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Abstract Southern analysis showed that Gr-EXPB1, a func-
tional expansin from the potato cyst nematode Globodera rosto-
chiensis, is member of a multigene family, and EST data suggest
expansins to be present in other plant parasitic nematodes as
well. Homology modeling predicted that Gr-EXPB1 domain 1
(D1) has a flat b-barrel structure with surface-exposed aromatic
rings, whereas the 3D structure of Gr-EXPB1-D2 was remark-
ably similar to plant expansins. Gr-EXPB1 shows highest
sequence similarity to two extracellular proteins from sapro-
phytic soil-inhabiting Actinobacteria, and includes a bacterial
type II carbohydrate-binding module. These results support the
hypothesis that a number of pathogenicity factors of cyst nema-
todes is of procaryotic origin and were acquired by horizontal
gene transfer.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The plant cell wall is a complex composite of cellulose

microfibrils and cross-linking hemicelluloses, which are

embedded in a matrix of pectic polymers and structural glyco-

proteins. To overcome this structural barrier, a wide range of

saprophytic and plant pathogenic bacteria, oomycetes, fungi

and nematodes secrete various types of cell wall-degrading en-

zymes (CWDEs). The compactness of plant cell walls limits the

efficiency of CWDEs. Expansins, a relatively diverse protein

superfamily that is widespread within the plant kingdom, di-

rectly modulate the mechanical properties of the cell wall by

weakening non-covalent interactions. These proteins are sug-

gested to open up this compact structure, making it accessible

to enzymatic attack [1]. As such, expansins could substantially

increase the fitness of CWDE-harboring plant pathogens.
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So far, only a few proteins have been identified among plant

pathogens and saprophytes that remotely resemble expansins,

and for none of these proteins expansin activity was shown

(e.g. [2,3]). Recently, we showed the presence of a functional

expansin in secretions of infective juveniles of the potato cyst

nematode Globodera rostochiensis [4]. Here, we show that Gr-

EXPB1 is member of a multigene family, and present in other

cyst nematode species as well. Remote homology modeling re-

vealed that the predicted 3D structures of Gr-EXPB1 D2 and

plant expansins are similar, even though their primary amino

acid sequences show a relatively low level of homology. The

striking similarity of Gr-EXPB1 to two proteins from sapro-

phytic soil bacteria and its bacterial type carbohydrate-binding

module (CBM) constitute support for the hypothesis that a

number of nematode pathogenicity factors has a procaryotic

origin. The information given in this paper could facilitate

the identification of more expansins outside the plant king-

dom, and – more specifically – among other cell wall-degrading

pro- and eukaryotes.
2. Materials and methods

2.1. Genomic analysis
Primers designed to anneal to the most extreme 5 0- and 3 0-ends of

the cDNA sequence of Gr-EXPB1, gDNA-GrEXPf (GAGCTCCTC-
TGAAGCAATTC) and gDNA-GrEXPr (AACACTGTATAA-
ACCTTTATGCAATT), were used to amplify the corresponding
sequence from genomic DNA isolated from pre-parasitic J2-s as de-
scribed [5]. For Southern blotting, 5 lg of genomic DNA was isolated
from pre-parasitic J2-s as described [6], digested with the restriction en-
zyme EcoRI, separated on an agarose gel and blotted. A DIG-labeled
dUTP cDNA probe was synthesized from the Gr-EXPB1 genomic
DNA clone (nt 1524–1932) using the primers D2f (ATGGTTTATT-
GAAAAATTCGTTG) and D2r (CCTGTCTCGACAAAAGAGT-
CC).

2.2. Antibody production and immuno-assays
Primers GrExp-pBAD-SPf (AGCTCCTCTGAAGCAATTCTG-

TGTTTGTTGTGCC) and GrExp-pBADr (AATAGGTGAGCGTA-
CGCCCGTCGCTTTGCC) were used to amplify the coding region of
the predicted mature protein (nt 39–848 in Gr-EXPB1). The amplified
fragment was cloned into the pBAD/Thio-TOPO vector (Invitrogen,
Leek, The Netherlands). Hens were immunized with purified recombi-
nant protein, and the resulting chicken IgY antibody was isolated from
the eggs as described by [7] and further purified [8]. Western blots of
homogenates and immuno-fluorescence microscopy of pre-parasitic
J2-s were performed as described previously [9].
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Southern blot hybridized with a 409-bp genomic probe derived
from Gr-EXPB1. Lane M is molecular weight marker; Lane E is
loaded with 2.5 lg G. rostochiensis genomic DNA digested by EcoRI.
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2.3. Cell wall extension assay
Recombinant CBM (residues 26–118) was produced in tobacco

using the Gateway-compatible pK2GW7 vector (VIB, Ghent, Bel-
gium) whereas transcription was driven by the 35S CaMV promoter.
Both CBM and Gr-EXPB1 were preceded by the original (nematode)
signal peptide for secretion. Proteins were extracted from mature
leaves by grinding in liquid nitrogen and re-suspending in 50 mM so-
dium acetate pH 4.5. After centrifugation, the protein concentration
of the supernatant was adjusted to approximately 150 lg/ml and used
in an extensometer assay [10].

2.4. 3D structure of Gr-Exp1 EXPB1 based on homology modeling
Template identification was performed using 3D-PSSM [11]. Target

and template sequences were aligned by using MULTALIN [12], and
the output was optimized manually. Based on the CASP4 assessment
[13], PHD, PsiPred, Prof and SSPRO [14–17] were used to produce
the secondary structure profile of the target. Model building, refine-
ment and analysis were performed using the following Accelrys (Accel-
rys, San Diego, CA) programs: Insight II, Discover, Homology,
Delphy and Affinity.
3. Results

3.1. Analysing cDNA and genomic sequences of Gr-EXPB1

The nematode expansin Gr-EXPB1 contained two distinct

domains: domain 1 (D1: residues 26–118) showed significant

similarity with carbohydrate-binding module family II

(CBM2), and domain 2 (D2: residues 150–271), the actual

expansin [4]. Besides being similar to plant expansins and

expansin-like proteins, D2 was even more similar to a hypo-

thetical protein from the Amycolatopsis mediterranei

(AJ319869 – orfD [18]; 35% identity, E-value = 8.2e�12) and

a predicted open reading frame ORF11 from Streptomyces lav-

endulae (AF127374 [19]; 36% identity, E-value = 1.2e�10). Both

are aerial mycelium-forming soil saprophytes belonging to the

order Actinomycetales (phylum Actinobacteria). Another

remarkable homology was found between Gr-EXPB1 and

MAP-1 (Meloidogyne avirulence protein) from the root knot

nematode Meloidogyne incognita (AJ278663 [20]; 35% identity,

E-value = 2.1e�10). orfD, ORF-11 and map-1 are predicted to

encode extracellular proteins with unknown functions.

To confirm the eukaryotic origin of Gr-EXPB1, we investi-

gated its genomic sequence. A single fragment of 2.4 kb

(AJ556781) was amplified from genomic DNA ofG. rostochien-

sis. Six introns (with length ranging from 57 to 412 bp) were

present in theGr-EXPB1. The interspersion of the expansin gene

by introns and the presence of a poly-A tail in the corresponding

mRNA (AJ311901) exclude a procaryotic origin of Gr-EXPB1.

3.2. Multiple expansin-like sequences in cyst nematodes

A Southern blot analysis of G. rostochiensis genomic DNA

probed with a D2 fragment showed five bands, suggesting

the presence of several expansin-related sequences in the gen-

ome of G. rostochiensis (Fig. 1).

The presence of D2-like sequences in G. rostochiensis EST

databases confirmed this finding as exemplified by

CAC84564 – a hypothetical protein translated from

AJ311902 – showing 75% identity with Gr-EXPB1-D2.

CAC84564 is preceded by a signal peptide for secretion and

lacks a carbohydrate-binding module. Searching soybean cyst

nematode EST databases revealed BF014507 (519 bp) with

82% identity to Gr-EXPB1. A local alignment of the three

nematode sequences with a plant b-expansin and a plant b-
expansin-like protein indicated the presence of a series of
conserved cysteine residues and an additional number of con-

served motifs previously described as signature motifs for a-
and b-expansins (Fig. 2) [21].

3.3. Localization of Gr-EXPB1 protein

The polyclonal antibody against Gr-EXPB1 specifically

bound to a band of about 28 kDa on Western blots of homog-

enates of G. rostochiensis J2-s (Fig. 3A). This size is in broad

agreement with the calculated molecular mass of the predicted

protein once post-translational modifications have been al-

lowed for. In a dot-blot experiment, Gr-EXPB1 was shown

to be present in concentrated secretions of potato root diffu-

sate-induced secretions from pre-parasitic J2-s (Fig. 3B). Im-

muno-fluorescence microscopy revealed distinct binding of

this antibody to the subventral esophageal glands of pre-para-

sitic J2-s. Gr-EXPB1 protein was detected in the subventral

gland lobe and in the extensions (Fig. 3C). Unlike MAP-1

[20], Gr-EXPB1 was not detected in the amphidial region of

infective J2-s.

3.4. Expansin activity assay of CBM

Protein samples extracted from plants transformed with

empty vector, CBM or Gr-EXPB1 were analyzed on a SDS–

PAGE gel. As compared with samples from empty vector con-

trols, an additional band corresponding to the molecular

weight of either CBM or Gr-EXPB1 was detected (Fig. 4). Pro-

teins extracted from transgenic tobacco harboring Gr-EXPB1

showed a significant increase in expansin activity as compared

to the empty vector control (Fig. 5). Gr-EXPB1 consists of an

expansin domain and a CBM. CBMs may also induce disrup-

tions of non-covalent interactions between plant cell wall car-

bohydrate polymers [22]. Therefore, it could be argued that the

CBM domain in Gr-EXPB1 is responsible for the cell wall-

loosening activity observed in the extensometer assays. How-

ever, the activity in transgenic tobacco solely expressing the

CBM was not significantly different from the empty vector

controls (Fig. 5).

3.5. The 3D structure of Gr-EXPB1 based on remote homology

modeling

Domain 1. The xylan-binding domain from Cellulomonas

fimi xylanase D (PDB code 1xbd) was identified by 3D-PSSM



Fig. 2. Alignment of the expansin domain (D2) of Gr-EXPB1 (CAC83611) with domain 1 of PPAL: a pistil-specific b-expansin-like protein from
Nicotiana tabacum (AAG52887), At-EXPB2: a putative b-expansin from Arabidopsis thaliana (Q9SHY6), GrEXPB2: a hypothetical protein
translated from G. rostochiensis (AJ311902, CAC84564) and Hg-EXPB1: a conceptually translated mRNA sequence from Heterodera glycines
(BF014507). Cons. [21]: conserved residues between a- and b-expansins as proposed in [21]. * – identical residues in all five proteins (in black boxes); :
– conserved substitutions (in gray boxes); . – semi-conserved substitutions; fl – conserved cysteine residues.

Fig. 3. (A) Detection of Gr-EXPB1 in J2 homogenate on Western blot probed with anti-Gr-EXPB1 IgY antibody (diluted 100 times). 1: Potato root
diffusate (PRD)-exposed pre-parasitic J2-s, 2: pre-parasitic J2s, not exposed to PRD; M: molecular weight marker. (B) Dot blot of concentrated
natural secretions from nematode J2-s incubated in PRD. Left panel (1) is probed with anti-GR-EXP1 IgY antibody; right panel (2) is probed with
pre-immune IgY. (C) Immuno-fluorescence labeling of the subventral gland with IgY antibody against GR-EXPB1. Arrows point at the subventral
glands (S) and the metacorpus (M), respectively. Scale bar = 20 lm.

Fig. 4. (A) Coomassie Brilliant Blue-stained SDS–PAGE gel showing expression of Gr-EXPB1 in tobacco plants (lanes 3–7) and two empty vector
control lines (lanes 1 and 2). (B) Expression of CBM in tobacco (lanes 3–7) and two empty vector control lines (lanes 1 and 2); M, marker lane;
relevant products are indicated with an arrow.

U. Kudla et al. / FEBS Letters 579 (2005) 2451–2457 2453
as the closest template for Gr-EXPB1 – D1 (E-value < 0.005;

18% identity). The target-template alignment was optimized

by incorporating secondary structure information and locking
the sequence motifs emerged from a PRODOM database anal-

ysis. The consensus secondary structure prediction indicated

an all-b pattern. Uncertainties in the alignment due to a 2 aa
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Fig. 5. Effect of tobacco-produced recombinant CBM on the exten-
sion rate of wheat coleoptiles. Mature leaf material was collected from
two empty vector control lines (Empty), from three independent CBM-
harboring lines and from four independent Gr-EXPB1-lines. For each
of the lines, expansin activity was calculated as the difference in
extension rates before and after addition of the extract (% increase in
length per hour), and activity measurements were done in quadrupli-
cate. Results are given as means with standard errors.

Fig. 6. (A) Target-template sequence alignment of Gr-EXPB1 domain 1 a
glycanase (AAB34464). The 1XBD_SS line shows the secondary structure
alignment was refined by incorporation of the secondary structure informat
SSpro, Prof, PSIPRED and PHD. (A1) Alignment preserving the position o
loop between the first b-strand and the first b-bridge (Model 2). (A3) Alig
domains with different insertion lengths between the first b-strand and the firs
Cellulomonas fimi (P07986; aa 375–484). Q9UA57: b-1,4-endoglucanase fro
alignment of Gr-EXPB1 – domain 2 and the N-terminal domain of 1n10, pol
secondary structure elements derived from 1n10. Straight brackets represent
in the model is indicated by a dotted line. Sequence motifs in expansin fa
Conserved residues are highlighted in yellow, similar residues are highlighted
1xbd) are highlighted gray. Trp-s binding the ligand are outlined in purple
S = bend; T = turn; R = random.
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insertion between the first extended b-strand and the first Trp

involved in ligand binding prompted us to generate two alter-

native models (Fig. 6A1 and A2). Both models have the b-bar-
rel structure with aromatic amino acids displayed on the flat

surface of CBM2s [23]. Model 1 (Fig. 7, left) preserves a

18.7 Å distance between the two Trp-s involved in ligand-bind-

ing – typical for the two crystallized members of PD001333 –

by introducing a 3aa loop between the first b-strand and the

following b-bridge. This causes an increase in the local flexibil-

ity as compared to the other PD001333 structures that show

either continuous b-strand or 1 b-bulge in this region (see

Fig. 6A3). It is interesting to note that even longer insertions

in the region are present in CBMs from the PD029472 family,

suggesting that sequence variability in this region does not af-

fect ligand binding. However, no CBM 3D-structures from the

PD029472 family are available. Model 2 (Fig. 7, right) elimi-

nates the 3aa loop by allowing the first b-strand to extend all
nd 1XBD, the xylan-binding domain of Cellulomonas fimi exo-1,4-b-
elements derived from the determined 3D structure of 1XBD. The
ion of Gr-EXPB1 – domain 1 as predicted by four different methods:
f Trp residues (Model 1); (A2) Alignment preserving the length of the
nment of Gr-EXPB1 – domain 1 with various carbohydrate-binding
t Trp. PD#: PRODOM entries. 1EXH: cellulose-binding domain from
m Meloidogyne incognita (aa 406–422). (B) Target-template sequence
len allergen phl p 1 from Phleum pratense. The 1n10_SS line shows the
predicted disulfide bridges. The template disulfide bridge not conserved
mily (conserved also in Gr-EXPB1 – domain 2) are outlined in red.
in green. Residues affecting the orientation of Trp side-chain (Arg in
box. B = b bridge; C = coil; E = b strand; G = 310 helix; H = a helix;



Fig. 7. (A) Ribbon diagrams of the overall fold for template viz. 1XBD (up), Gr-EXPB1 – domain 1, Model 1 (left) and Model 2 (right). The b-
strands are colored yellow; the turns are colored blue and random regions are colored green. Two Trp residues involved in glycan binding are shown
in magenta, all atoms. (B) Overall fold of Gr-EXPB1 – domain 2. The helices are red cylinders; Cys residues forming disulfide bridges are shown in
magenta, all atoms.
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along to the first Trp involved in ligand binding. Thus, a

more stable local structure is formed, but the distance between

the two Trp-s involved in recognition increases by �5–6 Å,

which may result in a different carbohydrate polymer binding

specificity.

Domain 2. The N-terminal domain of pollen allergen phl p1

from Phleum pratense (PDB 1N10) ranked first in searching for

Gr-EXPB1-D2 templates (E-value = 3.18e�6 and 20% iden-

tity). Other putative, lower ranked templates such as Barwin

lectin (E-value = 1.57e�1 and 14% identity) significantly differ

in the arrangement of local patterns. The conserved motifs be-

tween plant expansin domain 1 and Gr-EXPB1-D2 are pre-

sented in Fig. 6B, shaded in red boxes. Two out of the three

disulfide bridges of the template are conserved in the target;

the third is not present in Gr-EXPB1-D2. It is replaced by an-

other disulfide bridge that emerges naturally from the sequence

to 3D structure alignment confirming that the model is pre-

sumably close to the real structure. The core structure of

Gr-EXPB1-D2 is very similar to the first domain of plant

expansins, and differences are located only in three loops of

the protein.
4. Discussion

Gr-EXPB1, a functional expansin from the potato cyst

nematode G. rostochiensis [4], consists of a bacterial type

(II) CBM with an expansin domain that is more similar to

two hypothetical proteins from the aerial mycelium-forming

soil bacteria A. mediterranei and S. lavendulae than to plant

expansins. It remains to be shown whether these members of

the Actinomycetales produce functional expansins, but this

finding could point at expansins or expansin-like proteins

among procaryotes. Previously, nematode CWDEs such as

b-1,4-endoglucanases [24] and polygalacturonases [25] were

shown to be remarkably similar to their procaryotic and

not to their eukaryotic equivalents. Here, the eukaryotic ori-

gin of Gr-EXPB1 is confirmed by the presence of a polyA

tail and introns, and our results support the hypothesis that

nematode pathogenicity factors related to plant invasion

were acquired from bacteria as a result of horizontal gene

transfer [26]. Southern blot analysis revealed that Gr-EXPB1

is presumably member of a small gene family, and this result

was confirmed by the finding of another expansin-like cDNA
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fragment in a potato cyst nematode EST database. Searches

in EST databases from other cyst nematode species suggest

that the presence of functional expansins is unlikely to be

exceptional.

The nematode expansin Gr-EXPB1 showed higher similarity

with b-expansins than with b-expansins, and displayed higher

cell wall expansion activity on type II primary cell walls [4].

As compared to a-expansins, b-expansins are known to be less

effective on type I primary cell walls (typical for dicots and non-

grass monocots). Nevertheless, b-expansins have been identified
in a range of dicotyledons [21]. So far, the function of b-expan-
sins in dicotyledons is not known. Hosts of potato cyst nema-

todes invariably have type I primary cell walls, and it is at

first sight surprising that potato cyst nematodes produce an

expansin with apparently a limited impact on type I cell walls.

Remote homology modeling was used to further charac-

terize the two Gr-EXPB1 domains. D1 belongs to the

mainly procaryotic CBM 2 family containing members that

bind either crystalline cellulose (CBM2a) or xylan (CBM2b).

Carbohydrate binding consists of face-to-face hydrophobic

stacking interactions between the surface-exposed aromatic

rings in the CBM and the non-polar faces of sugar rings

in the polysaccharides. The closest template of Gr-EXP1-

D1 is an active xylan-binding domain from C. fimi xylanase

D [27] and the presence of only two (and not three) Trp-s at

the binding site (Trp11 and Trp49) points at a high affinity

for xylan [28]. However, the presence of Gly (instead of

Arg) after the first Trp (Fig. 5A3) was shown to favor cel-

lulose binding [28]. Further studies are therefore needed to

determine the natural ligand and to discriminate between

the two models proposed for D1. The similarities between

Gr-EXPB1-D2 and the GH45-like domain (SCOP 50685)

of plant expansins indicate a comparable mechanism for

loosening hydrogen bonds. More study is needed to reveal

which part of the structure is crucial for this unique activity

and why the two domains of Gr-EXPB1 are swapped as

compared to plant expansins.

It is concluded that the presence of a functional expansin in

the potato cyst nematode G. rostochiensis is unlikely to be

exceptional among plant parasitic nematodes. Moreover, the

remarkable similarity of two putatively extracellular (both

ORFD and ORF11 include a predicted signal peptide for

secretion) bacterial proteins with Gr-EXPB1 suggests that pro-

duction of expansin is not necessarily bound to eukaryotes. It

would be interesting to test whether saprophytic soil-bound

Actinomycetales use expansins for the degradation of plant

material.
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