brought to you by TCORE

Journal of Algebra 321 (2009) 1453-1462

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Weyl submodules in restrictions of simple modules

Vladimir Shchigolev

Department of Algebra, Faculty of Mathematics, Lomonosov Moscow State University, Leninskiye Gory, Moscow 119899, Russia

INFO ARTICLE

Article history:

Received 12 October 2007 Available online 7 January 2009 Communicated by Martin Liebeck

Keywords:

Algebraic groups Representations Irreducible modules Wevl modules Semisimple groups

ABSTRACT

Let \mathbb{F} be an algebraically closed field of characteristic p > 0. Suppose that $SL_{n-1}(\mathbb{F})$ is naturally embedded into $SL_n(\mathbb{F})$ (either in the top left corner or in the bottom right corner). We prove that certain Weyl modules over $SL_{n-1}(\mathbb{F})$ can be embedded into the restriction $L(\omega)\downarrow_{\operatorname{SL}_{n-1}(\mathbb{F})}$, where $L(\omega)$ is a simple $\operatorname{SL}_n(\mathbb{F})$ -module. This allows us to construct new primitive vectors in $L(\omega)\downarrow_{SL_{n-1}(\mathbb{F})}$ from any primitive vectors in the corresponding Weyl modules. Some examples are given to show that this result actually works. © 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let $G = SL_n(\mathbb{F})$, where \mathbb{F} is an algebraically closed field of characteristic p > 0 and $n \ge 3$. Consider the subgroup $G^{(q)}$ of G generated by the root elements $x_{\alpha}(t)$, $x_{-\alpha}(t)$, where α is a simple root distinct from a fixed terminal (simple) root α_q . It is a classical problem to describe the structure of the restriction $L\downarrow_{G^{(q)}}$, where L is a simple rational G-module.

In this paper, we focus on primitive (with respect to $G^{(q)}$) vectors of $L\downarrow_{G^{(q)}}$. The complete combinatorial description of these vectors is an open problem (stated in [BK1]), although lately there has been some progress in this direction [K,BKS,Sh2].

Another problem of equal importance is the description of primitive vectors in Weyl modules. Known methods of constructing such vectors [CL,CP] and methods of constructing primitive vectors in restrictions $L\downarrow_{G(q)}$ [K,BKS,Sh1,Sh2] bear some similarity (e.g. similar lowering operators), which is still not fully understood.

The present paper contains a combinatorial condition under which all primitive vectors (regardless of their nature) of certain Weyl modules over $G^{(q)}$ become primitive vectors of $L\downarrow_{G^{(q)}}$. This result is proved by embedding the corresponding Weyl modules into $L\downarrow_{G^{(q)}}$ (Theorem A). Examples I and II show that our result actually works, that is, produces nonzero primitive vectors of $L\downarrow_{G^{(q)}}$.

E-mail address: shchigolev_vladimir@yahoo.com.

We also hope that Theorem A will be useful for finding new composition factors of $L\downarrow_{G^{(q)}}$ and lower estimates of the dimensions of the weight spaces of L.

We order the simple roots $\alpha_1,\ldots,\alpha_{n-1}$ so that $x_{\alpha_i}(t)=E+te_{i,i+1}$. Then $x_{\alpha_i+\cdots+\alpha_{j-1}}(t)=E+te_{i,j}$ and $x_{-\alpha_i-\cdots-\alpha_{j-1}}(t)=E+te_{j,i}$, where $1\leqslant i< j\leqslant n$. Here and in what follows E is the identity $n\times n$ matrix and $e_{i,j}$ is the $n\times n$ matrix having 1 in the ijth position and 0 elsewhere. The root system Φ of G consists of the roots $\pm(\alpha_i+\cdots+\alpha_{j-1})$ and the positive root system Φ^+ consists of the roots $\alpha_i+\cdots+\alpha_{j-1}$, where $1\leqslant i< j\leqslant n$. Let $\omega_1,\ldots,\omega_{n-1}$ denote the fundamental weights corresponding to the roots $\alpha_1,\ldots,\alpha_{n-1}$.

In G, we fix the maximal torus T consisting of diagonal matrices and the Borel subgroup B consisting of upper triangular matrices.

The *hyperalgebra* of G is constructed as follows. Consider the following elements of $\mathfrak{sl}_n(\mathbb{C})$: $X_{\alpha_i+\cdots+\alpha_{j-1}}=e_{i,j}, X_{-\alpha_i-\cdots-\alpha_{j-1}}=e_{j,i}$, where $1\leqslant i< j\leqslant n$, and $H_{\alpha_i}=e_{i,i}-e_{i+1,i+1}$, where $1\leqslant i< n$. Following [St, Theorem 2], we denote by $\mathcal{U}_{\mathbb{Z}}$ the subring of the universal enveloping algebra of $\mathfrak{sl}_n(\mathbb{C})$ generated by divided powers $X_\alpha^m/m!$, where $\alpha\in \Phi$ and $m\in \mathbb{Z}^+$ (the set of nonnegative integers). The hyperalgebra of G is the tensor product $\mathcal{U}:=\mathcal{U}_{\mathbb{Z}}\otimes_{\mathbb{Z}}\mathbb{F}$. Elements $X_{\alpha,m}:=(X_\alpha^m/m!)\otimes 1_{\mathbb{F}}$ generate \mathcal{U} as an \mathbb{F} -algebra.

Every rational G-module V can be made into a \mathcal{U} -module by the rule

$$x_{\alpha}(t)v = \sum_{m=0}^{+\infty} t^m X_{\alpha,m} v. \tag{1}$$

We also need the elements $H_{\alpha_i,m} = \binom{H_{\alpha_i}}{m} \otimes 1_{\mathbb{F}}$. It is easy to show that these elements actually belong to \mathcal{U} (e.g., [St, Corollary to Lemma 5]). We shall often abbreviate $X_{\alpha} := X_{\alpha,1}$ and $H_{\alpha_i} := H_{\alpha_i,1}$ if this notation does not cause confusion.

For any integers $q_1,\ldots,q_m\in\{1,\ldots,n-1\}$, we denote by $G^{(q_1,\ldots,q_m)}$ the subgroup of G generated by the root elements $x_{\alpha_i}(t), x_{-\alpha_i}(t)$ with $i\in\{1,\ldots,n-1\}\setminus\{q_1,\ldots,q_m\}$. Note that $G^{(q_1,\ldots,q_m)}$ is the universal Chevalley group with root system $\Phi\cap\sum_{i\in\{1,\ldots,n-1\}\setminus\{q_1,\ldots,q_m\}}\mathbb{Z}\alpha_i$ [H, Theorem 27.3].

In $G^{(q_1,\ldots,q_m)}$, we fix the maximal torus $T^{(q_1,\ldots,q_m)}$ generated by the elements $h_{\alpha_i}(t)=\operatorname{diag}(1,\ldots,1,t,t^{-1},1,\ldots,1)$, where $t\in\mathbb{F}^*$ is at the ith position and $i\in\{1,\ldots,n-1\}\setminus\{q_1,\ldots,q_m\}$, and the Borel subgroup generated by $T^{(q_1,\ldots,q_m)}$ and the root elements $x_{\alpha'}(t)$ with $\alpha\in\Phi^{(q_1,\ldots,q_m)}\cap\Phi^+$.

We denote by X(T) the set of T-weights and by $X^+(T)$ the set of dominant T-weights. For any $\omega \in X^+(T)$, we denote by $L(\omega)$ and $\Delta(\omega)$ the simple rational G-module with highest weight ω and the Weyl G-module with highest weight ω respectively. We fix nonzero vectors v_ω^+ and e_ω^+ of $L(\omega)$ and $\Delta(\omega)$ respectively having weight ω . Similar notations will be used for subtori $T^{(q_1,\ldots,q_m)}$. We shall often omit the prefix before the word "weight" if it is clear which torus we mean.

The terminal roots of Φ are α_1 and α_{n-1} . Thus q=1 or q=n-1. For any weight $\kappa \in X(T)$, we denote by $\bar{\kappa}$ and $\bar{\kappa}$ the restrictions of κ to $T^{(1)}$ and $T^{(n-1)}$ respectively. The main results of the present paper are as follows.

Theorem A. Let $G = SL_n(\mathbb{F}), \omega \in X^+(T)$ and $k = 0, \ldots, p-1$.

- (i) If $\langle \omega, \alpha_1 \rangle l \not\equiv 0 \pmod{p}$ for any l = 0, ..., k 1 and there is m = 0, ..., k such that $\Delta(\bar{\omega} + m\bar{\omega}_2)$ is simple, then the $G^{(1)}$ -submodule of $L(\omega)$ generated by $X_{-\alpha_1,k}v_{\omega}^+$ is isomorphic to $\Delta(\bar{\omega} + k\bar{\omega}_2)$.
- (ii) If $\langle \omega, \alpha_{n-1} \rangle l \not\equiv 0 \pmod{p}$ for any $l = 0, \dots, k-1$ and there is $m = 0, \dots, k$ such that $\Delta(\bar{\omega} + m\bar{\omega}_{n-2})$ is simple, then the $G^{(n-1)}$ -submodule of $L(\omega)$ generated by $X_{-\alpha_{n-1},k}v_{\omega}^+$ is isomorphic to $\Delta(\bar{\omega} + k\bar{\omega}_{n-2})$.

Theorem B. Let $G = \operatorname{SL}_n(\mathbb{F})$, $\omega \in X^+(T)$, k = 0, ..., p-1 and q = 1 or q = n-1. The $G^{(q)}$ -submodule of $L(\omega)$ generated by $X_{-\alpha_q,k}v_{\omega}^+$ is isomorphic to a Weyl module if and only if $\langle \omega, \alpha_q \rangle - l \not\equiv 0 \pmod{p}$ for any l = 0, ..., k-1 and

(i) any nonzero primitive vector of $\Delta(\bar{\omega} + k\bar{\omega}_2)$ has weight $\bar{\omega} + k\bar{\omega}_2 - b_2\bar{\alpha}_2 - \cdots - b_{n-1}\bar{\alpha}_{n-1}$ with $k \ge b_2 \ge \cdots \ge b_{n-1} \ge 0$ in the case q = 1;

(ii) any nonzero primitive vector of $\Delta(\bar{\omega} + k\bar{\omega}_{n-2})$ has weight $\bar{\omega} + k\bar{\omega}_{n-2} - b_1\bar{\alpha}_1 - \cdots - b_{n-2}\bar{\alpha}_{n-2}$ with $0 \le b_1 \le \cdots \le b_{n-2} \le k$ in the case q = n - 1.

More precisely, we have $KG^{(1)}X_{-\alpha_1,k}v_{\omega}^+ \cong \Delta(\bar{\omega}+k\bar{\omega}_2)$ in case (i) and $KG^{(n-1)}X_{-\alpha_{n-1},k}v_{\omega}^+ \cong \Delta(\bar{\omega}+k\bar{\omega}_{n-2})$ in case (ii).

Theorem A can be viewed as a special case of the following more general problem (valid for an arbitrary semisimple group G) stated by Irina Suprunenko:

Problem 1. Let α_q be a terminal root of the Dynkin diagram of Φ and $k=0,\ldots,p-1$. Describe the weights $\omega\in X^+(T)$ such that the $G^{(q)}$ -submodule of the simple module $L(\omega)$ generated by $X_{-\alpha_q,k}v_\omega^+$ is isomorphic to a Weyl module.

Theorem B solves this problem for $G = \mathrm{SL}_n(\mathbb{F})$ in terms of the Hom-spaces between Weyl modules and is a more refined version of Theorem A giving a necessary and sufficient condition for $X_{-\alpha_q,k}v_\omega^+$ to generate a Weyl module.

Theorem A can easily be used in practice by virtue of the following irreducibility criterion of Weyl modules over groups of type A_{n-1} proved by J.C. Jantzen.

Proposition 2. (See [J, II.8.21].) The Weyl module $\Delta(\omega)$ is simple if and only if for each $\alpha \in \Phi^+$ the following is satisfied: Write $\langle \omega + \rho, \alpha \rangle = ap^s + bp^{s+1}$, where $a, b, s \in \mathbb{Z}^+$, 0 < a < p and ρ is half the sum of the positive roots of Φ . Then there have to be $\beta_0, \beta_1, \ldots, \beta_b \in \Phi^+$ with $\langle \omega + \rho, \beta_i \rangle = p^{s+1}$ for $1 \le i \le b$ and $\langle \omega + \rho, \beta_0 \rangle = ap^s$, with $\alpha = \sum_{i=0}^b \beta_i$ and with $\alpha - \beta_0 \in \Phi \cup \{0\}$.

Example I. Let $G = \operatorname{SL}_3(\mathbb{F})$ and $\omega = a_1\omega_1 + a_2\omega_2$ be a dominant weight such that $a_1, a_2 < p$ and $a_1 + a_2 \geqslant p + b$, where $b = 0, \ldots, p - 2$. We put $k := p + b - a_2$. Note that for any $l = 0, \ldots, k - 1$, we have $0 < a_1 - l < p$ and thus $\langle \omega, \alpha_1 \rangle - l \not\equiv 0 \pmod{p}$. Notice also that 0 < k < p. Indeed, $k \geqslant p$ implies $b \geqslant a_2$ and $a_1 + a_2 \geqslant p + b \geqslant p + a_2$. Hence $a_1 \geqslant p$, which is a contradiction. Since the Weyl module $\Delta(\bar{\omega}) = \Delta(a_2\bar{\omega}_2)$ is simple, Theorem A(i) (where m = 0) shows that the $G^{(1)}$ -submodule of $L(\omega)$ generated by $X_{-\alpha_1,k}v_{\omega}^+$ is isomorphic to $\Delta((p + b)\bar{\omega}_2)$. The latter module is already not simple. For example, $X_{-\alpha_2,b+1}e_{(p+b)\bar{\omega}_2}^+$ is a nonzero $G^{(1)}$ -primitive vector. Thus $X_{-\alpha_2,b+1}X_{-\alpha_1,k}v_{\omega}^+$ is a nonzero $G^{(1)}$ -primitive vector of $L(\omega)$ of weight $\omega - (p + b - a_2)\alpha_1 - (b + 1)\alpha_2$.

There is an interesting connection between this example and [Su, Lemma 2.55], which is extensively used in that paper for calculation of degrees of minimal polynomials. In our notation, [Su, Lemma 2.55] is as follows:

Let M be an indecomposable $G^{(1)}$ -module with highest weight $(p+b)\bar{\omega}_2$ and $0 \le b < p-1$. Suppose that $X_{-\alpha_2,b+1}v^+ \ne 0$, where v^+ is a highest weight vector of M. Then $M \cong \Delta((p+b)\bar{\omega}_2)$.

Therefore, if we somehow prove that $X_{-\alpha_2,b+1}X_{-\alpha_1,k}v_{\omega}^+ \neq 0$, then it will follow from this lemma that the $G^{(1)}$ -submodule of $L(\omega)$ generated by $X_{-\alpha_1,k}v_{\omega}^+$ is a Weyl module (without applying Theorem A).

Example II. Let p = 5, $G = SL_5(\mathbb{F})$ and $\omega = 3\omega_1 + 3\omega_2 + \omega_3 + 2\omega_4$. Take any k = 1, ..., 4 and apply Theorem A(i) for this k. The value k = 4 does not fit, since $\langle \omega, \alpha_1 \rangle - 3 = 0$.

If we apply Theorem A(i) for k=1, then we obtain that $L(\omega)$ contains a $G^{(1)}$ -submodule isomorphic to $\Delta(\bar{\omega} + \bar{\omega}_2)$. However, the last module is simple and we do not get any nonzero $G^{(1)}$ -primitive vectors in this way except the trivial $X_{-\alpha_1}v_{\omega}^+$.

The cases k=2 and k=3 on the contrary give new vectors. In the former case, Theorem A(i) implies that $L(\omega)$ contains a $G^{(1)}$ -submodule isomorphic to $\Delta(\bar{\omega}+2\bar{\omega}_2)$. The last module contains nonzero primitive vectors of weights $\bar{\omega}+2\bar{\omega}_2-\bar{\alpha}_2$ and $\bar{\omega}+2\bar{\omega}_2-\bar{\alpha}_2-\bar{\alpha}_3-\bar{\alpha}_4$ by the Carter–Payne theorem [CP]. In the latter case, Theorem A(i) implies that $L(\omega)$ contains a $G^{(1)}$ -submodule isomorphic

to $\Delta(\bar{\omega}+3\bar{\omega}_2)$. The last module contains nonzero primitive vectors of weights $\bar{\omega}+3\bar{\omega}_2-2\bar{\alpha}_2$ and $\bar{\omega}+3\bar{\omega}_2-2\bar{\alpha}_2-2\bar{\alpha}_3-2\bar{\alpha}_4$ by the Carter–Payne theorem [CP].

Thus except trivial nonzero $G^{(1)}$ -primitive vectors of weights $\omega - i\alpha_1$ with i = 0, ..., 3, the module $L(\omega)$ (which is not a Weyl module) also contains nonzero $G^{(1)}$ -primitive vectors of weights $\omega - 2\alpha_1 - \alpha_2$, $\omega - 2\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4$, $\omega - 3\alpha_1 - 2\alpha_2$ and $\omega - 3\alpha_1 - 2\alpha_2 - 2\alpha_3 - 2\alpha_4$.

Computer calculations show that examples similar to Example II are quite abundant. Note that in both Examples I and II, we apply $X_{-\alpha_1,k}$ to v_{ω}^+ only for k>0. The reason is that the case k=0 corresponds to Smith's theorem [Sm] and the only primitive vectors of $L\downarrow_{G^{(q)}}$ produced in this way are those proportional to v_{ω}^+ .

We shall use the following result following directly from [St, Theorem 2].

Proposition 3. The products $\prod_{\alpha \in \Phi^+} X_{-\alpha,m_{-\alpha}} \cdot \prod_{i=1}^{n-1} H_{\alpha_i,n_i} \cdot \prod_{\alpha \in \Phi^+} X_{\alpha,m_{\alpha}}$, where $m_{-\alpha}$, n_i , $m_{\alpha} \in \mathbb{Z}^+$, taken in any fixed order form a basis of \mathcal{U} .

We denote by \mathcal{U}^+ the subspace of \mathcal{U} spanned by the above products with unitary first and second factors. Given integers $q_1,\ldots,q_m\in\{1,\ldots,n-1\}$, we denote by $\mathcal{U}^{(q_1,\ldots,q_m)}$ the subspace of \mathcal{U} spanned by all the above products such that $m_\alpha=0$ unless $\alpha\in\Phi^{(q_1,\ldots,q_m)}$ and $n_i=0$ unless $i\in\{1,\ldots,n-1\}\setminus\{q_1,\ldots,q_m\}$. One can easily see that \mathcal{U}^+ and $\mathcal{U}^{(q_1,\ldots,q_m)}$ are subalgebras of \mathcal{U} . We let $\mathcal{U}^{(q_1,\ldots,q_m)}$ act on any rational $G^{(q_1,\ldots,q_m)}$ -module according to (1). In the sequel, we shall mean the X(T)-grading of \mathcal{U} in which $X_{\alpha,m}$ has weight $m\alpha$ and $H_{\alpha_i,m}$ has weight 0.

For each $\omega \in X^+(T)$, we denote by $\nabla(\omega)$ the module contravariantly dual to the Weyl module $\Delta(\omega)$ and denote by $\pi^\omega : \Delta(\omega) \to L(\omega)$ the *G*-module epimorphism such that $\pi^\omega(e_\omega^+) = v_\omega^+$. We also denote by V^τ for $\tau \in X(T)$ the τ -weight space of a rational T-module V.

A vector v of a rational G-module is called G-primitive if $\mathbb{F}v$ is fixed by the Borel subgroup B. We use similar terminology for $G^{(q_1,\ldots,q_m)}$ and omit the prefix when it is clear which group we mean. In view of the universal property of Weyl modules [J, Lemma II.2.13 b], we can speak about primitive vectors of a rational module V instead of homomorphisms from Weyl modules to V (we use this language in Theorem B).

Note that Theorems A and B in the case q=n-1 are easy consequences of the theorems in the case q=1 by a standard argument involving twisting with the automorphism $g\mapsto w_0(g^{-1})^tw_0^{-1}$, where t stands for the transposition and w_0 stands for the longest element of the Weyl group. Therefore in the remainder of the article we consider only the case q=1.

2. Proof of the main results

We fix a weight $\omega = a_1\omega_1 + \cdots + a_{n-1}\omega_{n-1}$ of $X^+(T)$ and an integer $k \in \mathbb{Z}^+$. The restriction of ω to $T^{(1)}$ is $\bar{\omega} = a_2\bar{\omega}_2 + \cdots + a_{n-1}\bar{\omega}_{n-1}$. Clearly, $X_{-\alpha_1,k}v_{\omega}^+$ is a (possibly zero) $G^{(1)}$ -primitive vector of $T^{(1)}$ -weight $\bar{\omega} + k\bar{\omega}_2$. By the universal property of Weyl modules [J, Lemma II.2.13 b], there exists the homomorphism $\varphi_k^{\omega}: \Delta(\bar{\omega} + k\bar{\omega}_2) \to L(\omega)$ of $G^{(1)}$ -modules that takes $e_{\bar{\omega}+k\bar{\omega}_2}^+$ to $X_{-\alpha_1,k}v_{\omega}^+$. Obviously,

$$KG^{(1)}X_{-\alpha_1,k}v_{\omega}^+ \cong \Delta(\bar{\omega} + k\bar{\omega}_2)/\ker \varphi_k^{\omega}.$$
 (2)

Problem 1 can now be reformulated as follows: Describe the weights $\omega \in X^+(T)$ such that $\ker \varphi_k^\omega = 0$. The analog of this problem for $\Delta(\omega)$ has a trivial solution.

Lemma 4. The $G^{(1)}$ -submodule of $\Delta(\omega)$ generated by $X_{-\alpha_1,k}e^+_\omega$ is isomorphic to $\Delta(\bar{\omega}+k\bar{\omega}_2)$ if $0 \le k \le \langle \omega, \alpha_1 \rangle$ and is zero otherwise.

Proof. Suppose temporarily that char $\mathbb{F} = 0$. Then $\Delta(\omega)$ is irreducible. Since $X_{\alpha_1,k}X_{-\alpha_1,k}e_{\omega}^+ = \binom{\alpha_1}{k}e_{\omega}^+$, we have (recall that α_1 is simple)

$$\dim \Delta(\omega)^{\omega - k\alpha_1} = \begin{cases} 1 & \text{if } 0 \leqslant k \leqslant a_1; \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

Now let us return to the situation where $\operatorname{char} \mathbb{F} = p > 0$. Since the character of a Weyl module does not depend on $\operatorname{char} \mathbb{F}$, (3) holds again. Therefore, $X_{-\alpha_1,k}e_\omega^+ = 0$ if $k > a_1$. Thus we assume $0 \le k \le a_1$ for the rest of the proof. Consider the decomposition $\Delta(\omega) = \bigoplus_{b \in \mathbb{Z}^+} V^{(b)}$, where

$$V^{(b)} = \bigoplus_{b_2, \dots, b_{n-1} \in \mathbb{Z}^+} \Delta(\omega)^{\omega - b\alpha_1 - b_2\alpha_2 - \dots - b_{n-1}\alpha_{n-1}}$$

(the bth level of $\Delta(\omega)$). Note that each $V^{(b)}$ is a $G^{(1)}$ -module. By (3), $X_{-\alpha_1,k}e_\omega^+$ is a nonzero vector of $V^{(k)}$ having $T^{(1)}$ -weight $\bar{\omega}+k\bar{\omega}_2$. Moreover, the weight space of $V^{(k)}$ corresponding to this weight is one-dimensional. Any other $T^{(1)}$ -weight of $V^{(k)}$ is less than this weight. It follows from [M] (see also [J, Proposition II.4.24]) that $\Delta(\omega)\downarrow_{G^{(1)}}$ has a Weyl filtration. By [J, Proposition II.4.16(iii)], its direct summand $V^{(k)}$ also has a Weyl filtration (as a $G^{(1)}$ -module). Any such filtration contains one factor isomorphic to $\Delta(\bar{\omega}+k\bar{\omega}_2)$ and, possibly, some other factors each isomorphic to $\Delta(\tau)$ with $\tau<\bar{\omega}+k\bar{\omega}_2$. Applying [J, II.4.16, Remark 4] to the dual module $V^{(k)*}$, we obtain that $V^{(k)}$ contains a $G^{(1)}$ -submodule isomorphic to $\Delta(\bar{\omega}+k\bar{\omega}_2)$. Clearly, this submodule is generated by $X_{-\alpha_1,k}e_\omega^+$. \square

We deliberately did not use a basis of $\Delta(\omega)$ in the proof of the above theorem to make it valid for G of arbitrary type.

Lemma 5. The modules $KG^{(1)}X_{-\alpha_1,k}v_{\omega}^+$ and $KG^{(1)}X_{-\alpha_1,k}e_{\omega}^+$ decompose into direct sums of their T-weight subspaces. These sums are exactly the decompositions into $T^{(1)}$ -weight subspaces.

Proof. The only fact we need to prove is that $\overline{\omega - b_1\alpha_1 - \cdots - b_{n-1}\alpha_{n-1}} = \overline{\omega - c_1\alpha_1 - \cdots - c_{n-1}\alpha_{n-1}}$ and $b_1 = c_1$ imply $b_i = c_i$ for any $i = 1, \dots, n-1$. This is obvious, since the first equality is equivalent to $\bar{\omega} + b_1\bar{\omega}_2 - b_2\bar{\alpha}_2 - \cdots - b_{n-1}\bar{\alpha}_{n-1} = \bar{\omega} + c_1\bar{\omega}_2 - c_2\bar{\alpha}_2 - \cdots - c_{n-1}\bar{\alpha}_{n-1}$. \square

Before proving Theorem B, we need to describe the standard bases for Weyl modules over $G^{(1)}$. Let $\kappa = d_2\bar{\omega}_2 + \cdots + d_{n-1}\bar{\omega}_{n-1}$ be a weight of $X^+(T^{(1)})$. A sequence $\lambda = (\lambda_2, \dots, \lambda_n)$ of nonnegative integers is called *coherent* with κ if $d_i = \lambda_i - \lambda_{i+1}$ for any $i = 2, \dots, n-1$. The *diagram* of λ is the set

$$[\lambda] = \{(i, j) \in \mathbb{Z}^2 \mid 2 \leqslant i \leqslant n \text{ and } 1 \leqslant j \leqslant \lambda_i\}.$$

We shall think of $[\lambda]$ as an array of boxes. For example, if $\lambda = (5, 3, 2, 0)$ then

Note that in our terminology the top row of this diagram is the second row.

A λ -tableau is a function $t:[\lambda] \to \{2,\ldots,n\}$, which we regard as the diagram $[\lambda]$ filled with integers in $\{2,\ldots,n\}$. A λ -tableau t is called *row standard* if its entries weakly increase along the rows, that is $t(i,j) \leqslant t(i,j')$ if j < j'. A λ -tableau t is called *regular row standard* if it is row standard and every entry in row i of t is at least i. Finally, a λ -tableau t is called *standard* if it is row standard and its entries strictly increase down the columns, that is t(i,j) < t(i',j) if i < i'. For example,

$$t = \begin{bmatrix} 2 & 3 & 3 & 4 & 5 \\ 3 & 4 & 4 & \\ 4 & 5 & \end{bmatrix}$$

is a standard (5, 3, 2, 0)-tableau. For any λ -tableau t, we put

$$F_t := \prod_{2 \leqslant a < b \leqslant n} X_{-\alpha_a - \dots - \alpha_{b-1}, N_{a,b}},$$

where $N_{a,b}$ is the number of entries b in row a of t, $X_{-\alpha_a-\cdots-\alpha_{b-1},N_{a,b}}$ precedes $X_{-\alpha_c-\cdots-\alpha_{d-1},N_{c,d}}$ if b < d or b = d and a < c.

Remark 6. One can easily see that the number of entries greater than 2 in the second (top) row of t is exactly minus the coefficient at α_2 in the weight of F_t .

For t as in the above example, we have

$$F_t = X_{-\alpha_2,2} X_{-\alpha_2-\alpha_3} X_{-\alpha_3,2} X_{-\alpha_2-\alpha_3-\alpha_4} X_{-\alpha_4}$$

Proposition 7. (See [CL].) Let κ be a weight of $X^+(T^{(1)})$ and $\lambda = (\lambda_2, \dots, \lambda_n)$ be a sequence coherent with κ . Then the vectors $F_t e_{\kappa}^+$, where t is a standard λ -tableau, form a basis of $\Delta(\kappa)$.

Now suppose that $m=3,\ldots,n$ and $\lambda_2-\lambda_3=d_2\geqslant 1$. For any regular row standard λ -tableau t, we define $\rho_m(t)$ to be the $(\lambda_2-1,\lambda_3,\ldots,\lambda_n)$ -tableau obtained from t by removing one entry m from the second row, if such removal is possible, and shifting all elements of the resulting row to the left.

One can easily check that for any $2 \le s < m \le n$ and $N \in \mathbb{Z}^+$, there holds

$$[X_{\alpha_1 + \dots + \alpha_{m-1}}, X_{-\alpha_s - \dots - \alpha_{m-1}, N}] = X_{-\alpha_s - \dots - \alpha_{m-1}, N-1} X_{\alpha_1 + \dots + \alpha_{s-1}}.$$
 (4)

Note that (4) holds for any $N \in \mathbb{Z}$ if we define $X_{\alpha,N} := 0$ for N < 0. Let I^+ denote the left ideal of \mathcal{U} generated by the elements $X_{\alpha,N}$ with $\alpha \in \Phi^+$ and N > 0.

Lemma 8. Let $m = 3, ..., n, \lambda_2 - \lambda_3 = d_2 \geqslant 1$, t be a regular row standard λ -tableau and $1 \leqslant k$. We have

$$X_{\alpha_1 + \dots + \alpha_{m-1}} F_t X_{-\alpha_1, k} \equiv F_{\rho_m(t)} X_{-\alpha_1, k-1} (H_{\alpha_1} + 1 - k) \pmod{I^+}$$

if $\rho_m(t)$ is well-defined and

$$X_{\alpha_1+\cdots+\alpha_{m-1}}F_tX_{-\alpha_1,k}\equiv 0\pmod{I^+}$$

otherwise.

Proof. Let $N_{a,b}$ denote the number of entries b in row a of t. Consider the representation $F_t = F_3 \cdots F_n$, where

$$F_j = X_{-\alpha_2 - \dots - \alpha_{j-1}, N_{2,j}} \cdots X_{-\alpha_{j-2} - \alpha_{j-1}, N_{j-2,j}} X_{-\alpha_{j-1}, N_{j-1,j}}.$$

Clearly, $X_{\alpha_1+\cdots+\alpha_{m-1}}$ commutes with any F_j such that $j \neq m$. Using (4) and the fact that $X_{\alpha_1+\cdots+\alpha_{s-1}}$ commutes with any factor of F_m for $s=2,\ldots,m-1$, we obtain

$$\begin{split} X_{\alpha_{1}+\cdots+\alpha_{m-1}}F_{m} &= F_{m}X_{\alpha_{1}+\cdots+\alpha_{m-1}} \\ &+ \sum_{s=2}^{m-1} \left(\prod_{l=2}^{m-1} X_{-\alpha_{l}-\cdots-\alpha_{m-1},N_{l,m}-\delta_{l,s}} \right) X_{\alpha_{1}+\cdots+\alpha_{s-1}}. \end{split}$$

Here and in what follows $\delta_{l,s}$ equals 1 if l=s and equals 0 otherwise. Since $X_{\alpha_1+\cdots+\alpha_{s-1}}$ commutes with any F_j for $s=2,\ldots,m$ and $j=m+1,\ldots,n$, we obtain

$$X_{\alpha_{1}+\dots+\alpha_{m-1}}F_{t}X_{-\alpha_{1},k} = F_{t}X_{\alpha_{1}+\dots+\alpha_{m-1}}X_{-\alpha_{1},k} + \sum_{s=2}^{m-1} F_{1}\cdots F_{m-1}\left(\prod_{l=2}^{m-1} X_{-\alpha_{l}-\dots-\alpha_{m-1},N_{l,m}-\delta_{l,s}}\right)F_{m+1}\cdots F_{n}X_{\alpha_{1}+\dots+\alpha_{s-1}}X_{-\alpha_{1},k}.$$

Since $m \geqslant 3$ the first summand and any product under the summation sign for s > 2 in the right-hand side of the above formula belongs to I^+ . Hence

$$X_{\alpha_1+\cdots+\alpha_{m-1}}F_tX_{-\alpha_1,k} \equiv F_1\cdots F_{m-1}\left(\prod_{l=2}^{m-1}X_{-\alpha_l-\cdots-\alpha_{m-1},N_{l,m}-\delta_{l,2}}\right)$$
$$\times F_{m+1}\cdots F_nX_{-\alpha_1,k-1}(H_{\alpha_1}-k+1) \pmod{I^+}.$$

If $N_{2,m} > 0$ then the right-hand side of the above formula equals $F_{\rho_m(t)}X_{-\alpha_1,k-1}(H_{\alpha_1}+1-k)$. Otherwise it equals zero and $\rho_m(t)$ is not well-defined. \square

We also need the iterated version of ρ_m . Suppose that $M=(m_1,\ldots,m_l)$ is a sequence with entries in $\{3,\ldots,n\}$ and $\lambda_2-\lambda_3=d_2\geqslant l$. For any regular row standard λ -tableau t, we define $\rho_M(t)$ to be the $(\lambda_2-l,\lambda_3,\ldots,\lambda_n)$ -tableau obtained from t by removing the entries m_1,\ldots,m_l (taking into account their multiplicities) from the second row, if such removal is possible, and shifting all elements of the resulting row to the left. We clearly have $\rho_M(t)=\rho_{m_1}\circ\cdots\circ\rho_{m_l}(t)$ if the second row of t contains entries m_1,\ldots,m_l . Hence applying Lemma 8, we obtain the following result.

Corollary 9. Let $M=(m_1,\ldots,m_l)$ be a sequence with entries in $\{3,\ldots,n\}$, $\lambda_2-\lambda_3=d_2\geqslant l$, t be a regular row standard λ -tableau and $l\leqslant k$. We have

$$\left(\prod_{i=1}^{l} X_{\alpha_1+\cdots+\alpha_{m_i-1}}\right) F_t X_{-\alpha_1,k} \equiv F_{\rho_M(t)} X_{-\alpha_1,k-l} \left(\prod_{i=1}^{l} H_{\alpha_1} + i - k\right) \pmod{I^+}$$

if $\rho_M(t)$ is well-defined and

$$\left(\prod_{i=1}^{l} X_{\alpha_1 + \dots + \alpha_{m_i - 1}}\right) F_t X_{-\alpha_1, k} \equiv 0 \pmod{l^+}$$

otherwise.

In what follows, $coeff_{\alpha_1}(\beta)$ denotes the coefficient at α_1 of a root $\beta \in \Phi$.

Proof of Theorem B. "Only if part." Suppose that the $G^{(1)}$ -submodule of $L(\omega)$ generated by $X_{-\alpha_1,k}v_{\omega}^+$ is isomorphic to a Weyl module. Then $X_{-\alpha_1,k}v_{\omega}^+ \neq 0$ and $X_{\alpha_1,k}X_{-\alpha_1,k}v_{\omega}^+ = {a_1 \choose k}v_{\omega}^+ \neq 0$. Hence $a_1 - l \neq 0$ (mod p) for $l = 0, \ldots, k-1$, since k < p.

Now let v be a nonzero $G^{(1)}$ -primitive vector of $KG^{(1)}X_{-\alpha_1,k}v_{\omega}^+$. By Lemma 5, v is a T-weight vector. It has T-weight $\omega-\delta$, where δ is a sum of positive roots. Clearly, the coefficient at α_1 of δ equals k. We claim that

$$\delta \in E(1,k) := \left\{ \beta_1 + \dots + \beta_l \mid \beta_1, \dots, \beta_l \in \Phi^+, \operatorname{coeff}_{\alpha_1}(\beta_1) > 0, \dots, \right.$$

$$\left. \operatorname{coeff}_{\alpha_1}(\beta_l) > 0, \operatorname{coeff}_{\alpha_1}(\beta_1) + \dots + \operatorname{coeff}_{\alpha_1}(\beta_l) = k \right\}. \tag{5}$$

Indeed, by Proposition 3, the products $\prod_{\alpha \in \Phi^+} X_{\alpha, m_{\alpha}}$ taken in any fixed order form a basis of \mathcal{U}^+ . Let us assume now that this order is such that any factor $X_{\alpha, m_{\alpha}}$ with $\operatorname{coeff}_{\alpha_1}(\alpha) > 0$ is situated to

the left of any factor $X_{\beta,m_{\beta}}$ with $\operatorname{coeff}_{\alpha_{1}}(\beta)=0$. Since $v\neq 0$, we have $(\prod_{\alpha\in\Phi^{+}}X_{\alpha,m_{\alpha}})v=cv_{\omega}^{+}$ for some $c\in\mathbb{F}^{*}$ and $m_{\alpha}\in\mathbb{Z}^{+}$ such that $\sum_{\alpha\in\Phi^{+}}m_{\alpha}\alpha=\delta$. Since v is $G^{(1)}$ -primitive, the order of factors we have chosen implies that $m_{\alpha}=0$ if $\operatorname{coeff}_{\alpha_{1}}(\alpha)=0$. On the other hand, $\sum_{\alpha\in\Phi^{+}}m_{\alpha}\operatorname{coeff}_{\alpha_{1}}(\alpha)=k$. Hence (5) directly follows.

Now it remains to notice that

$$E(1,k) = \{b_1\alpha_1 + \dots + b_{n-1}\alpha_{n-1} \mid k = b_1 \geqslant b_2 \geqslant \dots \geqslant b_{n-1} \geqslant 0\}.$$

"If part." We assume that $a_1-l\not\equiv 0\pmod p$ for any $l=0,\ldots,k-1$ and any nonzero primitive vector of $\Delta(\bar\omega+k\bar\omega_2)$ has weight as in (i). In particular, we have $k\leqslant a_1$. Suppose that $KG^{(1)}X_{-\alpha_1,k}v_\omega^+$ is not isomorphic to a Weyl module. Then by (2), we get $\ker\varphi_k^\omega\ne 0$. Since $\ker\varphi_k^\omega$ is a submodule of $\Delta(\bar\omega+k\bar\omega_2)$, it contains a nonzero primitive vector u. Our assumption implies that u has weight $\bar\omega+k\bar\omega_2-b_2\bar\alpha_2-\cdots-b_{n-1}\bar\alpha_{n-1}$, where $k\geqslant b_2\geqslant\cdots\geqslant b_{n-1}\geqslant 0$.

The universal property of Weyl modules implies the existence of the $G^{(1)}$ -module homomorphism $\gamma:\Delta(\bar{\omega}+k\bar{\omega}_2)\to KG^{(1)}X_{-\alpha_1,k}e^+_{\omega}$ such that $\gamma(e^+_{\bar{\omega}+k\bar{\omega}_2})=X_{-\alpha_1,k}e^+_{\omega}$. Lemma 4 shows that γ is an isomorphism. Since $\pi^\omega\circ\gamma=\varphi^\omega_k$ (to prove it, apply both sides to $e^+_{\bar{\omega}+k\bar{\omega}_2}$), we have $\gamma(u)\in \operatorname{rad}\Delta(\omega)$.

Take any sequence $\lambda = (\lambda_2, \dots, \lambda_n)$ of nonnegative integers coherent with $\bar{\omega} + k\bar{\omega}_2$. In particular, we have $\lambda_2 - \lambda_3 = \langle \bar{\omega} + k\bar{\omega}_2, \bar{\alpha}_2 \rangle = a_2 + k \geqslant b_2$. By Proposition 7, we have the representation $u = \sum_{s \in S} c_s F_s e_{\bar{\omega} + k\bar{\omega}_2}^+$, where $c_s \in \mathbb{F}^*$ and S is a nonempty set consisting of standard λ -tableaux s such that F_s has weight $-b_2\alpha_2 - \dots - b_{n-1}\alpha_{n-1}$. Obviously, any tableau $s \in S$ has exactly b_2 entries greater than 2 in the second row (see Remark 6).

Let us fix some tableau $t \in S$, denote be m_1, \ldots, m_{b_2} all the entries greater than 2 in the second row of t (taking into account multiplicities) and put $M := (m_1, \ldots, m_{b_2})$. Clearly, $\rho_M(t)$ is well-defined. Moreover, for any $s \in S$ such that $\rho_M(s)$ is well-defined, $\rho_M(s)$ is a standard $(\lambda_2 - b_2, \lambda_3, \ldots, \lambda_n)$ -tableau whose every entry in the second row is 2 and $F_{\rho_M(s)}$ has weight

$$-b_2\alpha_2-\cdots-b_{n-1}\alpha_{n-1}+\left(\sum_{i=1}^{b_2}\alpha_2+\cdots+\alpha_{m_i-1}\right)=-b_3'\alpha_3-\cdots-b_{n-1}'\alpha_{n-1},$$

where b_3', \ldots, b_{n-1}' are nonnegative integers (independent of s). Applying γ to the above representation of u, we obtain

$$\gamma(u) = \sum_{s \in S} c_s F_s X_{-\alpha_1, k} e_{\omega}^+ \in \operatorname{rad} \Delta(\omega).$$

Multiplying this formula by $(\prod_{i=1}^{b_2} X_{\alpha_1 + \dots + \alpha_{m_i-1}})$ on the left, taking into account $b_2 \leqslant k$ and applying Corollary 9, we obtain

$$\left(\prod_{i=1}^{b_2} a_1 + i - k\right) \sum \left\{ F_{\rho_M(s)} X_{-\alpha_1, k - b_2} e_{\omega}^+ \mid s \in S \text{ and } \rho_M(s) \text{ is well-defined} \right\}$$

$$\in \operatorname{rad} \Delta(\omega). \tag{6}$$

Since $b_2 \le k$ and we assumed $a_1 - l \ne 0 \pmod{p}$ for any $l = 0, \dots, k - 1$, the first factor of the product in the left-hand side of the above formula is nonzero. Moreover, if s and s' are distinct tableaux of s' and both $\rho_M(s)$ and $\rho_M(s')$ are well-defined, then $\rho_M(s) \ne \rho_M(s')$. Notice that the summation in (6) is nonempty, since at least s = t satisfies the restrictions.

By Lemma 4, the $G^{(1)}$ -submodule W of $\Delta(\omega)$ generated by $X_{-\alpha_1,k-b_2}e^+_\omega$ is isomorphic to $\Delta(\bar{\omega}+(k-b_2)\bar{\omega}_2)$. Note that $(\lambda_2-b_2,\lambda_3,\ldots,\lambda_n)$ is coherent with $\bar{\omega}+(k-b_2)\bar{\omega}_2$. Therefore by Proposition 7, the left-hand side of (6) is nonzero. It belongs to a proper $G^{(1)}$ -submodule $W\cap \operatorname{rad}\Delta(\omega)$ of W and

hence to rad W. Note that $X_{\alpha_1,k-b_2}X_{-\alpha_1,k-b_2}e^+_\omega=\binom{a_1}{k-b_2}e^+_\omega\neq 0$, whence $X_{-\alpha_1,k-b_2}e^+_\omega\notin \operatorname{rad}\Delta(\omega)$ and indeed $W\cap\operatorname{rad}\Delta(\omega)\neq W$.

In other words, we proved that $\operatorname{rad} \Delta(\bar{\omega} + (k-b_2)\bar{\omega}_2)$ contains a nonzero vector u' of weight $\bar{\omega} + (k-b_2)\bar{\omega}_2 - b_3'\bar{\alpha}_3 - \cdots - b_{n-1}'\bar{\alpha}_{n-1}$. As an immediate consequence of this fact, we get $n \geqslant 4$. For any weight $\varkappa \in X(T)$, we denote by $\widetilde{\varkappa}$ its restriction to $T^{(1,2)}$. By Lemma 4, the $G^{(1,2)}$ -submodule W' of $\Delta(\bar{\omega} + (k-b_2)\bar{\omega}_2)$ generated by $e_{\bar{\omega}+(k-b_2)\bar{\omega}_2}^+$ is isomorphic to $\Delta(\widetilde{\omega})$ (the restriction of $\bar{\omega} + (k-b_2)\bar{\omega}_2$ to $T^{(1,2)}$ is $\widetilde{\omega}$). Clearly, u' belongs to a proper submodule $W' \cap \operatorname{rad} \Delta(\bar{\omega} + (k-b_2)\bar{\omega}_2)$ of W' and thus belongs to $\operatorname{rad} W'$. In this way, we proved that $\Delta(\widetilde{\omega})$ is not simple.

Consider the $G^{(1,2)}$ -submodule W'' of $\Delta(\bar{\omega}+k\bar{\omega}_2)$ generated by $e^+_{\bar{\omega}+k\bar{\omega}_2}$. By Lemma 4, W'' is isomorphic to $\Delta(\widetilde{\omega})$ (the restriction of $\bar{\omega}+k\bar{\omega}_2$ to $T^{(1,2)}$ is also $\widetilde{\omega}$). Therefore W'' is not simple and contains a nonzero $G^{(1,2)}$ -primitive vector u'' of $T^{(1,2)}$ -weight $\widetilde{\omega}-d_3\widetilde{\alpha}_3-\cdots-d_{n-1}\widetilde{\alpha}_{n-1}$, where d_3,\ldots,d_{n-1} are nonnegative integers not equal simultaneously to zero. By Lemma 5, we obtain that u'' has $T^{(1)}$ -weight $\bar{\omega}+k\bar{\omega}_2-d_3\bar{\alpha}_3-\cdots-d_{n-1}\bar{\alpha}_{n-1}$. Note that this weight does not have the form described in (i). Since $x_{\alpha_2}(t)$ commutes with any $x_{-\alpha_i}(s)$, where $i=3,\ldots,n-1$, and

$$u'' \in W'' = \mathbb{F}\langle x_{-\alpha_i}(s) \mid i = 3, \dots, n-1, s \in \mathbb{F}\rangle e_{\bar{\omega} + k\bar{\omega}_2}$$

we obtain that u'' is $G^{(1)}$ -primitive. This is a contradiction. \square

Proof of Theorem A. Suppose that the hypothesis of (i) holds. The weights of $\Delta(\bar{\omega}_2)$ are $\kappa_1, \ldots, \kappa_{n-1}$, where $\kappa_i = \bar{\omega}_2 - \bar{\alpha}_2 - \cdots - \bar{\alpha}_i$ and each weight space is one-dimensional.

Suppose for a while that char $\mathbb{F}=0$. It is well known that for any $\varkappa\in X^+(T^{(1)})$, the module $\Delta(\varkappa)\otimes\Delta(\bar{\omega}_2)$ is a direct sum of $\Delta(\varkappa+\varkappa_i)$ over $i=1,\ldots,n-1$ such that $\varkappa+\varkappa_i\in X^+(T^{(1)})$ (see, for example, [BK2, Lemma 4.8]). Thus the module $\Delta(\bar{\omega}+m\bar{\omega}_2)\otimes\Delta(\bar{\omega}_2)^{\otimes k-m}$ is a direct sum of several copies of $\Delta(\bar{\omega}+m\bar{\omega}_2+\varkappa_{i_1}+\cdots+\varkappa_{i_{k-m}})$ over sequences i_1,\ldots,i_{k-m} of integers in $\{1,\ldots,n-1\}$ such that $\bar{\omega}+m\bar{\omega}_2+\varkappa_{i_1}+\cdots+\varkappa_{i_{k-m}}\in X^+(T^{(1)})$. Moreover, the module $\Delta(\bar{\omega}+k\bar{\omega}_2)$ enters into this sum with multiplicity one.

Let us return to the case $\operatorname{char} \mathbb{F} = p > 0$. Applying the main result of [M], we obtain that the module $V := \Delta(\bar{\omega} + m\bar{\omega}_2) \otimes \Delta(\bar{\omega}_2)^{\otimes k-m}$ has a filtration with factors $\Delta(\bar{\omega} + m\bar{\omega}_2 + \varkappa_{i_1} + \dots + \varkappa_{i_{k-m}})$ over the same sequences i_1, \dots, i_{k-m} with the same multiplicities. By [J, II.4.16 Remark 4] applied to the dual module V^* , V has a submodule isomorphic to $\Delta(\bar{\omega} + k\bar{\omega}_2)$.

Now recall that $\Delta(\bar{\omega}+m\bar{\omega}_2)\cong \nabla(\bar{\omega}+m\bar{\omega}_2)$ by the hypothesis of the present lemma and $\Delta(\bar{\omega}_2)\cong \nabla(\bar{\omega}_2)$. Therefore, V is isomorphic to $\nabla(\bar{\omega}+m\bar{\omega}_2)\otimes \nabla(\bar{\omega}_2)^{\otimes k-m}$ and by the main result of [M] has a filtration with factors $\nabla(\bar{\omega}+m\bar{\omega}_2+\varkappa_{i_1}+\cdots+\varkappa_{i_{k-m}})$ over the same sequences i_1,\ldots,i_{k-m} with the same multiplicities. Applying [J, Proposition II.4.13], we obtain that $\mathrm{Hom}_{G^{(1)}}(\Delta(\varkappa),V)=0$ unless $\varkappa=\bar{\omega}+m\bar{\omega}_2+\varkappa_{i_1}+\cdots+\varkappa_{i_{k-m}}$. Since V has a submodule isomorphic to $\Delta(\bar{\omega}+k\bar{\omega}_2)$, any nonzero primitive vector of $\Delta(\bar{\omega}+k\bar{\omega}_2)$ has weight $\bar{\omega}+m\bar{\omega}_2+\varkappa_{i_1}+\cdots+\varkappa_{i_{k-m}}$ with i_1,\ldots,i_{k-m} as above. It remains to apply Theorem B(i).

Part (ii) can be proved similarly but tensoring with $\Delta(\bar{\omega}_{n-2})$ and applying Theorem B(ii). \square

Acknowledgment

The author would like to thank Irina Suprunenko for drawing his attention to this problem and helpful discussions.

References

- [BK1] J. Brundan, A.S. Kleshchev, Some remarks on branching rules and tensor products for algebraic groups, J. Algebra 217 (1) (1999) 335–351.
- [BK2] J. Brundan, A.S. Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (1) (2000) 75–106.
- [BKS] J. Brundan, A.S. Kleshchev, I.D. Suprunenko, Semisimple restrictions from GL(n) to GL(n-1), J. Reine Angew. Math. 500 (1998) 83–112.

- [CL] R.W. Carter, G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974) 193–242.
- [CP] R.W. Carter, M.T.J. Payne, On homomorphisms between Weyl modules and Specht modules, Math. Proc. Cambridge Philos. Soc. 87 (3) (1980) 419–425.
- [H] J. Humphreys, Linear Algebraic Groups, Grad. Texts in Math., vol. 21, Springer, New York, 1975.
- J.C. Jantzen, Representations of Algebraic Groups, Math. Surveys Monogr., vol. 107, American Mathematical Society, Providence. RI. 2003.
- [K] A.S. Kleshchev, Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math. 459 (1995) 163–212.
- [M] O. Mathieu, Filtrations of G-modules, Ann. Sci. Ecole Norm. Sup. (4) 23 (4) (1990) 625-644.
- [Sh1] V.V. Shchigolev, Generalization of modular lowering operators for GL_n, Comm. Algebra 36 (4) (2008) 1250–1288.
- [Sh2] V.V. Shchigolev, Rectangular low level case of modular branching problem for $GL_n(K)$, J. Algebra 321 (1) (2009) 28–85.
- [Sm] S.D. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75 (1982) 286–289.
- [St] R. Steinberg, Lectures on Chevalley Groups, Yale Univ., New Haven, 1968.
- [Su] I.D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Mem. Amer. Math. Soc., in press.