well-defined. Moreover, for any $s \in S$ such that $\rho_{M}(s)$ is well-defined, $\rho_{M}(s)$ is a standard ($\lambda_{2}-b_{2}, \lambda_{3}, \ldots, \lambda_{n}$)tableau whose every entry in the second row is 2 and $F_{\rho_{M}(s)}$ has weight

$$
-b_{2} \alpha_{2}-\cdots-b_{n-1} \alpha_{n-1}+\left(\sum_{i=1}^{b_{2}} \alpha_{2}+\cdots+\alpha_{m_{i}-1}\right)=-b_{3}^{\prime} \alpha_{3}-\cdots-b_{n-1}^{\prime} \alpha_{n-1}
$$

where $b_{3}^{\prime}, \ldots, b_{n-1}^{\prime}$ are nonnegative integers (independent of s). Applying γ to the above representation of u, we obtain

$$
\gamma(u)=\sum_{s \in S} c_{s} F_{s} X_{-\alpha_{1}, k} e_{\omega}^{+} \in \operatorname{rad} \Delta(\omega) .
$$

Multiplying this formula by ($\prod_{i=1}^{b_{2}} X_{\alpha_{1}+\cdots+\alpha_{m_{i}-1}}$) on the left, taking into account $b_{2} \leqslant k$ and applying Corollary 9, we obtain

$$
\begin{align*}
& \left(\prod_{i=1}^{b_{2}} a_{1}+i-k\right) \sum\left\{F_{\rho_{M}(s)} X_{-\alpha_{1}, k-b_{2}} e_{\omega}^{+} \mid s \in S \text { and } \rho_{M}(s) \text { is well-defined }\right\} \\
& \quad \in \operatorname{rad} \Delta(\omega) \tag{6}
\end{align*}
$$

Since $b_{2} \leqslant k$ and we assumed $a_{1}-l \not \equiv 0(\bmod p)$ for any $l=0, \ldots, k-1$, the first factor of the product in the left-hand side of the above formula is nonzero. Moreover, if s and s^{\prime} are distinct tableaux of S and both $\rho_{M}(s)$ and $\rho_{M}\left(s^{\prime}\right)$ are well-defined, then $\rho_{M}(s) \neq \rho_{M}\left(s^{\prime}\right)$. Notice that the summation in (6) is nonempty, since at least $s=t$ satisfies the restrictions.

By Lemma 4, the $G^{(1)}$-submodule W of $\Delta(\omega)$ generated by $X_{-\alpha_{1}, k-b_{2}} e_{\omega}^{+}$is isomorphic to $\Delta(\bar{\omega}+$ $\left.\left(k-b_{2}\right) \bar{\omega}_{2}\right)$. Note that $\left(\lambda_{2}-b_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)$ is coherent with $\bar{\omega}+\left(k-b_{2}\right) \bar{\omega}_{2}$. Therefore by Proposition 7, the left-hand side of (6) is nonzero. It belongs to a proper $G^{(1)}$-submodule $W \cap \operatorname{rad} \Delta(\omega)$ of W and
hence to rad W. Note that $X_{\alpha_{1}, k-b_{2}} X_{-\alpha_{1}, k-b_{2}} e_{\omega}^{+}=\binom{a_{1}}{k-b_{2}} e_{\omega}^{+} \neq 0$, whence $X_{-\alpha_{1}, k-b_{2}} e_{\omega}^{+} \notin \operatorname{rad} \Delta(\omega)$ and indeed $W \cap \operatorname{rad} \Delta(\omega) \neq W$.

In other words, we proved that rad $\Delta\left(\bar{\omega}+\left(k-b_{2}\right) \bar{\omega}_{2}\right)$ contains a nonzero vector u^{\prime} of weight $\bar{\omega}+$ $\left(k-b_{2}\right) \bar{\omega}_{2}-b_{3}^{\prime} \bar{\alpha}_{3}-\cdots-b_{n-1}^{\prime} \bar{\alpha}_{n-1}$. As an immediate consequence of this fact, we get $n \geqslant 4$. For any weight $\varkappa \in X(T)$, we denote by $\tilde{\varkappa}$ its restriction to $T^{(1,2)}$. By Lemma 4, the $G^{(1,2)}$-submodule W^{\prime} of $\Delta\left(\bar{\omega}+\left(k-b_{2}\right) \bar{\omega}_{2}\right)$ generated by $e_{\bar{\omega}+\left(k-b_{2}\right) \bar{\omega}_{2}}^{+}$is isomorphic to $\Delta(\widetilde{\omega})$ (the restriction of $\bar{\omega}+\left(k-b_{2}\right) \bar{\omega}_{2}$ to $T^{(1,2)}$ is $\left.\widetilde{\omega}\right)$. Clearly, u^{\prime} belongs to a proper submodule $W^{\prime} \cap \operatorname{rad} \Delta\left(\bar{\omega}+\left(k-b_{2}\right) \bar{\omega}_{2}\right)$ of W^{\prime} and thus belongs to rad W^{\prime}. In this way, we proved that $\Delta(\widetilde{\omega})$ is not simple.

Consider the $G^{(1,2)}$-submodule $W^{\prime \prime}$ of $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ generated by $e_{\bar{\omega}+k \bar{\omega}_{2}}^{+}$. By Lemma $4, W^{\prime \prime}$ is isomorphic to $\Delta(\widetilde{\omega})$ (the restriction of $\bar{\omega}+k \bar{\omega}_{2}$ to $T^{(1,2)}$ is also $\widetilde{\omega}$). Therefore $W^{\prime \prime}$ is not simple and contains a nonzero $G^{(1,2)}$-primitive vector $u^{\prime \prime}$ of $T^{(1,2)}$-weight $\widetilde{\omega}-d_{3} \widetilde{\alpha}_{3}-\cdots-d_{n-1} \widetilde{\alpha}_{n-1}$, where d_{3}, \ldots, d_{n-1} are nonnegative integers not equal simultaneously to zero. By Lemma 5 , we obtain that $u^{\prime \prime}$ has $T^{(1)}$-weight $\bar{\omega}+k \bar{\omega}_{2}-d_{3} \bar{\alpha}_{3}-\cdots-d_{n-1} \bar{\alpha}_{n-1}$. Note that this weight does not have the form described in (i). Since $x_{\alpha_{2}}(t)$ commutes with any $x_{-\alpha_{i}}(s)$, where $i=3, \ldots, n-1$, and

$$
u^{\prime \prime} \in W^{\prime \prime}=\mathbb{F}\left(x_{-\alpha_{i}}(s) \mid i=3, \ldots, n-1, s \in \mathbb{F}\right) e_{\bar{\omega}+k \bar{\omega}_{2}},
$$

we obtain that $u^{\prime \prime}$ is $G^{(1)}$-primitive. This is a contradiction.
Proof of Theorem A. Suppose that the hypothesis of (i) holds. The weights of $\Delta\left(\bar{\omega}_{2}\right)$ are $\varkappa_{1}, \ldots, \varkappa_{n-1}$, where $\varkappa_{i}=\bar{\omega}_{2}-\bar{\alpha}_{2}-\cdots-\bar{\alpha}_{i}$ and each weight space is one-dimensional.

Suppose for a while that char $\mathbb{F}=0$. It is well known that for any $\varkappa \in X^{+}\left(T^{(1)}\right)$, the module $\Delta(\varkappa) \otimes$ $\Delta\left(\bar{\omega}_{2}\right)$ is a direct sum of $\Delta\left(\varkappa+\varkappa_{i}\right)$ over $i=1, \ldots, n-1$ such that $\varkappa+\varkappa_{i} \in X^{+}\left(T^{(1)}\right)$ (see, for example, [BK2, Lemma 4.8]). Thus the module $\Delta\left(\bar{\omega}+m \bar{\omega}_{2}\right) \otimes \Delta\left(\bar{\omega}_{2}\right)^{\otimes k-m}$ is a direct sum of several copies of $\Delta\left(\bar{\omega}+m \bar{\omega}_{2}+\varkappa_{i_{1}}+\cdots+\varkappa_{i_{k-m}}\right)$ over sequences i_{1}, \ldots, i_{k-m} of integers in $\{1, \ldots, n-1\}$ such that $\bar{\omega}+m \bar{\omega}_{2}+\varkappa_{i_{1}}+\cdots+\varkappa_{i_{k-m}} \in X^{+}\left(T^{(1)}\right)$. Moreover, the module $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ enters into this sum with multiplicity one.

Let us return to the case char $\mathbb{F}=p>0$. Applying the main result of $[\mathrm{M}]$, we obtain that the module $V:=\Delta\left(\bar{\omega}+m \bar{\omega}_{2}\right) \otimes \Delta\left(\bar{\omega}_{2}\right)^{\otimes k-m}$ has a filtration with factors $\Delta\left(\bar{\omega}+m \bar{\omega}_{2}+\varkappa_{i_{1}}+\cdots+\varkappa_{i_{k-m}}\right)$ over the same sequences i_{1}, \ldots, i_{k-m} with the same multiplicities. By [J, II.4.16 Remark 4] applied to the dual module V^{*}, V has a submodule isomorphic to $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$.

Now recall that $\Delta\left(\bar{\omega}+m \bar{\omega}_{2}\right) \cong \nabla\left(\bar{\omega}+m \bar{\omega}_{2}\right)$ by the hypothesis of the present lemma and $\Delta\left(\bar{\omega}_{2}\right) \cong$ $\nabla\left(\bar{\omega}_{2}\right)$. Therefore, V is isomorphic to $\nabla\left(\bar{\omega}+m \bar{\omega}_{2}\right) \otimes \nabla\left(\bar{\omega}_{2}\right)^{\otimes k-m}$ and by the main result of [M] has a filtration with factors $\nabla\left(\bar{\omega}+m \bar{\omega}_{2}+\varkappa_{i_{1}}+\cdots+\varkappa_{i_{k-m}}\right)$ over the same sequences i_{1}, \ldots, i_{k-m} with the same multiplicities. Applying [J, Proposition II.4.13], we obtain that $\operatorname{Hom}_{G^{(1)}}(\Delta(\varkappa), V)=0$ unless $\varkappa=\bar{\omega}+m \bar{\omega}_{2}+\varkappa_{i_{1}}+\cdots+\varkappa_{i_{k-m}}$. Since V has a submodule isomorphic to $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$, any nonzero primitive vector of $\Delta\left(\bar{\omega}+k \bar{\omega}_{2}\right)$ has weight $\bar{\omega}+m \bar{\omega}_{2}+\varkappa_{i_{1}}+\cdots+\varkappa_{i_{k-m}}$ with i_{1}, \ldots, i_{k-m} as above. It remains to apply Theorem $\mathrm{B}(\mathrm{i})$.

Part (ii) can be proved similarly but tensoring with $\Delta\left(\overline{\bar{\omega}}_{n-2}\right)$ and applying Theorem $\mathrm{B}(\mathrm{ii})$.

Acknowledgment

The author would like to thank Irina Suprunenko for drawing his attention to this problem and helpful discussions.

References

[BK1] J. Brundan, A.S. Kleshchev, Some remarks on branching rules and tensor products for algebraic groups, J. Algebra 217 (1) (1999) 335-351.
[BK2] J. Brundan, A.S. Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (1) (2000) 75-106.
[BKS] J. Brundan, A.S. Kleshchev, I.D. Suprunenko, Semisimple restrictions from GL(n) to $\mathrm{GL}(n-1)$, J. Reine Angew. Math. 500 (1998) 83-112.
[CL] R.W. Carter, G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974) 193-242.
[CP] R.W. Carter, M.T.J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (3) (1980) 419-425.
[H] J. Humphreys, Linear Algebraic Groups, Grad. Texts in Math., vol. 21, Springer, New York, 1975.
[J] J.C. Jantzen, Representations of Algebraic Groups, Math. Surveys Monogr., vol. 107, American Mathematical Society, Providence, RI, 2003.
[K] A.S. Kleshchev, Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math. 459 (1995) 163-212.
[M] O. Mathieu, Filtrations of G-modules, Ann. Sci. Ecole Norm. Sup. (4) 23 (4) (1990) 625-644.
[Sh1] V.V. Shchigolev, Generalization of modular lowering operators for GL ${ }_{n}$, Comm. Algebra 36 (4) (2008) 1250-1288.
[Sh2] V.V. Shchigolev, Rectangular low level case of modular branching problem for $G_{n}(K)$, J. Algebra 321 (1) (2009) 28-85.
[Sm] S.D. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75 (1982) 286-289.
[St] R. Steinberg, Lectures on Chevalley Groups, Yale Univ., New Haven, 1968.
[Su] I.D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Mem. Amer. Math. Soc., in press.

[^0]: E-mail address: shchigolev_vladimir@yahoo.com.

 0021-8693/\$ - see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2008.11.034

