J. Symbolic Computation (1997) **24**, 51–58

On the Stability of Gröbner Bases Under Specializations

MICHAEL KALKBRENER

Department of Mathematics, Swiss Federal Institute of Technology,CH-8092 Zurich, Switzerland

Let *R* be a Noetherian commutative ring with identity, *K* a field and π a ring homomorphism from *R* to *K*. We investigate for which ideals in $R[x_1, \ldots, x_n]$ and admissible orders the formation of leading monomial ideals commutes with the homomorphism *π*. c 1997 Academic Press Limited

1. Introduction

Let *R, R'* be Noetherian commutative rings with identity and $\pi : R \to R'$ a ring homomorphism. When does a Gröbner basis of the ideal $I \subseteq R[x_1, \ldots, x_n]$ map to a Gröbner basis of the ideal $IR'[x_1,\ldots,x_n]$ generated by the image of *I* under the natural extension $\pi: R[x_1, \ldots, x_n] \to R'[x_1, \ldots, x_n]$? Obviously it suffices to have

$$
\text{Im}(I) \, R'[x_1, \dots, x_n] = \text{Im}(I \, R'[x_1, \dots, x_n]),\tag{1.1}
$$

where $\text{Im}(I)$ denotes the ideal generated by the leading monomials of the elements of I . This condition has already been studied in [Bayer](#page-7-0) [et al](#page-7-0). [\(1991\)](#page-7-0) and it has been shown that (1.1) holds for any ideal and any term order if and only if π is flat.

In this paper we study condition (1.1) under the additional assumption that R' is not a general Noetherian commutative ring with identity but a field. First we prove the following necessary and sufficient condition for (1.1) . Let $\{g_1, \ldots, g_s\}$ be a Gröbner basis of an ideal $I \subseteq R[x_1,\ldots,x_n]$ with respect to an order \prec and assume that the g_i s are ordered in such a way that the leading coefficients of precisely the first *r* polynomials are not in the kernel ker(π). Then (1.1) holds for *I* and \prec if and only if the polynomials $\pi(g_{r+1}),\ldots,\pi(g_s)$ can be reduced to 0 modulo $\{\pi(g_1),\ldots,\pi(g_r)\}\$. Sufficient but not necessary conditions that (1.1) holds for an ideal and an order can be found in [Bayer](#page-7-0) $et \ al. (1991), \text{ Pauer } (1992), \text{ Gräbe } (1993) \text{ and Assi } (1994).$

If *R'* is a field ker(π) is a prime ideal. Let *J* be a subideal of ker(π). We show that the following two conditions are equivalent.

- (*a*) ker(π) is an isolated prime ideal of *J*.
- (*b*) For any ideal *I* in the univariate polynomial ring $R[x]$ with $I \cap R = J$, (1.1) holds.

Furthermore we use the concept of independence complexes of ideals to give two other

0747-7171/97/010051 + 08 \$25.00/0 sy970113 (c) 1997 Academic Press Limited

conditions equivalent to (*a*) and (*b*). Note that the implication (*a*) \Rightarrow (*b*) is a generalization of the main result in [Gianni \(1987\)](#page-7-0) and [Kalkbrener \(1987\).](#page-7-0)

For ideals in multivariate polynomial rings over *R* we prove the equivalence of the following two conditions.

- (*c*) ker(π) is an isolated prime ideal of *J* which equals the corresponding primary component.
- (*d*) For any number of variables *n*, any ideal *I* in $R[x_1, \ldots, x_n]$ with $I \cap R = J$ and any term order, (1.1) holds.

As a consequence of this result and the already mentioned theorem in [Bayer](#page-7-0) *[et al](#page-7-0).* [\(1991\)](#page-7-0) we obtain that π is flat if and only if no proper subideal of ker(π) is primary.

2. Definitions

Throughout this paper let *R* be a Noetherian commutative ring with identity and *K* a field. The ideal generated by a subset F of R is denoted by $\langle F \rangle$ and the set of power products in the variables x_1, \ldots, x_n by $PP(x_1, \ldots, x_n)$. Let \prec be an arbitrary admissible order on $PP(x_1, \ldots, x_n)$. For any non-zero polynomial $f \in R[x_1, \ldots, x_n]$ write $f =$ $cX + f'$, where $c \in R \setminus \{0\}$ and $X \in PP(x_1, \ldots, x_n)$ with $X \succ X'$ for every power product X' in f' . With this notation we set

$$
lc(f) := c,
$$
 the leading coefficient of f ,
\n $lpp(f) := X,$ the leading power product of f ,
\n $lm(f) := cX,$ the leading monomial of f .

The total degree of *f* in x_1, \ldots, x_n is denoted by $\deg(f)$. Furthermore, we define $\text{lc}(0) :=$ $lpp(0) := lm(0) := 0$ and $deg(0) := -1$. For an ideal *I* in $R[x_1, \ldots, x_n]$ we denote the ideal $\{\{\ln(f) | f \in I\}\}\$ by $\ln(I)$. A finite subset *G* of an ideal $I \subseteq R[x_1, \ldots, x_n]$ is a Gröbner basis of *I* w.r.t. \prec if

$$
\langle \{ \text{lm}(g) \mid g \in G \} \rangle = \text{lm}(I).
$$

We will often use the characterization of Gröbner bases in Theorem 2.1 (see Möller, [1988\)](#page-7-0). Let $F = \{f_1, \ldots, f_r\}$ be a subset of $R[x_1, \ldots, x_n]$ and $M := (\text{Im}(f_1), \ldots, \text{Im}(f_r)).$ A syzygy w.r.t. *M* is an *r*-tuple of polynomials $S = (h_1, \ldots, h_r)$ in $R[x_1, \ldots, x_n]^r$ such that

$$
\sum_{i=1}^{r} h_i \cdot \text{lm}(f_i) = 0.
$$

The set $S(M)$ of all syzygies w.r.t. M forms an $R[x_1, \ldots, x_n]$ -module. An element $S \in$ *S*(*M*) is homogeneous of degree *X*, where $X \in PP(x_1, \ldots, x_n)$, provided that

$$
S=(c_1Y_1,\ldots,c_rY_r),
$$

where $c_i \in R$, $Y_i \in P(x_1, \ldots, x_n)$ and $Y_i \cdot \text{lpp}(f_i) = X$ whenever $c_i \neq 0$. Obviously, $S(M)$ has a finite homogeneous basis.

THEOREM 2.1. Let $F = \{f_1, ..., f_r\}$ be a subset of $R[x_1, ..., x_n]$ and $M := (\text{Im}(f_1), ..., f_r)$ $\text{Im}(f_r)$). The following two conditions are equivalent.

- (a) *F* is a Gröbner basis of $\langle F \rangle$.
- (*b*) Let S_1, \ldots, S_m be a basis of $S(M)$, $S_i = (h_{i1}, \ldots, h_{ir})$ homogeneous for every $i \in$ $\{1,\ldots,m\}$. Then any polynomial $p_i = \sum_{j=1}^r h_{ij} f_j$ can be written in the form $p_i = \sum_{j=1}^r a_{ij} f_j$, where the g_{ij} are in $R[x_1,\ldots,x_n]$ and $\text{lpo}(p_i) = \max_{i=1}^r \text{lpo}(g_{ij}) \text{lo}(f_i)$ $j=1$ $g_{ij}f_j$, where the g_{ij} are in $R[x_1,\ldots,x_n]$ and $\text{lpp}(p_i) = \max_{j=1}^r \text{lpp}(g_{ij}) \text{lpp}(f_j)$.

Let R' be a Noetherian commutative ring with identity. Every ring homomorphism π : $R \to R'$ extends naturally to a homomorphism $\pi: R[x_1, \ldots, x_n] \to R'[x_1, \ldots, x_n]$. The image under π of an ideal $I \subseteq R[x_1, \ldots, x_n]$ generates the extension ideal $I R'[x_1, \ldots, x_n]$. We want to study under which conditions on π and \prec a Gröbner basis of *I* maps to a Gröbner basis of $IR'[x_1, \ldots, x_n]$. Note that it suffices to have

$$
\text{Im}(I) \, R'[x_1, \dots, x_n] = \text{Im}(I \, R'[x_1, \dots, x_n]). \tag{2.1}
$$

We call *I* stable under π and \prec if it satisfies (2.1) and we will focus on this condition.

The stability of ideals has been already studied by [Bayer](#page-7-0) [et al](#page-7-0). [\(1991\)](#page-7-0). They proved the following interesting relation between flat morphisms and the stability of ideals [\(Bayer](#page-7-0) [et al](#page-7-0)., [1991](#page-7-0), Theorem 3.6). Recall that an *R*-module *N* is called flat if the functor T_N : $M \to M \otimes_R N$ on the category of *R*-modules is exact and the ring homomorphism $\pi: R \to R'$ is called flat if π makes R' a flat *R*-module.

THEOREM 2.2. Let π : $R \to R'$ be a ring homomorphism. Then the following two conditions are equivalent.

(a) For any natural number *n*, any ideal *I* in $R[x_1, \ldots, x_n]$ and any admissible order \prec on $PP(x_1, \ldots, x_n)$, *I* is stable under π and \prec . (*b*) π is flat.

In this paper we will concentrate on a special case: we assume that π is a ring homomorphism from R to the field K . Hence the image of R is a subring of K and therefore an integral domain. Thus the kernel, $\ker(\pi)$, is a prime ideal and the quotient field K of $R/\text{ker}(\pi)$ is a subfield of *K*. Furthermore, it is easy to see that

the ideal $\text{Im}(IK[x_1,\ldots,x_n])$ is generated by the set $\{\text{Im}(\pi(f)) \mid f \in I\}.$ (2.2)

A subset $\{x_{i_1},...,x_{i_m}\}\subseteq \{x_1,...,x_n\}$ is called independent modulo an ideal $J\subseteq$ $K[x_1, \ldots, x_n]$ if $J \cap K[x_{i_1}, \ldots, x_{i_m}] = \{0\}$. The independence complex of *J* is the set

$$
\Delta(J) := \{ \{x_{i_1}, \ldots, x_{i_m}\} \subseteq \{x_1, \ldots, x_n\} \mid \{x_{i_1}, \ldots, x_{i_m}\} \text{ is independent modulo } J \}.
$$

Additionally to stability we will consider the following weaker property. We call an ideal $I \subseteq R[x_1,\ldots,x_n]$ semi-stable under π and \prec if

$$
\Delta(\operatorname{lm}(I) K[x_1, \dots, x_n]) = \Delta(\operatorname{lm}(IK[x_1, \dots, x_n])). \tag{2.3})
$$

3. Stability Criteria

First of all we show that the stability of an ideal *I* can be easily checked if a Gröbner basis of *I* is known.

THEOREM 3.1. Let π be a ring homomorphism from *R* to *K*, *I* an ideal in $R[x_1, \ldots, x_n]$ and $G = \{g_1, \ldots, g_s\}$ a Gröbner basis of *I* with respect to an admissible order \prec . We

assume that the g_i s are ordered in such a way that there exists an $r \in \{0, \ldots, s\}$ with $\pi(\mathrm{lc}(g_i)) \neq 0$ for $i \in \{1,\ldots,r\}$ and $\pi(\mathrm{lc}(g_i)) = 0$ for $i \in \{r+1,\ldots,s\}$. Then the following three conditions are equivalent.

- (*a*) *I* is stable under π and \prec .
- (b) ${\pi(g_1), \ldots, \pi(g_r)}$ is a Gröbner basis of $IK[x_1, \ldots, x_n]$ w.r.t. \prec .
- (*c*) For every $i \in \{r+1,\ldots,s\}$ the polynomial $\pi(g_i)$ is reducible to 0 modulo $\{\pi(g_1), \ldots, \pi(g_r)\}.$

PROOF. Obviously $\{\pi(g_1), \ldots, \pi(g_r)\}\$ is a Gröbner basis of $IK[x_1, \ldots, x_n]$ if and only if

 $\langle \{\pi(lm(q)) \mid q \in G\} \rangle = \text{Im}(IK[x_1, \ldots, x_n]).$

Since

$$
\langle \{\pi(\operatorname{lm}(g)) \mid g \in G\} \rangle = \operatorname{lm}(I) K[x_1, \dots, x_n]
$$

(*a*) and (*b*) are equivalent.

If $\{\pi(g_1),\ldots,\pi(g_r)\}\$ is a Gröbner basis of $IK[x_1,\ldots,x_n]$ then (*c*) holds. It remains to show that (*c*) implies (*a*). Let $f \in I$ with $\pi(f) \neq 0$. By (2.2), it suffices to show that

there exists a $g \in I$ such that $\text{lpp}(g)$ divides $\text{lpp}(\pi(f))$ and $\pi(\text{lc}(g)) \neq 0$. (3.1)

We do the proof by induction on \prec .

Induction basis: If $lpp(f) = 1$ then $\pi(lc(f)) \neq 0$ and $lpp(f) = lpp(\pi(f))$. Hence, (3.1) holds.

Induction step: Since (3.1) holds if $\pi(\mathrm{lc}(f)) \neq 0$ we assume that $\pi(\mathrm{lc}(f)) = 0$. If there exists an $i \in \{1, \ldots, r\}$ such that $\text{lpp}(g_i)$ divides $\text{lpp}(f)$ we define

$$
f' := \mathrm{lc}(g_i) \cdot f - \mathrm{lc}(f) \cdot (\mathrm{lpp}(f)/\mathrm{lpp}(g_i)) \cdot g_i.
$$

Obviously, $\text{lpp}(\pi(f')) = \text{lpp}(\pi(f))$ and $\text{lpp}(f') \prec \text{lpp}(f)$. Thus, (3.1) follows from the induction hypothesis. Otherwise, there exist $j_1, \ldots, j_k \in \{r+1, \ldots, s\}$ and $c_{j_1}, \ldots, c_{j_k} \in$ *R* such that $\text{lpp}(g_{j_l})$ divides $\text{lpp}(f)$ for $l \in \{1, \ldots, k\}$ and

$$
\ln(f) = \sum_{l=1}^{k} c_{j_l} \cdot (\text{lpp}(f)/\text{lpp}(g_{j_l})) \cdot \ln(g_{j_l}).
$$

Let $i \in \{r+1,\ldots,s\}$. Since $\pi(g_i)$ is reducible to 0 modulo $\{\pi(g_1),\ldots,\pi(g_r)\}\$ there exist an $h_i \in I$ and a $b_i \in R \setminus \ker(\pi)$ with $\pi(b_i) \cdot \pi(g_i) = \pi(h_i)$ and $\text{lpp}(g_i) > \text{lpp}(\pi(g_i)) = \text{lpp}(h_i)$. Define

$$
f' := b \cdot f - \sum_{l=1}^{k} (b/b_{j_l}) \cdot c_{j_l} \cdot (\text{lpp}(f)/\text{lpp}(g_{j_l})) \cdot (b_{j_l} \cdot g_{j_l} - h_{j_l}),
$$

where $b := \prod_{l=1}^{k} b_{j_l}$. Obviously, $\text{lpp}(\pi(f')) = \text{lpp}(\pi(f))$ and $\text{lpp}(f') \prec \text{lpp}(f)$. Again, (3.1) follows from the induction hypothesis. \Box

Sufficient but not necessary criteria for the stability of *I* under π and \prec can be found in [Bayer](#page-7-0) *[et al](#page-7-0).* [\(1991\), Pauer \(1992\)](#page-7-0), Gräbe (1993) and [Assi \(1994\)](#page-7-0).

Let *J* be an ideal in *R* with $J \subseteq \text{ker}(\pi)$. We will now show that every ideal *I* in the univariate polynomial ring $R[x_1]$ with $I \cap R = J$ is stable (resp. semi-stable) under π if and only if

$$
\ker(\pi) \text{ is an isolated prime ideal of } J. \tag{3.2}
$$

Another condition equivalent to (3.2) is semi-stability of every ideal *I* in a multivariate polynomial ring over R with $I \cap R = J$.

THEOREM 3.2. Let π be a ring homomorphism from R to K and J an ideal in R with $J \subseteq \text{ker}(\pi)$. Then the following four conditions are equivalent.

- (*a*) ker(π) *is an isolated prime ideal of J.*
- (*b*) For any ideal *I* in $R[x_1]$ with $I \cap R = J$, *I* is stable under π and the uniquely determined admissible order \prec on $PP(x_1)$.
- (*c*) For any natural number *n*, any ideal *I* in $R[x_1, \ldots, x_n]$ with $I \cap R = J$ and any admissible order \prec on $PP(x_1, \ldots, x_n)$, *I* is semi-stable under π and \prec .
- (*d*) For any ideal *I* in $R[x_1]$ with $I \cap R = J$, *I* is semi-stable under π and the uniquely determined admissible order \prec on $PP(x_1)$.

PROOF. Denote the kernel of π by P .

 (a) ⇒ (c) : Let *I* be an ideal in $R[x_1, \ldots, x_n]$ with $I \cap R = J$ and \prec an admissible order on $PP(x_1, \ldots, x_n)$. Assume that P is an isolated prime ideal of *J* and $f \in I$ with $\pi(f) \neq 0$. We first show that

there exists a natural number l with
$$
\text{Im}(\pi(f))^l \in \text{Im}(I) K[x_1, \ldots, x_n].
$$
 (3.3)

Write *f* in the form $f = a_1 X_1 + \cdots + a_t X_t$, where $a_1, \ldots, a_t \in R \setminus \{0\}$ and $X_1, \ldots, X_t \in$ $PP(x_1, \ldots, x_n)$ with $X_1 \succ \cdots \succ X_t$. Choose $k \in \{1, \ldots, t\}$ with $a_1, \ldots, a_{k-1} \in P$ and $a_k \notin P$ and define $p := a_1 X_1 + \cdots + a_{k-1} X_{k-1}$ and $h := a_k X_k + \cdots + a_t X_t$. Let $I = Q_1 \cap ... \cap Q_m$ be an irredundant primary decomposition of *I* and denote the radical of Q_i by P_i . We can assume that the Q_i s are ordered in such a way that there exists an $m' \in \{1, ..., m\}$ with $P = P_j \cap R$ for $j \in \{1, ..., m'\}$ and $P \neq P_j \cap R$ for $j \in \{m'+1,\ldots,m\}$. Obviously, $p, h \in P_j$ for $j \in \{1,\ldots,m'\}$. Hence, we can choose a natural number *l* such that for every $j \in \{1, ..., m'\}$ we have $h^l \in Q_j$. Since *P* is an isolated prime ideal of $I \cap R$ we can choose for every $j \in \{m'+1,\ldots,m\}$ a $q_j \in (Q_j \cap R) \backslash P$. For $q := \prod_{j=m'+1}^{m} q_j$ we have $q h^l \in I$ and $\pi(\text{Im}(q h^l)) = \pi(q) \cdot \text{Im}(\pi(f))^{l}$. Hence, (3.3) is proved.

For proving semi-stability it suffices to show that

$$
\Delta(\operatorname{lm}(I) K[x_1,\ldots,x_n]) \subseteq \Delta(\langle \{\operatorname{lm}(\pi(f)) \mid f \in I\} \rangle).
$$

Let $\{x_{i_1},...,x_{i_k}\}\notin \Delta(\{\{\ln(\pi(f))\mid f\in I\}\})$. Then there exists an $f\in I$ such that $\text{Im}(\pi(f)) \in K[x_{i_1}, \ldots, x_{i_k}] \setminus \{0\}.$ By (3.3), there exists a natural number *l* with

lm($\pi(f)$)^l ∈ (lm(*I*) $K[x_1, \ldots, x_n]$) ∩ $K[x_{i_1}, \ldots, x_{i_k}]$

and therefore $\{x_{i_1}, \ldots, x_{i_k}\} \notin \Delta(\text{Im}(I) K[x_1, \ldots, x_n])$. Thus, *I* is semi-stable under π and ≺.

 (c) ⇒ (*b*): Let *I* be an ideal in *R*[*x*₁] with *I* ∩ *R* = *J* and \prec the uniquely determined admissible order on $PP(x_1)$. If $\text{Im}(IK[x_1]) = \{0\}$ then *I* is obviously stable under π and \prec . Hence, we can assume that $\text{Im}(IK[x_1])$ is generated by x_1^k for some non-negative integer *k*. It follows from (*c*) that $\text{Im}(I) K[x_1]$ is generated by x_1^l for some non-negative integer *l* with $k \leq l$. Assume that *I* is not stable and therefore $k < l$. By (2.2), there exist f_1 and f_2 in *I* with $\deg(\pi(f_1)) = k$ and $\deg(f_2) = \deg(\pi(f_2)) = l$. Let f_3 be the pseudo-remainder of $x_1^{l-k-1} f_1$ and f_2 . Obviously, $l-1 = \deg(\pi(x_1^{l-k-1} f_1)) = \deg(\pi(f_3))$ and $\deg(f_3) < \deg(f_2)$. Hence, we obtain $\deg(f_3) = \deg(\pi(f_3)) = l - 1$, a contradiction to the definition of *l*.

Since (*b*) implies (*d*) it remains to show $(d) \Rightarrow (a)$:

Assume that *P* is not an isolated prime ideal of *J*. Let $J = Q_1 \cap \ldots \cap Q_m$ be an irredundant primary decomposition of J and denote the radical of Q_i by P_i . We can assume that the Q_i s are ordered in such a way that there exists an $m' \in \{0, \ldots, m-1\}$ with $P \subseteq P_j$ for $j \in \{1, \ldots, m'\}$ and $P \nsubseteq P_j$ for $j \in \{m'+1, \ldots, m\}$. Thus the prime ideal P is not contained in $\bigcup_{j=m'+1}^{m} P_j$ (see [Matsumura](#page-7-0), [1970](#page-7-0), p. 3). Hence, we can choose an element *c* of *P* such that

$$
c \in \bigcap_{j=1}^{m'} Q_j \quad \text{and} \quad c \notin \bigcup_{j=m'+1}^{m} P_j.
$$

Furthermore, let $\{a_1, \ldots, a_r\}$ be a generating set of *J*, $\{b_1, \ldots, b_k\}$ a generating set of $Q_{m'+1} \cap \ldots \cap Q_m$ and

$$
G := \{a_1, \ldots, a_r, b_1x_1, \ldots, b_kx_1, cx_1^2 - x_1\}.
$$

Obviously, $\langle G \rangle \cap R = J$. We will show that *G* is a Gröbner basis of *I* := $\langle G \rangle$. Let $S = (s_1, \ldots, s_r, s_1, \ldots, s_k, s)$ be a homogeneous syzygy w.r.t. the tuple $(a_1, \ldots, a_r, b_1 x_1,$ \dots, b_kx_1, cx_1^2 . Since

$$
(Q_{m'+1}\cap\ldots\cap Q_m):c=Q_{m'+1}\cap\ldots\cap Q_m,
$$

the coefficient of *s* is an element of $Q_{m'+1} \cap \ldots \cap Q_m$. Hence, sx_1 is an element of the monomial ideal $\langle \{a_1, \ldots, a_r, b_1x_1, \ldots, b_kx_1\} \rangle$ and therefore, by Theorem 2.1, *G* is a Gröbner basis.

We will use this fact in order to show that *I* is not semi-stable. We have assumed that $J \subseteq P$ and P is not an isolated prime ideal of *J*. Hence, by definition of m', there exists a $j \in \{m' + 1, \ldots, m\}$ with $Q_j \subseteq P_j \subseteq P$. Thus, $\{a_1, \ldots, a_r, b_1, \ldots, b_k, c\} \subseteq P$ and therefore

$$
\Delta(\text{lm}(I) K[x_1]) = \{ \{x_1\}, \emptyset \} \neq \{ \emptyset \} = \Delta(\text{lm}(IK[x_1])). \square
$$

Note that the implication $(a) \Rightarrow (b)$ in Theorem 3.2 is a generalization of the main result in [Gianni \(1987\)](#page-7-0) and [Kalkbrener \(1987\).](#page-7-0)

In Theorem 3.2 we have proved that every ideal *I* in $R[x_1]$ with $I \cap R = J$ is stable if and only if $\ker(\pi)$ is an isolated prime ideal of *J*. In the following theorem we will give a similar characterization of the stability of multivariate ideals. Note that the implication $(a) \Rightarrow (b)$ in Theorem 3.3 is similar to Proposition 3.10 in [Bayer](#page-7-0) *[et al](#page-7-0).* [\(1991\)](#page-7-0) and a generalization of Theorem 2 in [Becker \(1994\).](#page-7-0)

THEOREM 3.3. Let π be a ring homomorphism from R to K and J an ideal in R with $J \subseteq \text{ker}(\pi)$. Then the following three conditions are equivalent.

- (*a*) ker(π) is an isolated prime ideal of *J* which equals the corresponding primary component.
- (*b*) For any natural number *n*, any ideal *I* in $R[x_1, \ldots, x_n]$ with $I \cap R = J$ and any admissible order \prec on $PP(x_1, \ldots, x_n)$, *I* is stable under π and \prec .
- (*c*) For any ideal *I* in $R[x_1, x_2]$ with $I \cap R = J$ and any admissible order \prec on $PP(x_1, x_2)$, *I* is stable under π and \prec .

PROOF. Denote the kernel of π by P .

 $(a) \Rightarrow (b)$: If P equals the corresponding primary component then it follows from the proof of the previous theorem that we can choose *l* as 1 in (3.3).

Since (*b*) implies (*c*) it remains to show $(c) \Rightarrow (a)$:

If *P* is not an isolated prime ideal of *J* it follows from Theorem 3.2 that there exists an ideal *I* in $R[x_1, x_2]$ which satisfies $I \cap R = J$ and is not semi-stable. Hence, we assume that *P* is an isolated prime ideal of *J* which is unequal to the corresponding primary component *Q*. Let $c \in P$ and $l > 1$ the smallest natural number with $c^l \in Q$. For every non-negative integer *j* let $B_j = \{b_{j1}, \ldots, b_{ji_j}\}$ be a finite basis of the ideal quotient $J : c^j$. Since $J \subseteq J : c \subseteq J : c^2 \dots$ is an ascending chain of ideals there exists a natural number *r* with $J: c^r = J: c^k$ for every $k \geq r$. Define

$$
G := \bigcup_{j=0}^{r} \{ bx_1^j \mid b \in B_j \} \cup \{ cx_2 - x_1 \}
$$

and $I := \langle G \rangle$. Obviously, $I \cap R = J$. We will now show that *G* is a Gröbner basis with respect to every admissible order with $x_1 \prec x_2$. Using Theorem 2.1 it suffices to show that for every homogeneous syzygy $S = (s_{11}, \ldots, s_{ri_r}, s)$ w.r.t. the tuple $(b_{11}, \ldots, b_{ri_r} x_1^r, cx_2)$ the monomial *sx*₁ is an element of the monomial ideal generated by $\bigcup_{j=0}^{r} {\{bx_j^j\}} \cup \{bx_j^j\}$. Let $x_1^{k_1} x_2^{k_2}$ be the degree of *S*. Obviously, the coefficient of *s* is an element of the ideal generated by B_{k_1+1} in *R*. Hence, sx_1 is an element of $\langle \{bx_1^{k_1+1} \mid b \in B_{k_1+1}\}\rangle$ and therefore an element of the ideal generated by $\bigcup_{j=0}^{r} \{bx_1^j \mid b \in B_j\}$.

Since *P* is an isolated prime ideal of *J* we have $B_j \subseteq P$ for $j \in \{0, \ldots, l-1\}$ and *B*_l ⊈ *P*. Hence, lm(*I*) $K[x_1, ..., x_n] = \{x_1^l\}$ and lm($IK[x_1, ..., x_n]$) = { x_1 }.

Let *I* be an ideal in $R[x_1, \ldots, x_n]$ such that ker(π) is an isolated prime ideal of $I \cap R$ but unequal to the corresponding primary component. It has been proved in the above theorem that in this case I is not necessarily stable. The next example shows that even the Gröbner basis property may not be preserved for Gröbner bases of *I*.

EXAMPLE 3.1. Let $\mathbb Q$ denote the rational numbers and define $R := \mathbb Q[y]$, $K := \mathbb Q$. Let π be the natural map from $\mathbb{Q}[y]$ to $\mathbb{Q}[y]/\langle y \rangle$ and *I* the ideal in $R[x_1, x_2, x_3, x_4]$ generated by

$$
{y^2, yx_1, x_1^2, yx_2+x_1, x_1x_4+x_3}.
$$

The set

$$
G = \{y^2, yx_1, x_1^2, yx_2 + x_1, yx_3, x_1x_3, x_3^2, x_1x_4 + x_3\}
$$

is a Gröbner basis of *I* with respect to the lexicographical order \prec with $x_4 \succ x_3$ $x_2 \succ x_1$. Thus, $I \cap R = \langle \{y^2\} \rangle$ and ker(π) = $\langle \{y\} \rangle$ is an isolated prime ideal of $I \cap R$. Obviously, *I* is semi-stable but not stable under π and \prec and the image of *G* under π is not a Gröbner basis.

As a consequence of Theorems 2.2 and 3.3 we obtain the following characterization of flatness.

COROLLARY 3.1. Let π be a ring homomorphism from R to K .

(*a*) The ring homomorphism π is flat iff no proper subideal of the kernel of π is primary.

- (*b*) If $\langle 0 \rangle \subseteq R$ is primary but not prime then π is not flat.
- (*c*) If $\langle 0 \rangle \subseteq R$ is prime then π is flat iff the kernel of π is $\langle 0 \rangle$.

PROOF. Denote the kernel of π by P .

(*a*) Assume that there exists a proper subideal *Q* of *P* which is primary. By Theorem 3.3, there exists an ideal $I \subseteq R[x_1, \ldots, x_n]$ and an admissible order \prec such that *I* is not stable under π and \prec . Hence, by Theorem 2.2, π is not flat.

Assume that no proper subideal *Q* of *P* is primary and let *I* be an ideal in $R[x_1, \ldots, x_n]$ and \prec an admissible order. If $I \cap R \nsubseteq P$ then

$$
\operatorname{lm}(IK[x_1,\ldots,x_n]) = \langle 1 \rangle = \operatorname{lm}(I) K[x_1,\ldots,x_n]. \tag{3.4}
$$

Otherwise, *P* is an isolated prime ideal of $I \cap R$ which equals the corresponding primary component. By Theorem 3.3, $\text{Im}(IK[x_1,\ldots,x_n]) = \text{Im}(I) K[x_1,\ldots,x_n]$. Together with (3.4) and Theorem 2.2, π is flat.

(*b*) and (*c*) follow from (*a*) immediately. \Box

EXAMPLE 3.2. Let $R := \mathbb{Q}[x]/\langle x^2(x-1) \rangle$ and consider the following homomorphisms from *R* to Q: π_1 is the natural map from *R* to $\mathbb{Q}[x]/\langle x \rangle$ and π_2 is the natural map from *R* to $\mathbb{Q}[x]/\langle x-1\rangle$. Then π_2 is flat and π_1 is not.

Acknowledgements

I am grateful to Hans-Gert Gräbe and Urs Stammbach for helpful discussions and suggestions.

References

—Assi, A. (1994). On flatness of generic projections. J. Symbolic Comput. **18**, 447–462.

Bayer, D., Galligo, A., Stillman, M. (1991). Gröbner bases and extension of scalars. In Proceedings Comput. Algebraic Geom. and Commut. Algebra, pp. 198–215, Cortona, Italy.

Becker, T. (1994). Gröbner bases versus D-Gröbner bases, and Gröbner bases under specialization. Applicable Algebra in Engineering, Communication and Computing **5**, 1–8.

Gianni, P. (1987). Properties of Gröbner bases under specialization. In Proceedings of EUROCAL'87, pp. 293–297, Leipzig, Germany.

Gräbe, H.G. (1993). On lucky primes. J. Symbolic Comput. 15, 199-209.

Kalkbrener, M. (1987). Solving systems of algebraic equations by using Gröbner bases. In *Proceedings* of $EUROCAL'87$, pp. 282–292, Leipzig, Germany.

—Matsumura, H. (1970). Commutative Algebra. Benjamin, New York.

Möller, H.M. (1988). On the construction of Gröbner bases using syzygies. J. Symbolic Comput. **6**, 345–360.

Pauer, F. (1992). On lucky ideals for Gröbner basis computations. J. Symbolic Comput. 14, 471–482.

Originally received 28 August 1995 Accepted 16 January 1997