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1. INTRODUCTION 

In this paper we extend previous work (Kushner [Z], [2], [J]) on the stability 
of strong Markov processes with values in a finite-dimensional space, to 
processes defined by difference-differential It6 equations of type (1.1). The 
extension is analogous to the extension of the Liapunov stability theorems to 
theorems on the stability of the solutions of ordinary difference-differential 
equations as, for example, presented in Hale [4]. 

Let C be the space of continuous functions on the real interval [-r, 01, 
r > 0, and let x(t) be a vector-valued stochastic process. Define the process zct , 
with values in C, by ~~(0) = x(t + e), 0 E [-r, 01. Let / a( = C xi2(t) and 
// zct /I = sup, II x(t + e)ll, 0 E [-r, 01. Suppose x(t) satisfies the vector 
stochastic difference-differential equation 

where x0 , f and g satisfy Properties (Al)-(A3) or (Al), (A2) and (A4) of 
Section 2, and z(s) is a vector-valued normalized Wiener process with 
independent components. Equations of type (1.1) have been studied by It8 
and Nisio [5] and Fleming and Nisio [6]. Their result concerning existence is 
stated in Lemma 2.1. 

We are concerned with criteria, of the stochastic Liapunov function type, 
which assure that the solution paths of (1 .l) have certain “stability” 
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under Grant 40-002-015, and in part by the National Science Foundation, Engineering, 
under Grant GK-967. 
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properties; e.g., for some set R, we may want to prove that x(t) --f R w.p.l.+, 
or (with initial condition x0 =x) obtain an estimate of P,{sup,,,>, 1 x(t)\ > E}, 
or prove that P,{su~,,,~,, 1 x(t)1 3 E > 0} --f 0, as 11 x /I + 0, or estimate 

%suP,>t>o V(x,) > c} for a suitable real-valued function V. Some 
definitions concerning stochastic stability are given in [I]-[3]. Here, in lieu 
of stating definitions, we merely concern ourselves with the properties the 
definitions imply and establish criteria for properties of the type just 
mentioned. Results concerning first-passage times and moment estimates as 
well as applications to control are also available, although our attention here 
is confined to ‘asymptotic’ results. In addition to the intrinsic interest in the 
problem attacked an important motivation for the work is to provide a 
foundation for the stabilization and control of processes, defined by stochastic 
differential (Its) equations, with controls depending on delayed arguments. 
Such delays are often an unavoidable part of the control problem. Also for 
an example of a deterministic system which cannot be stabilized by a control 
depending on the state, but which can be stabilized by a control depending on 
delayed values of the state, see Krasovskii [7]. 

In Section 2 we derive some useful estimates concerning the probabilistic 
behavior of the solution of (1.1). These are used subsequently to establish 
stochastic continuity, the strong Markov character of the xt process, and some 
needed characterizations of the weak infinitesimal operator of the xt process. 
Sections 3 and 4 establish the strong Markov nature of xt and corresponding 
stopped processes, respectively. Section 5 gives some results on the weak 
infinitesimal operator. In Section 6 these results are used to prove some 
stability theorems, and examples appear in Section 7. The stability results 
depend on stochastic continuity, a formula of Dynkin ([8], Theorems 5, 6 
and Corollary to 6) and supermartingale theorems. Unfortunately, in order to 
make the first property explicit and to apply the latter results, much of the 
analysis in Section 2-5 is needed. As in the deterministic case (Hale [d]), 
the natural process to deal with seems to be xt [rather than x(t)], since then 
much of the theory of Markov processes can be applied. 

2. PROPERTIES OF THE SOLUTION OF EQUATIONS (1.1) 

Letfi and gij be the components of the vector and matrix-valued functions 
f and g, respectively, and define the vector and matrix norms as / f I2 = &fi2, 
I g I2 = C&j & 9 respectively. Throughout, K and Ki are positive real 
numbers whose values may change from theorem to theorem. 

(AlI fd-) and gd*) are continuous real-valued functions on C. 

+ w-p-l denotes with probability one. 
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(A2) In the interval [-Y, 01, x(t) is continuous w.p.1. and independent 
of z(s) - z(O), s > 0, and EJ Al* < co. 

(A3) There is a constant M < co and a bounded measure p on 
[-Y, 0] so that for v and # E C, 

If(v) -fW)l + I g(v) - .dt4 G j” I P(e) - W)l4@) 
--T (2.1) 

If( + igm < M* 
Note that (A3) implies (A3’): 

(A3’) There is a constant M < co and a bounded measure (also 
denoted by p) on [-Y, 0] so that I f(O)1 + I g(O)1 < M and 

IfhI -fWl” + I g(d - gW)12 G j” I TV) - W)l” 44% (2.2) --r 

Eventually (A3) [or (A3’)] will be replaced by the local condition (A4) [or 
stronger condition (A4’)]. 

(A4)[(A4’)] For each positive real number p there is a bounded measure 
p0 on [--I, 0] so that for /I 3 ]I f p and 11 v II < p, (2.1)[(2.2)] is valid with pp 
replacing II. Also, I f(O)] + I g(O)1 Q M < 00. 

LEMMA 2.1. (See It8 and Nisi0 [.5], Section 5, or Fleming and Nisi0 [6], 
for proof.) Suppose (Al) to (A3). Then there is a continuous solution to 
(1.1) m.p.1. with El x(t)]* < yeyt joy some y < 00. x(s) is independent of the 
collection z(t) - z(s), for all t > s > 0. 

LEMMA 2.2. Assume (Al) to (A3). For initial condition x = x0, the 
stochastic integral 

f%(t) = j: 7 &i(%> k(s) (2.3a) 

is a martingale, and for ci > 1 

E gf;,, I W)l” G ($)e E I wi(W 

E Tyfzo 1 w’(t) w(t)1 < 4Ew’(T) w(T) = 4 /‘E 1 g(x,)12 dt. 

(2.3b) 

0 

Proof. By Lemma 2.1 and (A3), the integral on the right side of (2.3b) 
exists and is finite. Then, since x(t) and xt are nonanticipative, the w,(t) are 
continuous martingales (Doob [9], Chapter IX, Theorem 5.2) and (2.3b) is 
the continuous parameter version of Doob [9], Chapter VII, Theorem 3.4. 
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THEOREM 2.1. Assume (Al) and (A3). Let x(t) and y(t) be solutions to (1.1) 
corresponding to initial condition x,, = x and yO = y, resp., where x and y 
satisfy (A2). Then 

E Tcygo I x(t) - rW G K\E I 40) - r(W” + j”, E I x(e) - r(@l” 44$ 

(2.4) 
where K depends only on T, and the TV and M of (A3), and is bounded for 
bounded T. The solution of (1.1) is unique in the sense that ifx = x,, satisfies (A2), 
then any two solutions with bounded second moments must coincide w.p.1. 

Remark. The right side of (2.4) depends only on the initial data. 

Proof. (2.4) implies the uniqueness. From 

44 - ~(0 = 40) - ~(0) + jt (f(xs) -f(rJ> ds + 1’ Md -g(yJ) W4, 
0 0 

(2.3), and the bound maxtST ( Ji k(s) ds I2 < T ]-rke(s) ds, we obtain 

E Ty~.o I x(t) -rW2 G KIE I $3 - rP)12 + KITE IT IfW -f(rs)I” cfs 
0 

+ W jT I &s> - g(yJ12 ds. 
0 

Now (A3) gives 

E =9go I x(t) - rP)l” G GE I 40) - r(W2 
(2.5) 

i- K2 j’ds j” E I X(S f  e) -Y(S f @I” dde). 
0 -r 

By separating out the contribution of the initial condition x - y, (2.5) can 
be written as 

E Tgyo I w - YWI” 
T  

s I 
0 (2.6) 

<A,+& ds E 1 4s + 0) - Y(S + 412 449, 
0 nt-r.-a) 

where m(-r, -s) = max(--r, -s) = -min(r, s) [both Y and s are non- 
negative] and 

AI = K$ I x(O) - r(W” + K2 j: ds Jo;-"-" A,+e 44% 

A, = E I x(s) - y(s)l”. (2.7) 
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To evaluate the right side of (2.6), we first evaluate A, which by (2.6) satisfies, 
for t < T, 

A, < A, + K, -t ds 
.i i 

’ A s-to 444. (2.8) 
0 - ml-r,-s) 

Define U = variation of p and B = maxr>,>,A, (which is finite, by 
Lemma 2.1), and 

&(t) z A, (I + UKzt + ... f  71 + Un2,nt”B . 

By (2.8), A, < Qr(t). By induction, it is easy to show that A, < Q(t). Thus, 
since B < 00, 

A, < AreUKgt. cw 

After substituting (2.9) into (2.6), it is easy to see that (2.4) holds for some 
finite K independent of x and y. Q.E.D. 

THEOREM 2.2. Assume (Al) to (A3). Then 

E Tygo I x(t) - x(0)12 G KTE 11 + .I*“, (I x(e)l’ + /x(e) - 4U2) C(@/, 
(2.10) 

where K depends only on T and p and M, and is bounded.for bounded T. Also, 
with x0 E Cfixed, 

I Ex(h) - x(O) - hf(x,)l = o(h), (2.11) 

I E(x(h) - x(O))(x(h) - x(O))’ - hdxo)g’(xo)I = o(h). (2.12) 

Proof. By (A37, 

If( + I g(xs)12 

< 2 If(%) -f@o>l” + 2 Idx,) - g(xo)12 + 2 If(x + 2 l&o)12 

< Kl [ 1 + j” 
--T 

I 4s + 8) - x(e)l” 4.49 + f, I x(0)1” 449] 

< K, [ 1 + j” I 4s + ‘4 - x(W” 44~) 
-r 

Thus, from 

+ j”,. (I x(e) - x(0)1” + I x(e)l”) W’)]. 

x(t) - x(O) = j;f(x., ds + j:g(x.J d+) 
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and Lemma 2.2, we get 

< KJ jr E I fkd2 ds + Ka j’ E I &,)I2 ds 
0 0 

<K,[T+T2+j+Tds 
0 

X jr, {E / x(s + 0) - x(0)12 + I ~(0) - x(0)1” + I @)12> d/O]. 

Separating out the contribution of the initial condition gives 

< & [T + T2 + T j” E(I x(e>12 + I x(e) - 40)12) 444 -7 
+ jlds j~~eT*-S) 

E I 4s + 0) - +@)I” dp(e) 

+ j:dsj” 
nz(-T.-S) 

E I 4s + 6) - 4)l” 4@,] 

(2.13) 

where 6, = El x(s) - x(0)i2 and 

a1 = 1 + j” E(I 432 + I x(e) - qv) 4(e). -7 

Now, proceeding as in Theorem 2.1, we have (t < T) 

and 

6, < 6,K,t + K, t ds 
i .r 

’ as+0 444 
0 nz(-r,-s) 

6, < GIK,teKsUt. (2.14) 

Substituting (2.14) into (2.13) yields (2.10). 
To prove (2.1 l), Ji x x0 E C. Then (2.10), the continuity of x(t) for 

t E [--r, 01, and (A3’) imply 

E *ygo 11 xh - Xo iI2 + 0 
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This result, with the evaluation 

proves (2.11). Eq. (2.12) is proved in a similar way. 

3. MARKOV PROPERTIES OF THE PROCESS xt 

Let V be the collection of open sets in C (with topology determined by 
the norm 11 x /I = sup] x(e)], f? E [-Y, 0]), and B the Bore1 field over g. The 
triple {C, %, S} is a topological state space (Dynkin [8], Appendix). Let X, 
the initial condition for (l.l), satisfy (A2). We suppose that all probability 
measure spaces introduced in the sequel are complete with respect to whatever 
measures are imposed on them. Let 52 denote the probability sample space, 
and w the generic element of 52. Define fitx and m,a as the least u-fields on Q 
over which x(s), -r < s < t and x(s), t - r < s < t, are measurable, resp., 
for fixed x0 = x E C. Let P, be the probability measure on 

Consider the collection of w sets S defined by, for some y E C, some l > 0, 
and any 0 < s < t, 

s = {w : 11 x, - y 11 < c} = {w : sup / X(S + e) -y(e)] < 6}. 
-&I?<0 

Such S are in &?,” and, in fact, for any r E 8, the set {w : x, E r}, s < t, is 
contained in the least sub u-field of fitffi containing all such S (for all E > 0, 
y E C). Denote this sub u-field by Mt”. Since x(t), t > -T, is continuous w.p.l., 
so is xt , t > 0, (in the topology induced by the norm II x 11). Thus we have 

LEMMA 3.1. Suppose (Al) to (A3) andjix x0 = x E C. Each x, , 0 < s < t, 
a’s a random variable on {a, Mix, P,} to {C, V, B}, and xt is continuous w.p.1.; 
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xt is measurable on {Q, N,*, P,} where N,” = Mtx CT mtx. For any function q 
whose expectation exists we have w.p.1. 

%dx,+,) I Mt”) = EMxt+s) I Nt”h s > 0. (3.1) 

THEOREM 3.1. Assume (Al) to (A3) and let x,, = x E C. Then xt is a 
continuous strong Markov process on the topological state space {C, V, 231 with 
killing time f(w) = CO w.p.1. 

Proof. The last statement merely says that the solution paths are defined 
for all t < co w.p.1. To prove the Markov property we check the conditions 
of Dynkin [8], 77-80. For each fixed initial condition x E C, the process x(t) is 
defined by Lemma 2.1, and xt by Lemma 3.1. 

To prove the Markov property, we have only to show that 

(i) the function p defined by p(t, x, r) = P,{x, E r>, for arbitrary 
I’ E 9, is B measurable, and 

(4 P&t+h E r / M,“} = p(h, xt , r) w.p.1. 

(i) is true since by Theorem 2.1, p(t, x, r) is measurable on C. The “Markov” 
property (ii) is also true by Theorem 2.1 and Lemma 3.1, since the paths x(s), 
s > t, (or x, , s > t) of (1.1) are uniquely determined by the initial condition 
xt w.p.l., and xt is independent of z(s) - z(t), s > t. 

To prove that xt is a strong Markov process, it suffices to prove (Dynkin [8], 
Theorem 3.10) that if a(~) is bounded and continuous on C, then &cu(x,) = 
/I(x) is continuous in x. (E, is the expectation operator corresponding to P, .) 
Let xt , ytn correspond to fixed initial conditions x, y”. Then 11 xt - ytn I] --f 0 
w.p.1. t 3 0, as 11 x - yn II -+ 0 (Theorem 2.1). Then, the w function 01, 
defined by 1 a(xt) - a(yt”)l = a,(~) goes to zero as 12 ---f co. Since a,(w) is 
bounded, we have EC+, + 0 which implies that p(x) is continuous in x. Q.E.D. 

4. STOPPED PROCESSES [AND (A4) REPLACING (A3)] 

Let R be some bounded open set in C and 7 = inf{t : xt $Q}. If zct E Q, 
all 0 < t < co, set T = co. 7 is a Markov time (Dynkin [8], Theorem 10.2); 
i.e., {w : 7 < t} E M,“. Define the stopped process 8, 

5, = Xt , t<r 

2, = x, , t > 7. 

f, is also a strong Markov process [under (Al)-(A3)] with infinite escape time, 
hence the paths of f, do not depend (w.p.1.) on the values off and g [of (l.l)] 
outside of R. 

Now, suppose that (A3) is replaced by (A4). The solution to (1 .l) is defined 
as follows: Let R,, = {x : 11 x I/ < n}. Define functions f *, g” equal to f, g in 
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R, and satisfying (Al) and (A3) for p = pn. Define x”(t) (or xt”) as the 
solution to (1.1) corresponding to f”, g”. Let 7, = inf{t : xtn 4 R,} = 
infit : 1 Al > n]. If x0 E R, , then 7, > 0 w.p.1. and xtn is a strong Markov 
process for each n; hence, w.p.l., xtn = xtln for m > n and t < 7, . Let 
6 = lim 7, . The solution to (I.]), under (A4), is defined as the process xt 
which equals xtn up to 7, for all n. If [ < co with a probability 6, the escape 
(or killing time) is finite w.p.6. xt (with the appropriate probability space) 
is a strong Markov process with killing time 5‘. 

For most of sequel we will be concerned only with the paths xt only up 
to a time 7 = inf{t : xt $Q} for some bounded open set Q, and only the 
properties off, g in Q will be important. Since in application (A4) occurs 
frequently, we suppose that (A4) holds [in lieu of (A3)] and use the above 
interpretation of the solution of (1.1). 

5. THE DOMAIN OF THE WEAK INFINITESIMAL OPERATOR 

A real-valued function F on C is said to be in the domain of 2, the weak 
infinitesimal operator, if the limits 

exist pointwise in C and the sequence is uniformly bounded in x. Then we 
write q(x) = AF(x). Write AR for the weak infinitesimal operator of ft = xt 
stopped at r = inf{t : xt #R} for an open set R. 

LEMMA 5.1. Let (Al), (A2) and (A4) hold for (1 .l). Let A be the weak 

injkitesimal operator of a process (a(t)) satisfying (1.1) with f, 2 replacing f, g 
and satisfng (Al)-(A3). Let f  = f,  J = g in the bounded open set R. f  andj 
can be arranged outside of R so that I/ &II < K < co. Let F be continuous and 
bounded on bounded sets. Then ifF E 9(A) and AF = q is bounded on bounded 
sets, the restriction of F to R is in B(aR) and on R, AF = ARF. 

Proof. That! and k can be arranged so that /I 4, II < K is clear, since we 
can always find f, 2 satisfying the other conditions and which are identically 
zero outside of some bounded open set containing the closure of R. 

Next, let x E R and suppose FE 9(A) and /?F = q. Define 7 = inf{t: xt $ R}. 
Then1 

1 grit is the characteristic function of the set [ W. 7 < t], and Zt is the xt process . 
stopped at 7. 
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or 

as t -+ 0, since Q(&) and q(4,) are uniformly bounded and xTit + 0 w.p.1. 
as t --f 0 by (2.10). To complete the proof we need only verify that 

b%ws) - wl/~ - 4w 

But, since [I&F(&) - F(x)]/t -+ q(x), it suffices to verify that2 

0 = lim E3EF(~t) -F(x) _ lim Ed -F(x) 
t t t t 

= lim E ,x,<tm9 - WLJI 
t t , 

and that the sequence is uniformly bounded in x, as t + 0. 
For 1 < y < 2, the evaluation (6.4) and Chebyshev’s inequality imply that 

E3E(~7,t/t)Y -+ 0 as t + 0 uniformly in R. Also, F(4,) - F(&,,) is uniformly 
bounded. Then, Holders inequality implies that the last expression is zero. 

Q.E.D. 
We have not been able to completely characterize the domain of the weak 

infinitesimal operator of either the xt or Zt process. For example, F(x) = x(-u), 
Y  > a > 0, is not necessarily in 9(a), since x(t) is not necessarily differ- 
entiable. Basically we are able to study functions F(x) whose dependence on 
x(e), for -Y < 8 < 0, is in the form of an integral. The dependence of 
F(x) on x(0) can be more arbitrary. Fortunately the stochastic analogs of the 
available and useful deterministic Liapunov functions have this property. 
Theorems 5.1 and 5.2 give some results on the weak infinitesimal operator 
of f, , where R is some open bounded set, 7 = inf{t : xt 6 R} and (1.1) is 
interpreted in the sense of Sections 3 and 4, and (A4) is used. [(A4) is assumed 
since it appears in applications]. The proofs are only sketched since they 
involve only routine calculations. 

THEOREM 5.1. Assume (Al), (A2) and (A4) and x,, = XE C. Let 
F(x) z G(x(0)) have continuous second derivatives with respect to x(0). Then 
F(x) E 9(&) and3 

&F(X) = LG(x(0)) = q(x) = G~(x(O))f(x) + t c Gu,,WN “ii(x) (5-l) 
i,j 

e t n 7 = min(t, 7). 
s G, is the gradient with respect to the vector argument and the subscript uiuj 

denotes a second partial derivative. Recall that R is a bounded open set. 
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where 

Proof. To compute aRF it suffices to assume, by Lemma 5.1, that 
(AI)-(A3) hold and (1 xt (( < K for some sufficiently large but finite K, and 
to compute AF for the modified process (denoted also by xJ. Define 6x(O) = 
x(s) - x(O). Then 

where 0 < 01(o) < 1 and 6xj(0) is the jth component of 6x(O). By (2.11) and 
(2.12), the limits (as s -+ 0) of the first two terms on the right side of (5.2) 
exist (uniformly in x) and are the first two terms on the right side of (5.1). Now 

[Gu,,(43 + 4W) WON - ~th,p(wl 
is bounded and tends to zero w.p.1. as s-+ 0. Then, applying Schwarz’s 
inequality and the estimate (6.4) to the 3rd term in (5.2) yields that the 
term tends to zero (uniformly in X) as s + 0. 

Since we have assumed that 11 xt I/ < K < CO, and (Al), the fi and uij 
may be assumed to be bounded and continuous. Since, in addition, G, and 
G utuI are bounded on bounded sets and II x, - x Ij + 0 w.p.l., we have 
E~(xJ -+ q(x) as t + 0. Thus, by Lemma 5.1, F(x) E .9(aR). 

THEOREM 5.2. Assume the conditions of Theorem 5.1. except that 

F(x) = 1” h(B) H(X(O), x(0)) de. 
--T (5.3) 

Let h be defined and have a continuous derivative on some open set containing 
[-Y, 01. Let H(or, /3), H,((cu, /3) and HBiB,(q /I) be continuous in 01 and /I The-n 
F(x) E g(AR) and 

&F(X) = q(x) = h(O) f+(O), x(O)) - AC--r) H(x(--r), 40)) 

- j” ho(e) H(x(e), x(o)) de + j” h(e) Lffw), X(o)) de, (5.4) 
--r --T 

where the operator L is defined by (5.1) and acts on H as a function of x(0) only. 
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Proof. As in the proof Theorem 5.1, we appeal to Lemma 5.1 and suppose 
that 11 xt 11 < K < co and (Al)-(A3) hold. Then, for small s, 

f [Jv(%) -F(x)] = 2 s” W)[ff(X(~ + 01, x(s)) - HW), eN1 de 
--T 

E * E-2 
s 

j 
8--r 

h(e - s) f+(e), +)) de - ? j” h(e) f+(e), x(o)) de 
-7. 

(5.5) 
= 

I 
O 5 [h(e - S) fqx(e), X(S)) - h(e) H(x(e), x(o))] de 
--r s 

+ f j: E&(8 - s) fqx(e), X(S)) de - f j::‘” Edh(e - s) f+(e), +))d~. 

The last two terms tend, uniformly in X, to the first two terms of (5.4), resp. 
(In fact the last integral is not random for s < Y). This is easily seen by 
virtue of the boundedness of H (for 11 x II < K < co), the continuity of h 
and Hand (2.10) 

By a straightforward calculation similar to that in the proof of Theorem 5.1, 
it is easy to show that the first terms of (5.5) tends (uniformly in X) to the 
last two terms of (5.4). 

That Ed(q) -+ q(x) also f o 11 ows easily from (2.10), 11 xt 11 ,< K < co, and 
the assumed boundedness and continuity of properties of h, he, H and LH. 

Theorem 5:3 and its corollary are useful extensions of Theorems 5.1 and 5.2. 
Their proof are also straightforward computations and will not be given. 
Loosely speaking, for Theorem 5.3, (see statement of Theorem) 

ARc = lj% G~(F(x)) E, [ F(xS) ; ‘@) ] 

The first and second terms correspond to the first and second terms of (5.6), 
resp. The second term reduces to merely 

lirir $ [j” -4. www% 44) - we% 4m de]’ . G@‘(4). 

THEOREM 5.3. Let G be a twice continuously-differentiable real-valued 
function of a real argument. Assume the conditions of Theorem 5.2. Then 
F,(x) = G(F(s)) E 9(AR) and 

B= ’ 
. I 

I I ’ h(e) h(p) c %,(4% 40)) %,(44 40)) 44 de 4. -r -7 id 
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where the derivatives He, are with respect to the ith component of the second 
vector argument of H(a, /I). 

COROLLARY. Let F”(p) and Fb(a, /3), resp., satisfy the conditions on the 

respective F’s of Theorems 5.1 and 5.2. Then, if G is twice continuously- 
differentiable, F,(x) = G(F”(x) + Fb(x)) E B(aR) and 

The differentiations q’i and Hsi are with respect to the ith component of x(0) 
(the second argument of the second function). 

6. STABILITY THEOREMS 

Various definitions concerning stochastic stability appear in [Z] and [3]. 
In lieu of definitions, we merely concern ourselves with the properties which 
the definitions codify and which appear in the theorems. Theorem 6.1 is a 
generalization of Lemma 1 and Theorems 1, 2 of Kushner [3], Chapter 2, 
where the state space is supposed to be Euclidean. 

THEOREM 6.1. Let xt be a right-continuous strong Markov process on a 

topological state space {C, %Y, S} with weak infinitesimal operator A. Let the 
norm (1 11 generate g. Let the nonnegative continuous real-valued function V(x) 
in g(A). Let Q = {x : V(x) < q} and 1 t e T=inf{t:x,$Q}.Setr=coif 
xt E Q for all t < 0~). Let AV(x) = -k(x) < 0 in Q. Then, for x = x,, E Q, 

(Bl) V(x,,,) = wt is a nonnegative supermartingale, 

032) J=z@up,>,,, V(x,> 2 41 G V’(X)/% 
(B3) V(x,,,) + v  3 0 w.p.1. 

If, in addition, 

(i) k is uniformly continuous on the nonempty open set 

R8 = {X : k(x) < 8) n Q, 

f  or some 8 > 0, and 
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small(if for all suficiently large but jinite Markov times t, and all suficientl’y 

, 

as h + 0, uniformly in t for suficiently large t, and any x E Q. Then 

(B4) k(x,) + 0 w.p.1. (relative to Szo = {W : sup,,,>,, V(X,(W)) < q}). 

Proof. Fix the initial conditions x = x0 EQ. Since V(X) E 9(a) and 
7 n t is a finite-valued Markov time, Dynkins formula [8], Theorem 5.1 
and corollary) gives 

E,V(xtn,) - V(x) = -I& II”‘k(x,) ds < 0. (6.1) 
0 

(6.1) together with fact that V(x) E 9(a) yields that V(qn7) = wt is a non- 
negative supermartingale (see proof of Theorem 12.6 in Dynkin, [S]). Then 

(B2) and (B3) follow immediately as properties of nonnegative super- 
martingales. 

Let 0 < S < 8 and R, = {x : k(x) < S} n Q. Let I,@, W, s) be the 

indicator of the (s, W) set where k 3 6 (for x0 = x) and let j’ I,(& W, s) ds = 
T,(S, t). Then, by the facts that the left side of (6.1) is l%urded below by 
-V(x), and that V(x) > 0, we have I&T&3,0) < L’(x)/& T,(S, t) is the total 
time that xt spends in Q - R, before either t = +oo (if 7 = co) or the first 
exit time fromQ (if 7 < co). Furthermore T&S, t) < 03 w.p.1. and T,(S, t) --+ 0 

w.p.1. as t -+ co. 
Now, min{ll x -y I/ : XER~,~, ~EQ-R~}=E, where E>O by (i). 

Define 9, = {w : xt E Q, all t < a}. P(sZo} > 1 - V(x)/q by (B2). For each 
fixed positive h and y, there is a tJh, y) so that t > t,(h, y) implies 
T&3, t) < T&S/2, t) < h with probability 3 1 - y. Let t,(h, y) be sufficiently 

large and h sufficiently small so that the probability on the left side of (ii) 
is less than y. Suppose that there is a finite Markov time t > t,(h, y) for which 
xt EQ - R, . The probability of the event {xt EQ - R, , xt+= EQ - R,,,} 
for some h > OL > 0 is no greater than y  (relative to Szo). Thus, since 
T,(S, , t) > h with probability 21 - y, we conclude that the probability 

of never leaving R, in [t, CO) goes to 1 (relative to 52,) as t -+ co. Since S is 
arbitrary, we conclude that k(x,) + 0 w.p.1. (relative to Go). Q.E.D. 

An apparent difficulty with the sets {x : V(X) < q} defined in Theorem 6.1 
is that they are not bounded for typical cases (see Section 7, Examples), 
and hence the characterization of the weak infinitesimal operator is much 
harder than the work in Section 5. This is also the situation in the deterministic 
case (as in Hale [d]). However, in our examples (as well as in the deter- 
minstic cases studied (Hale [Jj)), it turns out that if 

x0 = x E {x : V(x) < q} c c, 

505/4/3 -9 
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then there is a constant K independent of x0 so that (/ f, /I (for t > r) and 
/ Z(t)] (for t > 0) are no greater than K. In other words, up until the first 
exit time from {x : V(X) < q}, it will turn out that 1 x(t)1 < K < co. (See 
Section 7) Since any initial x,, E C is bounded, there is no loss in generality 
in supposing that there is a bounded open set B whose radius is KI , 
co > KI > K, so that if x0 EQ E (X : V(x) < q} n B, then )/ zt 1) < KI until 
T = inf{t : ~~$8). B can always be made large enough to include any desired 
initial condition which satisfies x E {x : V(X) < q}. The resulting boundedness, 
besides not appearing to be a serious restriction, enables us to use the results 
of Section 5. 

THEOREM 6.2. Assume (Al), (A2) and (A4). Let V(x) be a continuous 
nonnegative real valued function on C. Suppose that 

(iii) there is a bounded open set B such that 

and supt,8>0 V(x,) < q imply that x, E Q, all 0 < s < t. Let V(x) E .9(&J 
and &V(x) = -k(x) < 0 in Q, and x EQ. Then (Bl)-(B3) hold, and 

P(Q,) 2 1 - Tr(,)lq. If k is uniformly continuous on (R8 = x : k(x) < 8) for 
some 8 > 0, then k(q) -+ 0 w.p.1. (relative to 9,). 

Remark. For V(X) E .9(&), it suffices, by the hypothesis and Lemma 5. I, 
that V(x) E 9(A) h w ere A is the weak infinitesimal operator of any modifi- 
cation of (1.1) with j = f, 6 = g in Q and which has uniformly bounded 
paths (where the bound is at least the outer radius of B). 

Proof. Condition (iii) and Theorem 6.1 imply (Bl)-(B3). To complete 
the proof we have only to show that (ii) of Theorem 6.1 is true. According 
to Lemma 5.1, it suffices to show this under assumptions (Al)-(A3) and with 
the paths 11 xt II < K2 for some finite K, . Condition (ii) is equivalent to 

p~@‘s~,,-r~~o 1 xtt + S + 0) - x(t + e)l > c, xu EQ, u d t} - 0 (6.2) 

as h + 0, uniformly in t for large t, and any E > 0. (6.2) is majorized by 

= sup P,{,F;axo I x(r + B + s) - x(r + 0)l > c for some 0 E [--I, 0]} 
EEQ // 

Ei ggo I xW + 4 - +4l 2 2). (6.3) 
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To complete the proof, we need the evaluation 

E hy;zo I x(t + 4 - ~(91~ 

< K~ (E /I+” If(xs)I A)4 + KS (/I+” El +,)I2 df < W, (6.4) 

where K4 is independent of h, t and x, for x EQ. In (6.4) we used the 
assumption (Lemma 5.1) that the paths 11 xt 11 are bounded (hence If / and 
I cr I are bounded), the first line of (2.3) and Ewi4( T) = 3(Ewie( T))2 [see (2.3)]. 

By (6.4) and Chebyshev’s inequality 

P, hy;:o I x(nh + S) - x(nh)l 3 f/ < 
I 

Em=ha,ao I x(nh + 4 - x(nh)l 
/, w4 

< 16K4h2 K,h2 
1-y--=- 8 

for x E Q. Then each entry of the right-hand sum of (6.3) is bounded by 
K,h2/c4 and hence the sum is bounded by (r + h) K,h/P, which completes 
the proof. 

7. EXAMPLES 

EXAMPLE 1. Let x(t) be scalar and 

dx(t) L -ax(t) dt - bx(t - T) dt + ox(t - /J) dz(t). 

v(x) = x2(0)/2 + a j” x”(e) de + B j-” x2(e) de, 01 3 0, /3 > o. (7.1) 
--7 --P 

Fix q < co, and x0 = x E C. Let ]I x II = K, . Note that if I’(xJ < q for 
all s < t, then x2(s) < 2q for all 0 < s < t, and I] x, I] < max([2q]‘/“, K,) for 
all s < t. Then, any bounded open set B, containing the origin and with 
radius at least max([2q] 112, K,), satisfies the condition on the set B of 
Theorem 6.2. Let Q = { x : V(x) < q} n B. Then V(x) E J@(&) by 
Theorems 5.1 and 5.2, and 

AQ V(x) = x2(0)( --a + cd + 8) - bx(0) X(-T) 

- ax”( -T) - flx”( -p) + g x2(-p). 
(7.2) 

Suppose that there is an OL > 0 and fi > 0 so that the quadratic form (7.2) 
[in x(O), X(--T), x(--p)] is negative definite. Then, by Theorem 6.2 

PzImytyO J+t) 2 !?I G ~Wq. (7.3) 
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Since q is arbitrary, we also have, w.p.1. 

w4 - 73 

44 - 0 
Xt -(x : x(t) = x(t - p) = x(t - T) = 0). 

where W(W) is some random variable. Hence xt + 0 w.p.1. 
For small noise the estimate (7.3) can be improved. Let p = p = 0 for 

ease of computation. Let F(x) = eAy(*), where h > 0. F(x) E G&A,) (for any 
sufficiently large B) and, by the corollary to Theorem 5.3, 

&F(x) = hF(x) &V(x) + fqx, . x2(0) 2 

= W(x) /x”(O) (-u + ; + a + Jg) - &y--7) 

If 

01 
( 
a - p - 7 - a) 3 P/4, 

then F(x) is a Liapunov function, and 

bx(0) x( -91. 

(7.4) 

P5{m~t~o V(x,) > q} = P,{ sup e.‘V(zt) > e”} < e’(V(z)-q). (7.5) 
m>tbO 

Clearly, as X increases, within constraint (7.4), the estimate (7.5) improves. 

EXAMPLE 2. Let 

dx,(t) = x2(t) dt 

dx2(t) = 1 --h(xl(t)) + j” f(O) g(xl(t + 8) - x&N de/ dt + a(-$) W). 
-7 

Suppose that w f 0 implies that h(w) w > 0 and g(w) w > 0 and let 
h(O) = g(0) = a(O) = 0. Letf(B), g(w) and h(w) have continuous derivatives 
and suppose that (Al), (A2) and (A4) hold. Define 

v(x) = x,~(O)/~ + Wx,(O)) + j" f(e) GM@ - x4Y) de (7.6) -7 
where 

H(W) = jw h(h) dA + m as jwl+co 
0 

and 

G(w) = jw g(h) dh. 
0 
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Fix 4 < co and x = x,, E C. Let 1) x/j = K, . Note that if V(zcJ < 4 for 
all s < t, then xs2(s) < 29 and H(x,(s)) < q for all 0 < s < t and hence, 
for 0 < s < t, 

II x, II < m={K, , (29 + max{l x1 I2 : f+,) = q>)‘/“> = Kl . 

Any bounded open set B, with radius at least Kl and which contains the 
origin, satisfies the conditions on the B of Theorem 6.2. Then V(X) E 9?(&) 
and Theorems 5.1 and 5.2 yield 

&V(x) = x2(0) 1 --h(av + jo+f(e) &44 - am de/ 

+ 02(4/2 + h(x,(O)) x,(o) -f(-4 Gh--r) - dO)> 

+ j” f,(e) +,(e) - xl(o)) de - j” f(e) dxde) - 40)) x2(o) de 

(7.7) 

--T --T 

= aw/2 + j" f,(e) we) - do)) de -fw w--r) - 43). -7 
To complete the analysis, in analogy to the method of Hale [4], suppose that 
f(e) > 0, .6(e) G 0 and fd~) < 0 f or some p E [-r, 01, and that for some 
Y > 0, 

Note that, by continuity, f,(e) < 0 for p - /3 < 6’ < p + 01, for some 
LY > 0, b > 0. Then 

&9’(x) G j” f&9 GM@ - x,(O)) de - yf(--y) GM--r) - x,(O)) < 0. 
-T 

Since q is arbitrary, Theorem 6.2 implies that k(x,) -+ 0 w.p.l., and that 
V(x,) converges w.p.1. Eq. (7.8) will be useful in the sequel for it says that 
the paths xt are uniformly bounded with a probability as close to one as 
desired. Note that G(xl(t - Y) - xl(t)) -+ 0 w.p.1. implies that 

q(t - Y) - q(t) -+ 0 w.p.1. 

We now show that x(t) + 0 w.p.1. Since k(x,) + 0 w.p.l., 

s 

-p+a-•E 

G(x,(t + e) - xl(t)) de -+ 0 
--P--B+c 
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w.p.l., for 0 < E < min(ar, /I). Thus, using the positive definiteness of G 
and the boundedness of the paths, 

i 

0 

G(x,(t + 6’) - q(t)) de - 0 
-T 

(7.9) 

I ", I q(t + 0) - x,(t)1 de --+ cl 

w.pJ., as t + 0, for any finite T. Also, using (7.9) and the fact that 
V(xt) -+ W(W) 3 0 w.p.I., we have w.p.1. 

Q(t)/2 + f+,(t)) -+ W(W) 3 0. (7.10) 

Now integrating the defining equations between f - s and s gives 

x&) - xz(t - s) = - j” 4G4) du 
t-s 

+ j:, du j~Tf(e)&& + 4 - XI(U)) de + j:-, 44 44 (7.11) 

xl(t) - x& - s) = j;-, x&) du. (7.12) 

Using (7.9) and the boundedness of the paths, the second term on the right 
of (7.11) goes to zero w.p.1. as t + co for any s > 0. Also, (7.9) and (7.12), 
together with the stochastic continuity of x2(u) (Theorem 2.2), imply that 

m - Xl@ - 4 + 0 w.p.1. for any finite s. Then, using this fact and 
stochastic continuity, (7.10) implies that x2(t) - xs(t - s) -+ 0 w.p.1. The 
latter fact implies, via (7.12), that x2(u) -+ 0 w.p.1. as t + co. Finally, (7.11) 
gives 

- j:-, 4du)) du + j;_, 44 Mu) -+ 0 (7.13) 

w.p.1. Eq. (7.13), together with the fact that x1(u) is asymptotically constant 
over time intervals of fixed length (i.e., x1(t) - xI(t - S) -+ 0 w.p.1. for all 
s > 0 as t -+ co) implies that h(jc,(u)) + 0 w.p.l., and hence that x(t) + 0 
w.p.1. 
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