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The type 2 modified augmented design (MAD2) is an efficient unreplicated experimental
design used for evaluating large numbers of lines in plant breeding and for assessing
genetic variation in a population. Statistical methods and data adjustment for soil
heterogeneity have been previously described for this design. In the absence of replicated
test genotypes in MAD2, their total variance cannot be partitioned into genetic and error
components as required to estimate heritability and genetic correlation of quantitative
traits, the two conventional genetic parameters used for breeding selection. We propose a
method of estimating the error variance of unreplicated genotypes that uses replicated
controls, and then of estimating the genetic parameters. Using the Delta method, we also
derived formulas for estimating the sampling variances of the genetic parameters.
Computer simulations indicated that the proposed method for estimating genetic
parameters and their sampling variances was feasible and the reliability of the estimates
was positively associated with the level of heritability of the trait. A case study of estimating
the genetic parameters of three quantitative traits, iodine value, oil content, and linolenic
acid content, in a biparental recombinant inbred line population of flax with 243
individuals, was conducted using our statistical models. A joint analysis of data over
multiple years and sites was suggested for genetic parameter estimation. A pipelinemodule
using SAS and Perl was developed to facilitate data analysis and appended to the previously
developed MAD data analysis pipeline (http://probes.pw.usda.gov/bioinformatics_ tools/
MADPipeline/index.html).
© 2016 Crop Science Society of China and Institute of Crop Science, CAAS. Production and

hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
In the early stages of breeding programs, a considerable number
of test lines and a limited seed supply constrain the use of
complete experimental designs with replications. Augmented
designs, a class of unreplicated experimental designs, are a
potential solution to this problem [1–3]. The augmented design
usually has control lines arranged in a standard design such as
a Latin square with several replications in soil-homogeneous
blocks. Then the blocks are augmented to accommodate
unreplicated test lines. Since control lines are in a standard
design, the block effects can be estimated to adjust the
observations of the test lines, and the error effects within
control lines can be used to test the significance of performance
differences among lines. Lin and Poushinsky [4,5] proposed a
modified augmented design (MAD)with two subtypes. The type
1MAD isused for square plots [4] and the type 2MAD (MAD2) for
rectangular plots [5]. This modified design is superior to the
general augmented design in systematic placement of control
and test genotypes within a block to enhance adjustment for
soil heterogeneity [4].

MAD2 is used largely for early evaluation of breeding lines
in crops such as wheat [6,7], potato [8], soybean [9], barley
[10,11], sugarcane [12,13], andmaize [14]. It is also used in flax
breeding programs in Canada for field evaluation of flax yield,
seed oil component, disease resistance, and other traits of
agronomic and economic importance and for purposes of
QTL identification, association mapping, and genomic selec-
tion [15–18]. In genetic experiments, individuals may have
adequate amounts of seed for replicated trials, but it may be
impractical to accommodate hundreds of genotypes in one
homogeneous block of a field, owing to soil heterogeneity.
Our earlier study [19] indicated that soil heterogeneity can be
sufficiently adjusted for traits in MAD2 trials, suggesting that
genetic variance of traits can be determined using a MAD2
approach.

Heritability and genetic correlation are crucial genetic param-
eters for quantitative traits because they can be used to predict
the response to selection in plant breeding. Because the
theoretical statistical distributions of these genetic parameter
estimators are unknown, approximate tests of significance can
be performed only on the basis of sampling errors. Methods for
estimating sampling variances of the genetic correlation coeffi-
cient and heritability in some replicated experimental designs
have been reported [20–24].

We have improved upon previous methods of MAD2 statisti-
cal analysis in adjusting for soil heterogeneity [19]. Owing to the
lack of replication of test genotypes in the design, however, the
total variance for test genotypes cannot be partitioned into its
genetic and error components, and for this reason themethod is
unable to estimate genetic parameters. Here we present a
method for estimating broad-sense heritability (H2) and genetic
correlation coefficients (rg) of quantitative traits in theMAD2.We
also derive the statistical formulas for estimating their sampling
variances. We used computer simulations to evaluate the
reliability of the proposed methods. As a case study using flax,
we estimated the genetic parameters of three quantitative traits
in a biparental recombinant inbred line (RIL) population of 243
lines.
2. Methods

2.1. Experimental design and statistical analysis

A typical MAD2 has r * cwhole plots structured as a grid of r rows
and c columns. Each whole plot is split into k (an odd number,
usually five or seven) parallel rectangular subplots. The whole
experiment has a total of r * c * k subplots. A control genotype is
assigned to the central subplot of each whole plot (plot control).
Two additional control genotypes serve as subplot controls
randomly assigned to subplots in randomly selected whole
plots with n replicates. Thus, the entire trial accommodates
rck − rc − 2n test genotypes that are randomly allocated to the
remaining subplots (see Fig. 1 in [19] for the field layout).

Control plots are used to estimate row (R), column (C) and
R × C interaction effects and to test for additive soil variation in
the row and/or column directions. The two subplot controls plus
oneplot control are used to estimate the subplot error and test for
non-additive soil variation in multiple directions across the field
[9,19]. The test results are used to determine whether data
adjustment is needed and which method of adjustment should
be used. Three methods have been proposed to adjust test
genotypes to reduce or remove effects due to soil heterogeneity
[4,5,9]. ForMAD2,method 1 is used if the rowor column effects or
both are significant, method 3 is used if the R × C interaction is
significant [5,9,25] and a combined methods 1 and 3 approach is
suggested in most cases [19]. A detailed statistical analysis for
MAD2 trials has been described [19].

2.2. Case study

An RIL population with 243 lines derived from a cross between
“CDC Bethune” and “Macbeth” (BM) was used to evaluate
genetic variation. The single MAD2 trial consisted of 49 whole
plots (7 × 7 grids), each splits into seven parallel subplots
(1.5 m × 2.0 m with a 20-cm row spacing). CDC Bethune with
49 replicates was used as the plot control, and 7 replicates of
both Hanley and Macbeth served as subplot controls. Field
trials with the same design were conducted at two locations
in Canada (Morden, Manitoba and Kernen Farm near Saska-
toon, Saskatchewan) from 2009 to 2012 [18]. Genetic param-
eters and their sampling variances were estimated for three
traits: oil content (OIL), iodine value (IOD), and linolenic acid
content (LIN). The raw phenotypic data are presented in Table
S1.

2.3. Estimation of genetic parameters

Observations of test genotypes and control genotypes after
statistical adjustment [19] are expected to exclude the effect of
soil heterogeneity; thus, the variation among replications of each
control genotype should be caused only by random errors. The
adjusted dataset in the trials corresponds to that obtained from a
completely random design. Because each test genotype has a
single adjusted observation, the total variance among test
genotypes cannot be partitioned into genetic and error variances.
However, the total variance within each control genotype, which
is caused by random error, can be treated as the error variance of
the test genotypes because it is reasonable to assume that any



Table 1 – Analyses of variance and covariance for model 1.

Source df MS EMS COV ECOV

Genotype variance and covariance analyses
Genotype (G) g − 1 Aii σe

2 + σG
2 Aij COVe + COVG

Error variance and covariance analyses
Control (C) t − 1 Bii σe

2 + nκC2 Bij COVe + nCOVC

Error rc + 2m − t Cii σe
2 Cij COVe

DF: degrees of freedom; MS: mean square; EMS: expected mean square; COV: covariance; ECOV: expected covariance; g: number of genotypes; t:
number of control genotypes; n: average number of replicates for each control genotype (see Formula (7) in text); r and c are the number of rows
and columns, respectively; and m is the number of replicates for two subplot controls.
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error effect of test genotypes or control genotypes follows the same normal distribution with N(0, σe2), where σe2 is the error variance.
Accordingly, the genetic variance can be estimated by subtraction of the error variance from the total variance of the test genotypes.

Thus, the genetic correlation coefficient (̂rg), error correlation coefficient (̂re), phenotypic correlation coefficient (̂rp) between two
traits i and j (i, j = 1, 2), and the broad-sense heritability (Ĥ

2
i ) of any single trait can be defined as.

r̂g ¼ dCOVGij= dCOVGii
dCOVGjj

� � 1=2ð Þ
ð1Þ

r̂e ¼ dCOVEij= dCOVEii
dCOVEjj

� � 1=2ð Þ
ð2Þ

r̂p ¼ dCOVPij= dCOVPii
dCOVGjj

� � 1=2ð Þ
ð3Þ

Ĥ
2
i ¼ dCOVGii= dCOVPii; ð4Þ

where dCOVP , dCOVG , and dCOVE represent the phenotypic, genetic and error variances of single traits (i = j) or covariances of two
traits (i ≠ j), respectively. Estimation of these variances and covariances is dependent on statistical models.

2.3.1. Model 1: Single trial
For a single trial with g test genotypes and t control genotypes (including main plot controls and subplot controls), the adjusted
observation of any test genotype with no replication can be expressed as.

yi ¼ μþ Gi þ εi i ¼ 1; 2;…; gð Þ; ð5Þ

where yi~N(μ, σP
2), Gi~N(0, σG

2 ) and εi~N(0, σe
2). σP

2, σG
2 , and σe

2 are phenotypic, genetic and error variances, respectively. The error
variance σe

2 is estimated based on t replicated control genotypes. For a given trait i (i = 1, 2), the analyses of variance and
covariance are shown in Table 1.

For the two traits i and j (i, j = 1, 2), the error, genetic andphenotypic variances and covariances canbe estimated as dCOVEij, dCOVGij, anddCOVPij as follows:

dCOVEij ¼ CijdCOVGij ¼ Aij−CijdCOVPij ¼ dCOVGij þ dCOVEij−Cij onaplotbasisð Þ
dCOVPij ¼ dCOVGij þ

dCOVEij

n
¼ nAij þ 1−nð ÞCij

� �
n

onagenotypemeanbasisð Þ;

8>>>>>><
>>>>>>:

ð6Þ
Table 2 – Analyses of variance and covariance for model 2.

Source DF MS EMS COV ECOV

Genotype variance and covariance analyses
Genotype (G) g − 1 Aii σe

2 + σGE
2 + eσG

2 Aij COVe + COVGE + eCOVG

Environment (E) e − 1 Bii σe
2 + σGE

2 + gσE
2 Bij COVe + COVGE + gCOVE

G × E (g − 1)(e − 1) Cii σe
2 + σGE

2 Cij COVe + COVGE

Error variance and covariance analyses
Control (C) t − 1 Dii σe

2+enκC2 Dij COVe + enCOVC

Environment (E) e − 1 Eii σe
2+ tnσE

2 Eij COVe + tnCOVE

C × E (t − 1)(e − 1) Fii σe
2 + nσCE

2 Fij COVe + nCOVCE

Error e(rc + 2 m − t) Gii σe
2 Gij COVe

e: number of environments. See Table 1 for other notes.
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where n is the number of replicates and Cij andAij are the error and genotype covariance for trait i and j in Table 1, respectively. Because
the number of replicates per control genotype differs in the MAD2 design, the number of replicates used for phenotypic variance
estimation as described above is estimated [26,27] as

n ¼
X

nk

� �2
−
X

n2
k

� �
=

X
nk

� �
t−1ð Þ

� �
; ð7Þ

where nk is the number of replicates for the kth control genotype and t is the number of control genotypes used, usually 3 in MAD2.

2.3.2. Model 2: Trials in multiple environments
For the joint analysis of data inmultiple environments or trialswith the samedesign (each trial fromdifferent years and sites treated as
environments), the adjusted observation of any test genotype with e environments and without replication can be expressed as

yij ¼ μþ Gi þ Ej þ GEð Þij þ εij; i ¼ 1;2;…; g; j ¼ 1;2;…; eð Þ; ð8Þ

where yij~N(μ, σP2), Gi~N(0, σG2), Ej~N(0, σE2), (GE)ij~N(0, σGE2 ), and εij~N(0, σe2). σP2, σG2 , σE2, σGE2 , and σe2 are the phenotypic, genetic,
environmental, genotype-by-environment interaction (G × E), and error variances, respectively. σe2 is jointly estimated based on e trials
with t replicated control genotypes in each trial. For a given trait i (i = 1, 2), the analyses of variance and covariance are shown in Table 2.

For the two traits iand j (i, j = 1, 2), the error, genetic, G × E, andphenotypic varianceandcovariance canbeestimatedas dCOVEij, dCOVGij,dCOVðGEÞij, and dCOVPij as follows:

dCOVEij ¼ GijdCOVGij ¼
1
e

Aij � Cij
� 	

dCOV GEð Þij ¼ Cij � GijdCOVPij ¼ dCOVGij þ dCOV GEð Þij þ dCOVEij ¼
1
e

Aij þ e� 1ð ÞCij
� �

on a plot basisð Þ

dCOVPij ¼ dCOVGij þ
dCOV GEð Þij

e
þ

dCOVEij

en
¼ 1

en
nAij þ 1� nð ÞGij
� �

on a genotype mean basisð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

ð9Þ

whereGij, Cij, andAij are the covariances for error, G × E, and genotype for trait i and j in Table 2, respectively. Genetic parameters can be
estimated using Formulas (1)–(4) and (9).

2.3.3. Model 3: Trials in multiple years and sites
Specifically for the joint analysis of data in multiple years and sites, the adjusted observation of any test genotype during y years
at s sites with no replication can be expressed as

yijk ¼ μþ Gi þ Y j þ GYð Þij þ Sk þ GSð Þik þ YSð Þjk þ GYSð Þijk þ εijk
i ¼ 1; 2;…; g; j ¼ 1; 2;…; y; k ¼ 1;2;…; sð Þ ð10Þ

where yijk~N(μ, σP
2), Gi~N(0, σG

2 ), Yj~N(0, σY
2), (GY)ij~N(0, σGY

2 ), Sk~N(0, σS
2), (GS)ik~N(0, σGS

2 ), (YS)jk~N(0, σYS
2 ), (GYS)ijk~N(0, σGYS

2 ), and
εijk~N(0, σe

2). σP
2, σG

2 , σY
2 ,σGY

2 , σS
2 σGS

2 , σYS
2 , σGYS

2 , and σe
2 are the variances for phenotype, genotype (G), year (Y), G × Y, site (S), G × S,

Y × S, G × Y × S, and error, respectively. σe
2 is jointly estimated based on t replicated control genotypes during y years at s sites.

For a given trait i (i = 1, 2), the analyses of variance and covariance are shown in Table 3.
Table 3 – Analyses of variance and covariance for model 3.

Source DF MS EMS COV ECOV

Genotype variance and covariance analyses
Genotype (G) g − 1 Aii σe

2 + σGYS
2 + sσGY

2 +yσGS
2 + ysσG

2 Aij COVe + COVGYS + sCOVGY+yCOVGS + ysCOVG

Year (Y) y − 1 Bii σe
2 + σGYS

2 + sσGY
2 +gσYS

2 + gsσY
2 Bij COVe + COVGYS + sCOVGY+gCOVYS + gsCOVY

Site (S) s − 1 Cii σe
2 + σGYS

2 + yσGS
2 +gσYS

2 + gyσS
2 Cij COVe + COVGYS + yCOVGS+gCOVYS + gyCOVS

G × Y (g − 1)(y − 1) Dii σe
2 + σGYS

2 + sσGY
2 Dij COVe + COVGYS + sCOVGY

G × S (g − 1)(s − 1) Eii σe
2 + σGYS

2 + yσGS
2 Eij COVe + COVGYS + yCOVGS

Y × S (y − 1)(s − 1) Fii σe
2 + σGYS

2 + gσYS
2 Fij COVe + COVGYS + gCOVYS

G × Y × S (g − 1)(y − 1)(s − 1) Gii σe
2 + σGYS

2 Gij COVe + COVGYS

Error variance and covariance analyses
Control (C) t − 1 Hii σe

2+ysnκC2 Hij COVe + ysncCOVC

Year (Y) y − 1 Iii σe
2 + nσCYS

2 + snσCY
2 +gnσYS

2 + gsnσY
2 Iij COVe + nCOVCYS + snCOVCY+gnCOVYS + gsnCOVY

Site (S) s − 1 Jii σe
2 + nσCYS

2 + ynσCS
2 +gnσYS

2 + gynσS
2 Jij COVe + nCOVCYS + ynCOVCS+gnCOVYS + gynCOVS

C × Y (t − 1)(y − 1) Kii σe
2 + nσCYS

2 + snσCY
2 Kij COVe + nCOVCYS + snCOVCY

C × S (t − 1)(s − 1) Lii σe
2 + nσCYS

2 + ynσCS
2 Lij COVe + nCOVCYS + ynCOVCS

Y × S (y − 1)(s − 1) Mii σe
2 + nσCYS

2 + tnσYS
2 Mij COVe + nCOVCYS + tnCOVYS

C × Y × S (t − 1)(y − 1)(s − 1) Nii σe
2 + nσCYS

2 Nij COVe + nCOVCYS

Error ys(rc + 2 m − t) Oii σe
2 Oij COVe

y: number of years; s: number of sites. See Tables 1 and 2 for other notes.



Table 4 – Correction coefficients in Formula (17) for sampling variance estimation for model 1.

θ̂
dCOVPst dCOVGst dCOVEst

C1 C2 C1 C2 C1 C2

dCOVPqr
a n2 0 n2 0 0 0dCOVPqr
b n2 (1 − n)2 n2 −n(1 − n) 0 n(1 − n)dCOVGqr n2 n2 0 −n2dCOVEqr 0 n2

a On a plot basis.
b On an entry-mean basis.
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For the two traits i and j (i, j = 1, 2), the variances and covariances for error, G, Y, G × Y, G × S, and G × Y × S can be estimated
separately as dCOVEij, dCOVGij, dCOVYij, dCOVðGYÞij, dCOVðGSÞij, and dCOVðGYSÞij, respectively:

dCOVEij ¼ OijdCOVGij ¼
1
ys

Aij−Dij−Eij þ Gij
� 	

dCOV GYð Þij ¼
1
s

Dij−Gij
� 	

dCOV GSð Þij ¼
1
y

Eij−Gij
� 	

dCOV GYSð Þij ¼ Gij−OijdCOVPij ¼ dCOVGij þ dCOV GYð Þij þ dCOV GSð Þij þ dCOV GYSð Þij þ dCOVEij

¼ 1
ys

Aij þ y−1ð ÞDij þ s−1ð ÞEij þ 1−yÞð1−sð ÞGij
� �

on a plot basisð Þ

dCOVPij ¼ dCOVGij þ
dCOV GYð Þij

y
þ

dCOV GSð Þij
s

þ
dCOV GYSð Þij

ys
þ

dCOVEij

ysn

¼ 1
ysn

nAij þ 1−nð ÞOij
� 	

on a genotype mean basisð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

where Oij, Aij, Dij, Eij, and Gij are the covariance for error, G, G × Y, G × S, and G × Y × S for traits i and j in Table 3, respectively.
Similarly, several genetic parameters can be estimated by applying Formula (11) to Formulas (1)–(4).

2.4. Estimation of sampling variances

The Delta method [28,29] was used to derive the formulas for sampling errors for several genetic parameters. General formulas
for sampling errors of several genetic parameters are available [22,24,30]:

V r̂p
� 	 ¼ r̂2p

V dCOVPij

� �
dCOV2

Pij

þ
V dCOVPii

� �
4 dCOV2

Pii

þ
V dCOVPjj

� �
4 dCOV2

Pjj

�
COV dCOVPij; dCOVPii

� �
dCOVPij

dCOVPii

�
COV dCOVPij; dCOVPjj

� �
dCOVPij

dCOVPjj

þ
COV dCOVPii; dCOVPjj

� �
2 dCOVPii

dCOVPjj

2
4

3
5

V r̂g
� 	 ¼ r̂2g

V dCOVGij

� �
dCOV2

Gij

þ
V dCOVGii

� �
4 dCOV2

Gii

þ
V dCOVGjj

� �
4 dCOV2

Gjj

�
COV dCOVGij; dCOVGii

� �
dCOVGij

dCOVGii

�
COV dCOVGij; dCOVGjj

� �
dCOVGij

dCOVGjj

þ
COV dCOVGii; dCOVGjj

� �
2 dCOVGii

dCOVGjj

2
4

3
5

V r̂eð Þ ¼ r̂2e
V dCOVEij

� �
dCOV2

Eij

þ
V dCOVEii

� �
4 dCOV2

Eii

þ
V dCOVEjj

� �
4 dCOV2

Ejj

�
COV dCOVEij; dCOVEii

� �
dCOVEij

dCOVEii

�
COV dCOVEij; dCOVEjj

� �
dCOVEij

dCOVEjj

þ
COV dCOVEii; dCOVEjj

� �
2 dCOVEii

dCOVEjj

2
4

3
5

V Ĥ
2
i

� �
¼ Ĥ

4
i

V dCOVGii

� �
dCOV2

Gii

þ
V dCOVPii

� �
dCOV2

Pii

�
2COV dCOVGii; dCOVPii

� �
dCOVGii

dCOVPii

2
4

3
5

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð12Þ
Table 5 – Correction coefficients in Formula (18) for sampling variance estimation for model 2.

θ̂
dCOVPst dCOVGst dCOVEst

C1 C2 C3 C1 C2 C3 C1 C2 C3

dCOVPqr
a n2 n2(e − 1)2 0 n2 –n2(e − 1) 0 0 0 0dCOVPqr
b n2 0 (1 − n)2 n2 0 0 0 0 en(1 − n)dCOVGqr n2 n2 0 0 0 0dCOVEqr 0 0 (en)2

a On a plot basis.
b On an entry-mean basis.



Table 6 – Correction coefficients in Formula (19) for sampling variance estimation for model 3.

θ̂
dCOVPst dCOVGst dCOVEst

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

dCOVPqr
a n2 n2(y − 1)2 n2(s − 1)2 n2(y − 1)2(s − 1)2 0 n2 –n2(y − 1) –n2(s − 1) n2(y − 1)(s − 1) 0 0 0 0 0 0dCOVPqr
b n2 0 0 4n2 (1 − n)2 n2 0 0 −2n2 0 0 0 0 0 0dCOVGqr n2 n2 n2 n2 n2 0 0 0 0 0dCOVEqr 0 0 0 0 (nys)2

a On a plot basis.
b On an entry-mean basis.
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We noticed that dCOVPij, dCOVGij, and dCOVEij in Formulas (6), (9), and (11) are linear functions of moments, θ (m1, m2, …, mk):

θ m1;m2;…;mkð Þ ¼
Xk

i¼1ð Þaimi; ð13Þ

wheremi corresponds to the mean square of a variation source in Tables 1, 2, and 3. Then the variance of θ in Formula (14) can be
estimated [31]:

V θð Þ ¼
Xk

i¼1ð Þa
2
i V mið Þ þ

Xk

i≠ jð Þaia jCOV mi;mj
� 	� ð14Þ

Similarly, the approximate covariance between two functions of moments θl(m1 ,… ,mk) (l = 1, 2) is given by [31]:

COV θ1; θ2ð Þ ¼
Xk

i; j¼1ð ÞaiajCOV mi;mj
� 	� ð15Þ

V(mi) and COV(mi,mj) in Formulas (15) and (16) can be calculated using the following formulas [32,33]:

V mqr
� 	 ¼ 1

df þ 2
mqqmrr þm2

qr

� �
COV mqr;mst

� 	 ¼ 1
df þ 2

mqsmqt þmqtmrs
� 	

;

8>><
>>: ð16Þ

where q, r, s, t = 1, 2 and df are the degrees of freedom. The denominator value df + 2 has been suggested [34] to yield unbiased
estimates.

Suppose that genotype and environment are independent. By applying Formulas (14)–(16) to Formulas (6), (9), and (11), we can
calculate the variances of dCOVPij, dCOVGij, and dCOVEij (i, j = 1, 2; i = j or i ≠ j), and covariances of any two of them, which are finally
used to estimate the variances of correlation coefficients (r̂p, r̂g, r̂e), and Ĥ

2
i .

For model l, we derived a general formula to calculate the variances of dCOVPij, dCOVGij, and dCOVEij (i, j = 1, 2; i = j or i ≠ j) and the
covariances between any two of them:

COV θ̂qr; θ̂st
� 	 ¼ 1

n2 C1
AqsArt þAqtArs

dA
þ C2

CqsCrt þ CqtCrsÞ
dC


 �
; ð17Þ

where θ̂ represents dCOVP, dCOVG, dCOVE; q, r, s, t = 1, 2; n is the number of replicates of control genotypes estimated from Formula (7);
dA = (g − 1) + 2 and dC = (rc + 2 m − t) + 2 from Table 1; and C1 and C2 are the correction coefficients listed in Table 4 for
calculation of different variances or covariances.

For model 2, a similar general formula was derived to calculate variances of dCOVPij, dCOVGij, and dCOVEij and covariances of any
two of them:

COV θ̂qr; θ̂st
� 	 ¼ 1

enð Þ2Þ C1
AqsArt þAqtArs
� 	

dA
þ C2

CqsCrt þ CqtCrsÞ
dC

þ C3
GqsGrt þ GqtGrsÞ

dG

� �
; ð18Þ

where e is the number of environments; n is the number of replicates estimatedwith Formula (7); dA = (g − 1) + 2, dC = (g − 1)(e − 1) + 2
and dG = e(rc + 2 m − t) + 2 in Table 2; and C1, C2, and C3 are the correction coefficients listed in Table 5 for calculation of different
variances or covariances.

Formodel 3, we derived the following general formula to calculate variances of dCOVPij, dCOVGij, and dCOVEij and covariances of any
two of them:

COV θ̂qr; θ̂st
� 	 ¼ 1

ysnð Þ2 ðC1
AqsArt þ AqtArs

dA
þ C2

DqsDrt þ DqtDrs

dD
þ C3

EqsErt þ EqtErs

dE
C4

GqsGrt þ GqtGrs

dG
þ C5

OqsOrt þ OqtOrs

dO
Þ; ð19Þ

where y is the number of years; s is the number of sites; n is the number of control replicates estimated with Formula (7);
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dA = (g − 1) + 2, dD = (g − 1)(y − 1) + 2, dE = (g − 1)(s − 1) + 2, dG = (g − 1)(y − 1)(s − 1) + 2 and dO = ys(rc + 2 m − t) + 2 from
Table 3; and C1, C2, C3, C4, and C5 are the correction coefficients listed in Table 6 for calculation of different variances or
covariances.

2.5. Computer simulations

Based on the MAD2 design scheme, we simulated single MAD2 trials for estimation of two genetic parameters: H2 of a trait and rg
between two traits. The purposes of the simulations were to (1) validate the proposed method for estimating genetic parameters
in the MAD2 trials and (2) assess the accuracy of the derived theoretical formulas of the sampling variances for the two genetic
parameters. We compared H2and rg values with the simulated Ĥ

2
and r̂g to determine whether these parameters were accurately

estimated.
A single MAD2 trial with 10 × 10 whole plots and five subplots in each whole plot was simulated. The dataset of 390 test

genotypes with one observation, one main plot control with 100 replicates, and two subplot controls with five replicates each
were generated based on assumptions in Formula (5) and given values for heritability and genetic correlation of the test genotype
population. All simulations were performed using R software (https://www.r-project.org/), and the R code is available upon
request.

2.5.1. Broad-sense heritability (H2)
Given the σG

2 and H2 of a trait, we can calculate the error variances as σe
2 = σG

2 (1-H2)/H2 on a plot basis. Thus, we can simulate the
effect of different error variances on the estimation of H2 in MAD2. Data generation was performed as follows: (1) given the μ and
σG
2 of a trait, we generated a set of normal random numbers for 390 test genotypes plus three control genotypes following N(μ, σG

2 ),
corresponding to the genetic values of test and control genotypes; (2) given H2, we calculated σe

2 and generated 100 sets of normal
random numbers with N(0, σe

2), corresponding to the error effect of 100 replicates; and (3) we merged genetic values and error
effects to generate phenotypic values of test and control genotypes of 100 replicates, creating a matrix of 393 rows and 100
columns, followingN(μ, σP

2) and representing phenotypic values of the single MAD2 trial; (4) we randomly chose 390 rowswith one
column to simulate test genotypes without replication, one row with all 100 columns to simulate the plot control with 100
replicates, and two rows with five columns to simulate two subplot controls with five replicates. For each given H2 value from 0.1
to 0.9 with an interval of 0.1, a total of 1000 simulations were performed. For each, the data were analyzed using model 1 (Table 1)
and Ĥ

2
and its sampling error were estimated using Formulas (4) and (12). The standard deviation of Ĥ

2
in 1000 samples was

calculated to represent an actual sampling error (henceforth termed “simulated” sampling error) for comparison with those
calculated based on Formula (12).

2.5.2. Genetic correlation (rg)
Given two traits (1 and 2) following N(μ1, σG1

2 ) and N(μ2, σG2
2 ) with rg, we generated two sets of correlated random numbers to

simulate genetic values of traits as follows: (1) we generated two sequences of uncorrelated standard normal distributed random

numbers X1 and X2; (2) we defined a new variable Y ¼ rgX1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2g

q
X2 that had a genetic correlation of rg with X1; and (3) we

transformed X1 and Y into two new variables following the given normal distribution: X1
' = X1σG1 + μ1 and X2

' = YσG2 + μ2. To
simplify the simulation, we set the error correlation re between the two traits to zero. We then generated two sets of independent
random numbers for the error effects of the two traits. All other procedures followed the principles described above.
BA C

Fig. 1 – Simulation of broad-sense heritability (Ĥ
2
). (A) Simulation-based estimated Ĥ

2
and its sampling error s(Ĥ

2
) in relation to

H2. (B) Simulated and theoretical sampling errors (s(Ĥ
2Þ) in relation to H2. (C) Relationship between simulated s(Ĥ

2Þ and
theoretical s(Ĥ

2Þ.

https://www.r-project.org
image of Fig. 1


A CB

Fig. 2 – Simulation of genetic correlation coefficient (r̂g). (A) Estimated r̂g based on simulation data in relation to given rg. (B)
Simulated and theoretical s(̂rg) in relation to r̂g. (C) Relationship between simulated s(̂rg) and theoretical s(̂rg). The dots in plots
represent averages of estimates from 1000 simulations.

114 T H E C R O P J O U R N A L 4 ( 2 0 1 6 ) 1 0 7 – 1 1 8
2.5.3. Simulation of trial data from multiple years and sites
When trial data from multiple years and sites are available, both models 2 and 3 can be used for genetic parameter estimation.
Model 1 can also be applied for analysis of single trials. To compare these three statistical models, we simulated trial data from
four years and two sites per year that were similar to those of the case study. The same trial design and simulation procedure as
the single trial were used but several major effects for years and sites, and some interaction effects, were added to the linear
model (Formula (10) and Table 3). A total of eight trials were produced for a given H2. All three models were used to estimate H2.

2.6. Pipeline programs

The ANOVA and covariance analyses in Tables 1, 2, and 3 were implemented using SAS software (SAS Institute Inc., Cary, USA).
The results from SAS served as input to a Perl program and were further analyzed to estimate several genetic parameters and
their sampling variances. A new module including a SAS and a Perl program was appended to the MAD pipeline [19].
Fig. 3 – Sampling distributions of broad-sense heritability (Ĥ
2
) (A), and genetic correlation coefficient (̂rg) (B) at several parameter

values.

image of Fig. 2
image of Fig. 3


A B

Fig. 4 – Simulation of broad-sense heritability (Ĥ
2
) under different statistical models, assuming significant

genotype-by-environment (year and site) interaction effects. (A) Estimated Ĥ
2
in relation to H2. (B) Simulated and theoretical

sampling errors (s(Ĥ
2Þ) in relation to H2.
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3. Results

3.1. Computer simulations

3.1.1. Estimation of genetic parameters and their sampling
errors
Given the different H2 values from 0.1 to 1.0, the average Ĥ

2

estimates of 1000 simulated datasets were highly correlated
(R2 = 0.998) with H2 (Fig. 1A); both theoretical and simulated
sampling errors (s(Ĥ

2Þ) decreased with increasing H2 (Fig. 1B);
and the simulated s( Ĥ

2Þ was highly correlated with the
theoretical s(Ĥ

2Þ (Fig. 1C). The s(Ĥ
2Þ values estimated from the

two methods were consistent except when H2 was less than
0.3. These results indicate that estimation of H2 and its s(Ĥ

2Þ
using the derived theoretical formula is reliable and that the
reliability of the estimates increases with H2.

Similarly, we simulated trial data for estimation of rg for
values ranging from 0.1 to 0.9. rg was calculated based on the
genetic covariance and variance of two traits. Considering
that two traits may have different heritabilities, we generated
data for 729 parameter combinations of different rg (0.1–0.9),
H1
2 (0.1–0.9) and H2

2 (0.1–0.9) each with 1000 simulations. A
significant correlation between rg and r̂g (R2 = 0.7242) was
observed (Fig. 2A), but this relationship was more complex
than that between Ĥ

2
and H2 (Fig. 1A). Large sampling errors

were observed for any given rg, whichmay result from the bias
Table 7 – Ĥ
2
and s(Ĥ

2Þ for three traits (OIL, IOD and LIN) in the BM

Model a Unit b OIL

Model 3 Genotype mean 0.916 ± 0.06
Model 2 Genotype mean 0.888 ± 0.01
Model 1 Genotype mean 0.996 ± 0.00
Model 3 Plot 0.490 ± 0.08
Model 2 Plot 0.400 ± 0.02
Model 1 Plot 0.905 ± 0.01

a Model 3: joint analysis of 4 years × 2 sites; Model 2: joint analysis using
one single trial (2012 at Morden) is shown as an example.
b Genotype mean: on an entry-mean basis; Plot: on a plot basis.
⁎⁎ Represents statistical significance at the 0.01 probability level.
caused by the correlated errors of two traits (re). We also
noticed that the theoretical s(r̂gÞ was slightly higher than the
simulated s( r̂gÞ (Fig. 2B), though the theoretical s(r̂gÞwas also
highly correlated with the simulated s(r̂gÞ (Fig. 2C).

3.1.2. Sampling distribution of genetic parameters
Using 1000 simulations (or samples) for each given parameter
or a combination of parameters, we can calculate the
sampling error for each simulation and assess the sampling
distribution of the parameter. Most samples appeared to be
near- or normally distributed for Ĥ

2
and r̂g. Fig. 3A and B shows

several typical examples of the sampling distributions for Ĥ
2

and r̂g, respectively. Based on all the simulated samples in two
simulation experiments, 97% and 92% of the samples for Ĥ

2

and r̂g , respectively, were normally distributed (P > 0.05) and
the remainders followed an approximate normal distribution,
suggesting that the theoretically estimated sampling error of
a parameter estimate can be used to derive an approximate
assessment of the significance of an estimate different from
zero with a Z test.

3.1.3. Comparison of statistical models
For the joint data analysis of trials from multiple years and
sites, two statistical models, model 2 (Table 2) and model 3
(Table 3), are suitable. Technically, model 1 (Table 1) can also be
used for a single-trial analysis. The question was whether all
population.

IOD LIN

3 ⁎⁎ 0.957 ± 0.025 ⁎⁎ 0.954 ± 0.025 ⁎⁎

1 ⁎⁎ 0.963 ± 0.004 ⁎⁎ 0.964 ± 0.004 ⁎⁎

1 ⁎⁎ 0.997 ± 0.001 ⁎⁎ 0.997 ± 0.001 ⁎⁎

4 ⁎⁎ 0.748 ± 0.059 ⁎⁎ 0.748 ± 0.060 ⁎⁎

5 ⁎⁎ 0.676 ± 0.021 ⁎⁎ 0.675 ± 0.021 ⁎⁎

7 ⁎⁎ 0.919 ± 0.014 ⁎⁎ 0.925 ± 0.013 ⁎⁎

eight environments (each site/year as an environment); and Model 1:

image of Fig. 4


Table 8 – r̂g and s(̂rg) between three traits (OIL, IOD and LIN) in the BM population.

Model OIL vs. IOD OIL vs. LIN IOD vs. LIN

Model 3 −0.277 ± 0.187 −0.261 ± 0.188 0.963 ± 0.015⁎⁎

Model 2 −0.268 ± 0.065⁎⁎ −0.259 ± 0.065⁎⁎ 0.961 ± 0.005⁎⁎

Model 1 −0.336 ± 0.065⁎⁎ −0.330 ± 0.064⁎⁎ 0.957 ± 0.006⁎⁎

See Table 7 for the same notes.
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three models could accurately estimate the genetic parameters
when significant genotype-by-environment interaction effects
were present. To compare the three statistical models for the
same sets of data, we simulated trial data from 4 years and two
sites (similarly to the case study). The results showed that only
model 3 produced accurate H2 estimates, whereas models 2
and 1 overestimated H2, especially at low H2 values (Fig. 4A).
The theoretically estimated sampling errors of Ĥ

2
fitted the

simulated ones well in all three models (Fig. 4B). The sampling
errors of Ĥ

2
in model 3 were higher than those in models 2 and

1. Although Ĥ
2
in model 1 had the lowest sampling errors, they

deviated greatly from the correct values.

3.2. Case study

OIL, IOD and LIN are three phenotypic traits important in flax
breeding for flaxseed or linseed. For the trial data of the BM
population from 4 years at two sites, we first performed data
adjustment using the MAD pipeline [19]. Then, using the
adjusted observations, we also calculated the Ĥ

2
(Table 7) and

r̂g (Table 8) for the three traits and their sampling errors on a
single-plot and a genotypemean basis. Two statistical models
(models 2 and 3) were applied to the same dataset. We also
estimated the genetic parameters using model 1 indepen-
dently for each of eight trials. Similar estimates for all two
parameters were obtained using both model 2 and model 3 to
account for the possibility of their high heritability. As
expected, higher estimates of Ĥ

2
and r̂g of the three traits

were obtained from model 1 (Tables 7 and 8). The sampling
error estimates from model 3 were consistently higher than
those frommodels 2 and 1 (Tables 7 and 8), in accordance with
the simulation results (Fig. 4). Because the two genetic
parameters follow a normal sampling distribution (Fig. 3), we
could perform an approximate Z test to determine whether
A

Fig. 5 – Partition of genetic variance (A) and genotype-by-environ
models 2 and 3.
the estimates of the parameters were significantly different
from zero. All three traits had high and statistically significant
(P < 0.01) heritability estimates. For r̂g , the r̂g estimates of all
possible trait pairs were significant inmodel 2 andmodel 1, but
the estimates of some trait pairs inmodel 3 were not significant
because of their higher sampling errors. In addition, the
estimates of Ĥ

2
based on the genotype mean were larger than

those based on single plots because the estimation of pheno-
typic variances differed (Formulas (2), (9), and (11)).
4. Discussion

An augmented design is usually applied by breeders to a large
number of lines that are to be planted in a field of limited size.
Error variance and genetic parameters may be estimated from
replicated controls in unreplicated experimental designs such
as MAD2. In the present study, genetic variance (covariance)
was calculated based on total phenotypic variance (covari-
ance) estimated from the test genotypes minus error variance
(covariance) estimated from the control genotypes. This
separate analysis approach provides approximate estimates
of genetic parameters based on the MAD2 design, although it
is not optimal for some cases. Our simulation results suggest
that the method we propose is highly accurate for estimating
H2 with the reliability of the estimates increasing with trait
heritability. Estimates of rg had larger sampling errors than
those of H2, indicating that the latter is less subject to
environmental effects.

We derived approximate theoretical sampling error for-
mulas for the two genetic parameters using the Delta method
[28,29]. We found that the theoretical sampling errors of all
two genetic parameters were highly consistent with the
simulated sampling errors, except for a few cases at very low
B

ment variance (B) in 1000 simulation replicates at H2 = 0.1 for

image of Fig. 5
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heritability (Figs. 1, 2, and 3) suggesting that estimation of the
sampling errors for two genetic parameters in MAD2 is
reliable and that it can be used to test whether the estimated
genetic parameters are significantly different from zero.

Theoretically, the total variance of the test genotypes (the
mean square Aii in Table 1) will be greater than the error
variance in a single trial. Accordingly, we were able to obtain
genetic variance as total variance minus the error variance.
However, because a limited number of control genotypes
(three in our case) were used to estimate the error variance,
the latter estimate is occasionally greater than the total
variance of the test genotypes as a consequence of sampling
bias. This results in negative genetic variance estimates and
failure to estimate genetic parameters. In our simulation,
when H2=0.1,22.5% of simulation data sets failed to yield
estimates of genetic parameters, but when H2=0.3, only 0.6%
of simulation data sets failed; and when H2>0.3, none failed.
When the heritability of a trait is very low (e.g. <0.1), the
method proposed in this paper is sometimes unable to
estimate genetic parameters precisely. In addition, there is
some risk of misadjustment in this design if control genotypes
show a different error variance or perform differently from the
unreplicated entries [35]. Some alternatives have been pro-
posed to reduce this risk, such as partially replicated (p–rep)
designs, where a proportion of the test entries are replicated
at each location [36–38].

There are two units used tomeasure phenotypic variances:
one based on the single plot and the other based on the
genotype mean. The two measurement units will generate
different estimates of H2; however, the estimation of rg is not
affected because the numerator and denominator of Formula
(1) for calculating r̂g involve only genetic components. The
estimates of phenotypic variance based on the genotype
mean were always larger than those based on the plot
(Tables 7 and 8) because the error and interaction variance
components were divided by the corresponding number of
observations in the measurement unit on a genotype mean
basis (Formulas (6), (9), and (11)). Because MAD2 is an
unreplicated unbalanced design, each adjusted observation
comes from single plots only, and estimates based on the plot
may be more reasonable estimates of genetic variation.

Three statistical models were considered. Because model 1
deals only with single-trial data, the genetic variance contains
an undecomposable genotype-by-environment interaction
and consequently H2 and rg are always overestimated (Fig.
4A, Tables 7 and 8). For this reason, we suggest a joint analysis
of trials from multiple environments (different years and/or
sites) with model 2 or model 3. However, in the presence of
significant genotype-by-environment effect, H2 is generally
overestimated in both models 1 and 2 (Fig. 4A). Theoretically,
in model 2, the total variation of the test genotypes is
partitioned into three components: G, E, and G × E (Table 2),
whereas in model 3, E is further partitioned into Y, S, and
Y × S, and G × E into G × Y, G × S, and G × Y × S. Hence,
ANOVA of the same dataset had identical sum of squares (SS)
of G inmodels 2 and 3; the SS of E was equal to the summation
of the SS of Y, S and Y × S; and the SS of G × E was equal to the
summation of the SS of G × Y, G × S, and G × Y × S. Both
models also yielded the same error variances. The twomodels
applied different formulas (Formulas (9) and (11)) to estimate
σG
2 , σGE

2 or σGY
2 , σGS

2 , and σGYS
2 that resulted in higher σG

2 and
lower σGE

2 in model 2 than in 3 (Fig. 5) and consequently in the
overestimation of genetic parameters in model 2. However,
because more partitioned variance components in model 3
are indirectly estimated, higher sampling errors usually
ensue—the major reason for the higher sampling variance of
the genetic parameters estimated from model 3. Model 2
yields reasonable estimation accuracy and low sampling
variance. Because model 2 treats all years, sites or their
combinations as environments, it can be applied when
complete data missing for a year or a site occurs, or data
from only years or sites are available. Thus, model 2 is a more
practical and flexible statistical model for genetic parameter
estimation using datasets from multiple years and sites.
5. Conclusions

Wehave proposed an approximationmethod to estimateH2 and
rg and their respective sampling variances for MAD2 trials. The
simulation results suggest thatH2 can be reliably estimated in the
MAD2 trial. The sampling error estimates based on the derived
theoretical formulas coincide with the simulated values and can
be applied to statistical tests of estimated genetic parameters.
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