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a b s t r a c t

Radial basis function interpolation involves two stages. The first is fitting, solving a
linear system corresponding to the interpolation conditions. The second is evaluation.
The systems occurring in fitting problems are often very ill-conditioned. Changing the
basis in which the radial basis function space is expressed can greatly improve the
conditioning of these systems resulting in improved accuracy, and in the case of iterative
methods, improved speed, of solution. The change of basis can also improve the accuracy of
evaluation by reducing loss of significance errors. In this paper new bases for the relevant
space of approximants, and associated preconditioning schemes are developed which
are based on Floater’s mean value coordinates. Positivity results and scale independence
results are shown for schemes of a general type. Numerical results show that the
given preconditioning scheme usually improves conditioning of polyharmonic spline and
multiquadric interpolation problems in R2 and R3 by several orders of magnitude. The
theory indicates that using the new basis elements (evaluated indirectly) for both fitting
and evaluationwill reduce loss of significance errors on evaluation. Numerical experiments
confirm this showing that such an approach can improve overall accuracy by several
significant figures.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Radial basis function interpolation involves two stages. The first is fitting, solving a linear system corresponding to
the interpolation conditions. The second is evaluation. In this paper we introduce new bases for radial basis interpolation
problemwhich lead to a computationally inexpensivemethod for preconditioning the linear systems associatedwith fitting.
The new basis, when evaluated indirectly, also greatly improves the accuracy of evaluation of the fitted RBF (radial basis
function). We also explore positivity properties of the basis.

Radial basis functions have enjoyed great success in a wide variety of data fitting applications such as surface modelling
from point clouds, custom manufacture of artificial limbs, ore grade estimation, and flow modelling. They are particularly
advantageous when the data is scattered rather than gridded, the former situation occurring frequently with geophysical
data. Unfortunately, as is well known, the matrix of the usual formulation of radial basis function interpolation problems
in terms of the natural basis is frequently badly conditioned, even when the number of nodes is small. Indeed many
authors have commented on the numerical difficulties that solving this system presents [1–5]. In this paper we develop
a computationally inexpensive change of basis based on Floater’s mean value coordinates. In the planar case forming the
differences underlying the change of basis requires only O(N logN) operations, where N is the number of interpolation
nodes. This leads naturally to an inexpensive preconditioning method for the interpolation system.
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A radial basis function (RBF) with centres X = {x1, x2, . . . , xN} is a function of the form

s(·) =

N−
i=1

λiΦ(· − xi) + c1p1(·) + · · · + cℓpℓ(·), (1)

where Φ is a fixed, usually radial, function and {p1, . . . , pℓ} is a basis for πd
k−1. Often the side conditions

N−
i=1

λiq(xi) = 0, for all q ∈ πd
k−1, (2)

are imposed. These can be viewed either as taking away the extra degrees of freedom created by the polynomial part in (1),
or alternatively of enforcing some decay near infinity.

Given a set of data values {f1, . . . , fN} corresponding to the centres X, the interpolation problem is to find a function of
the form (1) satisfying the side conditions (2) and the interpolation conditions

s(xi) = fi, 1 ≤ i ≤ N.

Thus, the standard (pointwise) interpolation problem can be written in matrix form as[
A P
PT Oℓ

] [
λ
c

]
=

[
f
0

]
, (3)

where 0ℓ is the ℓ × ℓ zero matrix,

Aij = Φ(xi − xj), Pij = pj(xi), (4)

and f = [f1, . . . , fN ]
T .

We will need the following definitions.

Definition 1.1. A set of linear functionals µi, 1 ≤ i ≤ mwill be called unisolvent for πd
k−1 if

q ∈ πd
k−1 and µj(q) = 0 for all 1 ≤ j ≤ m implies q is the zero polynomial.

A set of points X is said to be unisolvent for πd
k−1 when the corresponding set of point evaluations has this property.

Definition 1.2. A continuous function Φ : Rd
→ R will be called (pointwise) conditionally positive definite of order k on

Rd if

(i) Φ is even.
(ii) For all choices of a positive integer N and of a set X of N distinct points in Rd, the quadratic form λTAλ is nonnegative

for all vectors λ such that
N−
j=1

λjq(xj) = 0, for all q ∈ πd
k−1. (5)

Φ is called strictly conditionally positive definite of order k if the inequality above is strict whenever λ ≠ 0.

It is well known that the matrix

AΦ =

[
A P
PT O

]
(6)

of the usual formulation (3) of the interpolation problem is invertible when Φ is strictly conditionally positive (negative)
definite of order k, and the points X are unisolvent for πd

k−1.
The paper is arranged as follows. In Section 2 a general framework for preconditioning based upon a complete set of

differences is set out. In Section 3 the framework is applied in the example case of natural cubic spline interpolation in
R1. In Section 4 some positivity and decay properties of basis functions Ψj generated by difference preconditioning are
discussed. In Section 5 scale independence properties of the preconditioned problem are shown. In Section 6 the specifics
of a difference preconditioner based on mean value coordinates are presented. In Section 7 numerical results related to the
condition numbers seenwhen themethod is applied to random sets of centres are presented. Finally, in Section 8we present
both theory and numerics showing that the new basis significantly improves accuracy in the combination of fitting and
evaluation. A key idea in this section is to evaluate the new basis elements indirectly, rather than directly via the Φ(·−xj)’s.

2. A general framework for preconditioning

In this section we consider a general framework for preconditioning RBF interpolation problems based on a strictly
conditionally positive definite Φ .
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We write ℓ for dim(πd
k−1) and assume throughout the rest of the paper X is unisolvent for πd

k−1. This unisolvency is a
necessary and sufficient condition for the matrix P occurring in the usual formulation of RBF interpolation to have full rank.

We will precondition using matrices Q whose columns correspond to difference functionals. The difference functionals
are somewhat hidden in the previousworks [6,7] but emphasizing themmakesmany arguments to followmore transparent.

Definition 2.1. A functional ∆j with form

∆jg =

N−
i=1

qijg(xi), for all g : Rd
→ R, (7)

for some constants {qij}, will be called a difference functional (based on nodes X).

Definition 2.2. Let ℓ = dim(πd
k−1). A set G = {∆1, . . . , ∆N−ℓ}, of difference functionals will be called a k-complete set of

difference functionals if
(1) Each functional ∆j in the set annihilates πd

k−1.
(2) The set of difference functionalsG has full rank in the sense that theN×(N−ℓ)matrixQ with jth column the coefficients

of the difference functional ∆j has rank N − ℓ.

Remark 2.1. A consequence of the definition is that the columns of Q form a basis for the orthogonal complement of the
column space of the matrix P , with Pij = pj(xi), occurring in the usual formulation of RBF interpolation.

Then with A defined as in (4) AQ is the matrix with rj entry
N−
i=1

Φ(xr − xi)qij = ∆
y
j Φ (xr − y) ,

where the notation ∆
y
j indicates the functional ∆j operating on the y variable. Now B = Q TAQ has ij entry

Bij =

N−
r=1

qri(AQ )rj = ∆x
i ∆

y
j Φ (x − y) . (8)

The general framework for preconditioning takes the form
Outline algorithm:

Given a setX = {x1, . . . , xN} of points inRd unisolvent for πd
k−1 and a functionΦ which is strictly conditionally positive

definite of order k
Step 1: Choose, or construct, a k-complete set of difference functionals {∆1, . . . , ∆N−ℓ}.
Step 2: Letting λ = Qµ and premultiplying (3) by Q T gives the new symmetric positive definite system which could be
solved for µ, or equivalently λ,

Bµ = Q T f where B = Q TAQ . (9)

Here B is positive definite since, for µ ≠ 0,
µTBµ = µTQ TAQµ = λTAλ > 0,

where in the last step we have used that λ ≠ 0, that PTλ =

PTQ


µ = 0, and the strict conditional positive definiteness

of Φ .
Step 3: Equilibrate, that is performdiagonal scaling on B by lettingD be the (N−ℓ)×(N−ℓ) diagonalmatrixwithDii = 1/Bii.
SetQ = QD1/2 and

S = D1/2BD1/2
= Q TAQ .

Step 4: Solve for λ by first solving Sµ = Q T f for µ. Then set λ = Qµ.
Step 5: Find the ℓ polynomial coefficients by choosing c1, . . . , cℓ so that

s(x) = c1p1 + · · · + cℓpℓ +

N−
j=1

λjΦ(x − xj),

interpolates to f at any ℓ points from X which are unisolvent for πd
k−1. This involves solving an ℓ × ℓ linear system. This

procedure is possible since f − Aλ is in the column space of P , that isQ⊥, asQ T (f − Aλ) = Q T f −Q TAQµ = 0.
Different preconditioners of this overall form have been previously explored for example in [1,8].
Within the construction we can view the functions

Ψi(·) = ∆
y
i Φ(· − y), 1 ≤ i ≤ N − ℓ,
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as part of a new, hopefully better, basis for the space fromwhich RBF interpolants will be drawn. The basis will be completed
by adding the ℓ elements of some basis for the polynomials. The Ψ functions already satisfy the constraints (2), whereas for
k > 0 the functions Φ(· − xi) do not and hence the Φ(· − xi) functions do not even belong to the RBF space.

The choice remaining within the macro algorithm is the particulars of the construction of the difference functionals. In
order for any scheme to be practical the differences should be reasonably cheap to construct. The schemes to be presented
meet this criteria. For example basing the scheme on a Delaunay triangulation forming the differences will take only
O(N logN) operations in the planar case. Further, in our view, the differences should be as local as possible. A motivation
for this being the results of the next two sections which show that local support of the difference ∆i leads to approximate
locality in the corresponding new basis elements Ψi.

3. Example: cubic splines in one dimension

In this section we apply the macro algorithm of the previous section to natural cubic spline interpolation, viewed as RBF
interpolation with Φ(x) = |x|3. We will see that this preconditioning method is very successful on this example.

In one dimension cubic spline interpolation can be viewed as RBF interpolation built upon the basic functionΦ(x) = |x|3,
a strictly conditionally positive definite function of order 2. Viewed this way the natural cubic spline interpolant based upon
points x1 < x2 < · · · < xN is an interpolant of the form

s = q1 +

N−
j=1

ajΦ(· − xj),

where q1 ∈ π1 and the weights satisfy the constraints
N−
j=1

aj =

N−
j=1

ajxj = 0.

The interpolation problem posed this way in terms of the bad basiswill have matrix of form (3), where the matrix Awill be
full. Thus the expression of the problems in the natural way in terms ofΦ functions is verymuch suboptimal. It is essentially
the same as expressing the spline in terms of the powers and truncated powers. This truncated power expression can be
useful for theory. However, expressing the problem in terms of B-splines is vastly superior for computations in that it yields
a tridiagonal systemwith bounded condition number. The preconditioning scheme described in the previous section greatly
improves the RBFmatrix system for the cubic spline problem yielding a tridiagonal systemwith bounded condition number.

In the cubic spline case we take ∆j as a second divided difference

[xj, xj+1, xj+2]g =
g(xj+2)

(xj+2 − xj)(xj+2 − xj+1)
+

g(xj)
(xj+2 − xj)(xj+1 − xj)

−
g(xj+1)

(xj+2 − xj+1)(xj+1 − xj)
, 1 ≤ j ≤ N − 2.

Thus qj,j, qj+1,j, qj+2,j are the only nonzero entries in the jth column of the N × (N − 2) matrix Q . Hence, Q is zero above its
main diagonal and if bt is the first nonzero entry in the N − 2 vector b then

(Qb)t = qt,tbt ≠ 0.

Consequently Q has full rank. Therefore applying the analysis of the previous section the matrix B = Q TAQ is symmetric
positive definite. In this case

Bij = [xi, xi+1, xi+2]
x
[xj, xj+1, xj+2]

yΦ(x − y).

But a suitably normalized linear B-spline, Mi, nonzero on (xi, xi+2), is the Peano kernel of the second divided difference.
Therefore for x ≥ xj+2

[xj, xj+1, xj+2]
yΦ(x − y) =

∫ xj+2

xj
Mj(y)Φ ′′(x − y) dy

=

∫ xj+2

xj
Mj(y)6(x − y) dy = αjx + βj.

Hence for i ≥ j + 2, Bij = [xi, xi+1, xi+2]

αjx + βj


= 0. Similar arguments show Bij = 0 for i ≤ j − 2. It follows that B, and

its equilibrated form S, are tridiagonal.

4. Some positivity and decay properties

In this section we explore positivity properties of the new basis. These go together with decay properties arising from
the differencing. Throughout | · | means the 2-norm.



438 R.K. Beatson et al. / Journal of Computational and Applied Mathematics 236 (2011) 434–446

Lemma 4.1. Let φ ∈ C[0, ∞) be convex and nondecreasing. Then Φ(x) = φ(|x|) is a convex function from Rd into R.

Proof. For x, y ∈ Rd, and 0 ≤ t ≤ 1

Φ ((1 − t)x + ty) = φ(|(1 − t)x + ty|)
≤ φ ((1 − t)|x| + t|y|) ,

where in the last step we have used the triangle inequality and that φ is nondecreasing. Then applying the convexity of φ

Φ ((1 − t)x + ty) ≤ (1 − t)φ(|x|) + tφ(|y|)
= (1 − t)Φ(x) + tΦ(y).

Hence Φ is convex. �

Lemma 4.1 implies that the generalized multiquadric Φ(x) = (|x|2 + c2)β is convex for β ≥ 1/2.
In what follows H(A) denotes the convex hull of the set A.
The lemma below shows that combining shifts of a convex basic function Φ with a certain type of difference functional

leads to a nonnegative function Ψ .

Lemma 4.2 (Positivity and Approximate Laplacians). Suppose x0 ∈ H ({x1, . . . , xs}) ⊂ Rd. Further suppose

θi ≥ 0 for all i,
s−

i=1

θi = 1, and x0 =

s−
i=1

θixi.

Let Φ : Rd
→ R be convex. Define

Ψ (x) = △
y Φ(x − y) :=


s−

i=1

θiΦ(x − xi)


− Φ(x − x0).

Then Ψ (x) ≥ 0 for all x.

Proof. The lemma is an immediate consequence of Jensen’s inequality. More explicitly, from the hypotheses

x − x0 =

s−
j=1

θj

x − xj


, for all x.

Then defining yj = x − xj the convexity of Φ implies

Φ


s−

j=1

θjyj


≤

s−
j=1

θjΦ(yj). �

The positivity of the Ψ function can be seen in Fig. 1.
The combinations in the lemma above can be viewed as difference functionals ∆j =

∑N
t=0 qtjδxt applied to Φ(x − y)

viewed as a function of y. These functionals annihilate p(y) whenever p is a linear polynomial. Thus they are in a sense
generalized second differences. Recalling that second derivatives applied to homogeneous functions lower the asymptotic
rate of growth by 2 we expect these generalized differences to do the same. Proofs can be based on far field expansions
where the difference will usually annihilate the first few coefficients when terms are grouped in decreasing order of growth
at infinity. Thus, for the ordinary multiquadric nonzero differences annihilating πd

1 will give a Ψj(|x|) of growth O(|x|−1)
at infinity, and for the ordinary thin-plate spline will give a Ψj(x) of growth O(| log x|) at infinity. One can clearly see the
O(|x|−1) growth in Fig. 1(b) above. The corresponding figure for the ordinary thin-plate spline, Fig. 2, shows slow growth in
|Ψ (x)| for large |x|, far slower than the O(|x|2 log |x|) growth of Φ(x − xi). These decay phenomena were discussed in [7].
They were rediscovered in [9].

The combinations discussed above lead to collections of functions Ψi that decay much faster at infinity than the original
functionsΦj(x) = Φ(x−xj)did. For themultiquadrics these functionsΨi are evennonnegative. InR1 the decay is sometimes
even fast enough so that {Ψi} forms a partition of unity; see [10]. Unfortunately in Rd with d > 1 and scattered data things
are more difficult and the decay is usually insufficient to form infinite partitions of unity.

The use of these basis elements in preconditioning is discussed in the sections below. To gain full benefit from them loss
of significance errors upon evaluation must be reduced by evaluating them indirectly, rather than directly in terms of the
Φ(· − xj)’s (see Section 8).

5. Scalability

In this sectionwe show that for certain functionsΦ , including the polyharmonic splines, the preconditioned interpolation
matrix S = Q TAS produced by any interpolation scheme of the type described in Section 2 is independent of the scale.
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Fig. 1. Two views of a Ψ -element formed by combining shifts of the ordinary multiquadric. Note the nonnegativity and the O(|x|−1) decay at infinity.

Fig. 2. Two views of a Ψ -element formed by combining shifts of the ordinary TPS basic function |x|2 log |x|. Note the slow growth in |Ψ (x)| as |x| → ∞.

Consequently its condition number, and the relative spread of its eigenvalues, are also scale independent. This is a very
desirable property for applications, where the units used should not impact the quality of the final fit.

The Beppo–Levi space BLk(Rd) is the space of all functions f such that for each multiindex α with |α| = k, the
distributional derivative Dαf ∈ L2(Rd). The solution of the polyharmonic spline interpolation problem can be characterized
as the unique solution of the variational problem.

Problem 5.1. Given nodes X unisolvent for πd
k−1 and function values {f1, . . . , fN} find a function sh in the Beppo–Levi space

BLk(Rd) minimizing

E(g) =

−
|α|=k


k
α

∫
Rd


Dαg

2 dx,
over all functions g ∈ BLk(Rd) which take the values {f1, . . . , fN} at the points of hX.

It is clear from this formulation that the solution is independent of the scale. That is the solution sh for nodes hX, and the
solution s1 for nodes X, transform into each other simply by scaling the domain. More precisely, s1(·) = sh(h·).

Unfortunately, the usual formulation (3) used for numerically fitting interpolatory polyharmonic splines does not share
this desirable scale independence. Indeed the condition number of the matrix involved in fitting the RBF can vary wildly
under uniform scaling; see e.g. Table 2 of [8]. It is important to avoid such scale dependent bad conditioning for fitting
methods such as domain decomposition (see e.g. [8]) and the two-stage method (see e.g. [11]) where solutions to systems
on many different scales are required. In contrast the method presented in Section 2 is scale independent when applied to
polyharmonic splines, as will be shown in Corollary 5.6.

Lemma 5.2. Let X = {x1, . . . , xN} be unisolvent with respect to πd
k−1. Suppose the difference functionals ∆i and ∆j of

form (7) annihilate πd
k−1. Define T : C(Rd) → R by

Tg = ∆x
i ∆

y
j g(x − y). (10)

Then T annihilates πd
2k−1.

Proof. Consider pα(x) = xα, where x ∈ Rd and α ∈ Zd
+
with |α| < 2k. From the Binomial Theorem we have, for some

numbers aα ,
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pα(x − y) =

−
0≤β≤α

aβxα−βyβ
=

−
0≤β≤α

aβpα−β(x)pβ(y), x, y ∈ Rd.

Therefore

T pα = T

 −
0≤β≤α

aβpα−β(x)pβ(y)


=

−
0≤β≤α

aβ


∆x

i pα−β(x)
 

∆
y
j pβ(y)


.

From the hypothesis, and because either |α − β| ≤ k − 1 or |β| ≤ k − 1, either ∆ipα−β or ∆jpβ is zero. Hence Tpα is zero.
The result follows since {pα : 0 ≤ |α| < 2k} is a basis for πd

2k−1. �

Theorem 5.3. Let the continuous even function Φ : Rd
→ R be such that Φ(hx) = hγ Φ(x) + ph(x) for all h > 0 and x ∈ Rd,

where γ ∈ R and ph ∈ πd
2k−1. Let X = {x1, . . . , xN} be a unisolvent set of points with respect to πd

k−1 and let ∆i, ∆j be as
in Lemma 5.2. Define differences for the scale h > 0 by

∆j,hg = σ(h)∆x
j g(h·), 1 ≤ j ≤ N − ℓ,

where σ(h) ≠ 0. Define the functional ThΦ by

ThΦ = ∆x
i,h∆

y
j,hΦ(x − y) = σ(h)2∆x

i ∆
y
j Φ(hx − hy),

and write T for T1. Then for h > 0, ThΦ = σ(h)2hγ TΦ .

Remark 5.4. The differences ∆i,h operate on function values at the points hX rather than function values at the points X.
The weights of these differences are scaled by some nonzero quantity σ(h). It will be seen that the diagonal scaling means
the exact form of the function σ(h) has no influence.

Proof. From the definition we have

ThΦ = σ(h)2∆x
i ∆

y
j Φ(hx − hy),

= σ(h)2∆x
i ∆

y
j {hγ Φ(x − y) + ph(x − y)} ,

= σ(h)2hγ TΦ + q(h)2Tph,

for some ph ∈ πd
2k−1 where T is as in Lemma 5.2. From that lemma Tph = 0 and the theorem follows. �

Let the columns of the N × (N − ℓ) matrix Qh be formed from the coefficients in the differences ∆1,h, . . . , ∆N−ℓ,h. Let Ah
be the N × N matrix with ij-entry Φ(hxi − hxj). The corresponding matrices with scale h = 1 are defined in Section 2 and
denoted by Q and A.

Theorem 5.5. Let X = {x1, . . . , xN} be unisolvent with respect to πd
k−1, and suppose the differences ∆1, . . . , ∆N−ℓ, form a

k-complete set of differences. Define differences ∆i,h for scale h > 0 as in Theorem 5.3 and also suppose the function Φ is as in
that theorem. Then

(i)

Bh := Q T
h AhQh = σ(h)2hγ B1 = σ(h)2hγ B.

(ii) Let Sh be produced from Bh by equilibration. Then Sh is a constant matrix independent of h.

Proof. From Theorem 5.3 and the condition on Φ

∆x
i,h∆

y
j,hΦ = σ(h)2hγ ∆x

i ∆
y
j Φ(x − y), 1 ≤ i, j ≤ N − ℓ,

which is the componentwise form of the first statement of the theorem.
Turn now to the second part the theorem. Since the equilibrated matrix is Sh = DhBhDh where Dh is diagonal with

(Dh)ii = (Bh)
−1/2
ii ,

(Sh)ij = (Dh)ii(Bh)ij(Dh)jj

=
1

σ(h)2hγ

BiiBjj

σ(h)2hγ Bij

=
Bij
BiiBjj

,

which is independent of h. �
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Corollary 5.6. Any preconditioning method for strictly conditionally positive definite kernels of order k of the type described
in Theorem 5.5 applied to the basic functions

Φ(x) = (−1)⌈β/2⌉
|x|β , with 0 ≤ β < 2k, β ∉ 2N , (11)

or

Φ(x) = (−1)j+1
|x|2j log |x|, with j ∈ N , 1 ≤ j < k, (12)

produces for the nodes hX an equilibrated interpolation matrix S which is independent of the scale h > 0.

Remark 5.7. This corollary covers all the popular thin-plate spline kernels for Rd.

Proof. Consider first the power kernel with parameter β of Eq. (11). It follows from a result of Micchelli [12] that this kernel
is strictly conditionally positive definite of order ⌈β/2⌉. Theorem 5.5 then applies with γ = β and ph the zero polynomial.

Now consider the basic function Φ(·) = (−1)j+1
| · |

2j log | · |, 1 ≤ j < k. It follows from results of Micchelli [12] that Φ

is strictly conditionally positive definite of order j + 1, and therefore k, on Rd. Note that,

Φ(hx) = h2jΦ(x) + (−1)j+1h2j log(h)|x|2j. (13)

Then applying Theorem 5.5 with γ = 2j gives the result. �

6. Preconditioning using mean value coordinates

In this section we discuss the construction of a particular preconditioning scheme of the type discussed in Section 2.
In this scheme the differences are derived from Floater’s mean value coordinates. The construction is appealing in that for
‘‘interior’’ points xj of X it is local. That is, for such points the difference functional ∆j and the entries in the jth column of
Q , depend only on the geometry of the nodes near xj and not on any properties of nodes far away. The discussion below
concentrates on preconditioning interpolation problems in R2. The generalization to problems in R3 is very similar and the
details will be omitted.

Mean value coordinates are generalized barycentric coordinates for polygons with an arbitrary number of sides. They
were originally introduced by Floater and have been explored in a series of papers; see [13–15]. We will consider their
application to preconditioning RBF interpolation equations.

A competitor to the mean value coordinates for the preconditioning application are the boundary over distance weights
of Sibson and Stone [1], explored in [6,7]. The boundary over distancemethodworks extremelywell. However, amean value
coordinate based preconditioner has some advantages.

• The boundary over distance preconditioner requires a Voronoi tessellation, equivalently a Delaunay triangulation, of
the points. The mean value coordinate based preconditioner does not require a Delaunay triangulation, or indeed any
triangulation. Therefore it may have advantages in problems where the mesh moves with time.

• The new basis elements Ψj associated with an interior point in the case of the boundary over distance preconditioner
involve Φ(· − xi)’s corresponding to centres in the Voronoi neighbours. In the mean value coordinate case the centres
generating Φ(· − xi)’s involved with a new basis element Ψj can be chosen according to any heuristic one likes.

The kernel of a polygon is the set of points v such that for each vertex vi the line segment [v, vi] is a subset of the
closure of the interior of the polygon. A key property of mean value coordinates is that if [v1, v2, . . . , vn] are the vertices in
counterclockwise order of a starshaped non-self-intersecting polygon, and v is in the kernel of that polygon, then the mean
values coordinates λj(v) satisfy

(i) λj(v) ≥ 0 for all 1 ≤ j ≤ n.
(ii)

∑n
j=1 λj(v) = 1.

(iii)
∑n

j=1 λj(v)vj = v.

It is clear that given an interior vertex v of a triangulation the polygon formed by joining vertices in its one ring in
counterclockwise order is starshaped with v in the kernel. Here the one ring of a vertex is the set of all vertices of the
triangulation one edge away from the given vertex as illustrated in Fig. 3(a). Sometimes the work of forming a triangulation
may be too much, or it may be desirable to force a specific choice of the neighbours vj, in terms of which v is expressed.
Therefore the question arises of when an (unordered) set of nearby points is suitable for the mean value coordinate
construction. An answer is given below.

Observation 6.1. Consider a finite set V = {u1, u2, . . . , un} of distinct points in R2. Let v ∉ V be in the convex hull
of V . Order the points in V in counterclockwise order about v , and within that sort (i.e. for points at the same angle) by
increasing radial distance from v. Label the ordered points as v1, v2, . . . , vn. Then the polygon [v1, v2, . . . , vn]with edges [v1, v2],
[v2, v3], . . . , [vn−1, vn], [vn, v1], is starlike and non-self-intersecting with v in its kernel.
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Fig. 3. (a) The one ring of a vertex in a triangulation. (b) A typical geometry of nodes in the proof of Observation 2.

Remark 6.2. If v is not in the convex hull of V then it is easy to construct examples where the polygon constructed from
the edges [v1, v2], [v2, v3], . . . , [vn, v1] is self-intersecting.

Proof. Assume without loss of generality that v = 0. Write each vj as a complex number

vj = rjeiθj , rj > 0, and 0 ≤ θj < 2π.

Further, assume without loss of generality that

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn.

This results in a layout of nodes as illustrated in Fig. 3(b).
We treat the subscripts in a circular manner. Therefore when j = 1, vj−1 is vn, and when j = n, vj+1 is v1. δθj is defined

to be the angle vj 0 vj+1, that is the angle in the closed radial segment SSj obtained when one rotates the ray from 0 through
vj counterclockwise to obtain the ray from 0 through vj+1.

Suppose there is a j so that δθj > π . Then all the points vr lie in the complement of the interior of the radial segment SSj.
Therefore all the vj lie on one side of the line through 0 perpendicular to the ray through 0 along the middle of the radial
sector SSj. Hence v = 0 is not in the convex hull of the points V , which is a contradiction.

It follows that all the angles δθj are less than or equal to π . Hence all the line segments [vj, vj+1] lie in the corresponding
radial segments SSj. Further, the interior of the line segment [vj, vj+1] lies within the interior of SSj if θj ≠ θj+1. Consequently
the polygon [v1, v2, . . . , vn] is not self-intersecting. It is by construction star like about 0. �

In the simplest case our mean value coordinate preconditioning matrix Q is assembled as follows. Let X = {x1,
x2, . . . , xN} ⊂ R2 be a set of vertices not all lying on a single straight line. Assume that T is a triangulation of the convex hull
H(X) with vertices in X. The assumption of non-collinearity means H(X) has nonzero area. Select three of the extreme
points of H(X) as special points. Numerical experiments (not included) show that it is beneficial to choose these three
points so that the area of the corresponding triangle is large. Relabel the points ofX so that the special points are xN−2, xN−1
and xN .

Algorithm forming a 2-complete set of differences for X ⊂ R2

Proceed though the vertices x1, . . . , xN−3

if xj is an interior point of H(X)
Let v1, v2, . . . , vt be the vertices of the one ring of xj. Let λ1(v), λ2(v), . . . , λt(v)
be the corresponding mean value coordinates specifying v = xj as a convex
combination of the vertices in its 1-ring. Then define ∆j by

∆jg = −g(v) +

t−
r=1

λr(v)g(vr) =:

N−
i=1

qijg(xi).
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else when xj is on the boundary of H(X)
Let v1, v2, . . . , vt be the vertices in the one ring of xj. Introduce a false point
vt+1 such that v = xj is the centroid of the points v1, v2, . . . , vt+1. The point
vt+1 is outside H(X) as some of the points v1, v2, . . . , vt do not lie on a
supporting hyperplane for H(X) through xj. Calculate the mean value coordinates
λ1(v), . . . , λt(v), λt+1(v) of v = xj with respect to {v1, . . . , vt , vt+1}. Also express
the false point vt+1 as an affine combination of the special points xN−2, xN−1 and
xN . Thus

vt+1 = µ2xN−2 + µ1xN−1 + µ0xN ,

where µ2 + µ1 + µ0 = 1. Define ∆j by

∆jg = −g(v) +

t−
r=1

λr(v)g(vr) + λt+1

2−
i=0

µi g(xN−i) =:

N−
i=1

qijg(xi).

end if

Lemma 6.3. The differences defined above form a 2-complete set of differences.

Proof. We defer the proof that each difference annihilates linears and turn first to the question of completeness. Write

Q =

[
E
F

]
,

where E is (N − 3) × (N − 3).
Now consider ET . We will show that ET is invertible by a discrete maximum principle type argument. Suppose ET is not

invertible. Then there is a nontrivial solution c to ET c = 0.
Let j be such that |cj| = ‖c‖∞. Let rj be the jth row of ET . If the corresponding vertex xj is an internal vertex then the

equation rjc = 0 says that cj is a convex combination of the components cr of c at neighbouring vertices xr , which has
modulus ‖c‖∞. Hence the values cr of c at all the neighbouring vertices must equal cj. Iterating this argument we find that
there is at least one vertex xr on the boundary of H(X) at which cr achieves its maximum modulus. We are already in this
case if the original vertex xj is a boundary vertex.

Let xj be such a boundary vertex. By construction ejj = −1 and the other components in the jth column of E are
nonnegative and sum to less than 1. (The entries in the jth column of F are not necessarily nonnegative.) Hence since
|cj| = ‖c‖∞ ≠ 0 it follows that rjc ≠ 0, which is a contradiction. Hence ET must be invertible, contrary to our assumption,
and Q has full rank.

Second, using the notations introduced in the first part if v = xj is an interior vertex

N−
i=1

qij = −1 +

t−
r=1

λr(v) = 0,

and
N−
i=1

qijxi = −v +

t−
r=1

λr(v)vr = 0.

Hence the difference ∆jg =
∑N

i=1 qijg(xi) annihilates linears. The proof for columns corresponding to vertices xj on the
boundary of H(X) is only very slightly more complicated. The stated result follows. �

We note also that the mean value coordinates are unchanged under uniform scalings. Therefore the differences
constructed from them by the algorithm above satisfy the assumptions required for scale invariance results Theorem 5.5
and Corollary 5.6, with σ(h) = 1.

7. Numerical results: condition numbers

Condition numbers for thematrices occurring in unpreconditioned and preconditioned interpolation problems in a large
sets of random trials are shown in Tables 1–3. As can be seen from the tables, the preconditioning procedure results in a
dramatic improvement in the conditioning of multiquadric and biharmonic radial basis function interpolation problems in
R2 and R3.

The entries in the tables are percentiles of the distribution of 2-norm condition numbers observed in random trials.
For N chosen in turn as 100, 200, 400, 800, and for each basic function Φ , 20,000 random trials were conducted. In each
trial N centres were chosen uniformly at random in [0, 1]2 or [0, 1]3 as appropriate, a Delaunay triangulation of the data
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Table 1
Percentiles for the distribution of 2-norm condition numbers of interpolation matrices observed for N random interpolation nodes, for various choices of
N . The basic function is the thin-plate (biharmonic) in R2, Φ(x) =| x |

2 log | x |.

N Min 1% 10% Median 90% 99% Max

100 2.39(4) 4.09(4) 6.71(4) 1.72(5) 8.11(5) 6.3(6) 1.41(9)
Precon. 6.79(0) 1.06(1) 1.69(1) 4.02(1) 1.22(2) 4.06(2) 6.47(3)
200 1.20(5) 2.33(5) 3.98(5) 1.03(6) 5.14(6) 4.10(7) 2.16(9)
Precon. 8.96(0) 1.73(1) 3.19(1) 8.36(1) 2.69(2) 8.80(2) 2.63(4)
400 6.69(5) 1.39(6) 2.45(6) 6.63(6) 3.40(7) 2.78(8) 1.56(10)
Precon. 1.43(1) 3.06(1) 6.17(1) 1.73(2) 5.80(2) 2.00(3) 2.09(4)
800 4.31(6) 9.20(6) 1.63(7) 4.48(7) 2.44(8) 1.98(9) 2.60(11)
Precon. 1.75(1) 5.78(1) 1.24(2) 3.68(2) 1.28(3) 4.49(3) 4.71(4)

Table 2
Percentiles for the distribution of 2-norm condition numbers observed for N random interpolation nodes, for various choices of N . The basic function is the
ordinary multiquadric in R2, Φ(x) =


| x |

2
+c2 , with c = 1/

√
N .

N Min 1% 10% Median 90% 99% Max

100 2.17(5) 5.10(5) 1.15(6) 4.54(6) 3.58(7) 4.19(8) 1.16(11)
Precon. 1.42(1) 2.41(1) 3.49(1) 6.97(1) 2.46(2) 1.42(3) 8.02(5)
200 1.44(6) 3.43(6) 7.47(6) 2.87(7) 2.25(8) 2.53(9) 1.37(12)
Precon. 2.30(1) 3.49(1) 5.06(1) 1.03(2) 3.62(2) 2.03(3) 1.91(5)
400 8.69(6) 2.23(7) 4.77(7) 1.78(8) 1.38(9) 1.61(10) 1.04(13)
Precon. 3.44(1) 4.93(1) 7.30(1) 1.49(2) 5.35(2) 3.20(3) 1.31(6)
800 5.82(7) 1.41(8) 2.97(8) 1.10(9) 8.42(9) 8.81(10) 9.83(12)
Precon. 4.60(1) 7.02(1) 1.06(2) 2.16(2) 7.71(2) 4.60(3) 2.22(5)

Table 3
Percentiles for the distribution of 2-norm condition numbers of interpolation matrices observed for N random interpolation nodes, for various choices of
N . The basic function is the biharmonic in R3, Φ(x) =| x |.

N Min 1% 10% Median 90% 99% Max

100 1.17(3) 1.39(3) 1.68(3) 2.34(3) 4.16(3) 8.88(3) 7.11(4)
Precon. 5.05(0) 6.78(0) 8.46(0) 1.15(1) 1.65(1) 2.29(1) 3.92(1)
200 3.40(3) 4.20(3) 5.10(3) 7.26(3) 1.31(4) 2.69(4) 2.02(5)
Precon. 7.72(0) 9.88(0) 1.24(1) 1.71(1) 2.46(1) 3.43(1) 1.16(2)
400 1.02(4) 1.28(4) 1.57(4) 2.26(4) 4.16(4) 9.10(4) 4.30(5)
Precon. 1.00(1) 1.44(1) 1.81(1) 2.52(1) 3.64(1) 4.99(1) 1.21(2)
800 3.09(4) 3.97(4) 4.87(4) 7.05(4) 1.28(5) 2.75(5) 1.83(6)
Precon. 1.53(1) 2.13(1) 2.66(1) 3.68(1) 5.29(1) 7.26(1) 1.13(2)

constructed, and 2-norm condition numbers of the unpreconditioned and preconditioned interpolationmatrices calculated.
The results were then sorted and the various percentiles (e.g. the median) recorded. An entry x.yz(e) in the tables indicates
the number x.yx×10e. Also in each table the rows starting with Precon are the results for the equilibrated (N −ℓ)× (N −ℓ)
interpolation matrix of the preconditioned problem corresponding to the unpreconditioned results of the previous row.

8. Numerical results: accuracy of evaluation—indirect evaluation of the Ψ functions

Solving using the preconditioned system is a good first step towards avoiding the problems of accurate calculation with
RBFs. However, used alone, it is often not enough. Numerical experiments reported in Table 4 show that proceeding by fitting
with the ‘‘good’’Ψi basis, and then converting back to the ‘‘bad’’Φ(·−xi) basis before evaluation, can result in throwing away
most of the expected gain from preconditioning. In this section, we show that evaluating the new basis elements indirectly,
significantly reduces this problem.

Evaluating a ‘‘small’’ RBF,

s(x) = q(x) +

N−
j=1

λjΦ(x − xj),

given in terms of the ‘‘bad’’ basis can inherently involve taking differences of large numbers. This can happen because the
coefficients are large and of differing sign. It can also happen when the coefficients are moderately sized and of differing
sign, but the values of Φ(x−xj)’s are relatively large and almost equal. In both cases loss of significance errors will probably
occur upon evaluation. Since the sum of the coefficients of the Φ(· − xj) functions contributing to a single Ψi is zero, even
evaluating a single Ψi directly via the Φ(x − xj)’s will incur loss of significance errors, when x is far from the relevant xj’s.
See [5] for further discussion of the impact of basis upon the stability of evaluation.
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Table 4
Infinity norm condition numbers, norms of coefficient vectors, and relative residuals, for various thin-plate spline interpolation problems based on the
spiral points.

N Method Condition number Function Norm of λ or µ Relative residual

100 Usual 7.02(11) f 6.92(9) 1.37(−6)
Ψ ’s to Φ ’s A 1.90(1) 6.92(9) 9.91(−7)
Ψ ’s to Φ ’s B 1.06(5) 5.05(−7)
Ψ ’s only 1.06(5) 2.40(−11)

Usual 7.02(11) g 8.74(7) 1.64(−8)
Ψ ’s to Φ ’s A 1.90(1) 8.74(7) 1.14(−8)
Ψ ’s to Φ ’s B 2.05(3) 5.06(−9)
Ψ ’s only 2.05(3) 8.30(−13)

200 Usual 8.98(13) f 4.43(11) 1.43(−4)
Ψ ’s to Φ ’s A 8.48(1) 4.43(11) 5.16(−5)
Ψ ’s to Φ ’s B 8.50(5) 2.33(−5)
Ψ ’s only 8.50(5) 1.98(−10)

Usual g 1.85(10) 5.63(−6)
Ψ ’s to Φ ’s A 1.85(10) 2.24(−6)
Ψ ’s to Φ ’s B 3.65(4) 1.07(−6)
Ψ ’s only 3.65(4) 6.84(−12)

Fig. 4. Spiral points for N = 100.

Onemethod to reduce the problem above is to stay with the basis ofΨi functions asmuch as possible, and to evaluate the
Ψi’s indirectly. In the experiments below the indirect, or more precise, evaluation method chosen is to calculate the values
Ψi(x) using far field expansions whenever the evaluation point x is sufficiently far from the xj’s involved in the definition
of Ψi, and by direct evaluation of the relevant Φ(x − xj)’s otherwise. More precisely, far field approximations were used to
evaluate Ψi(x) whenever they could be guaranteed to give accuracy at least ϵ in evaluating µiΨi(x). ϵ was chosen as 10−12.
In the numerical experiments reported belowwe did this, calculating even the preconditionedmatrix with theΨi functions.

In the experiments the nodes of interpolation were chosen as the spiral points

xi =
(N + 1 − i)3

N3
[cos(1.2 i), sin(1.2 i)], 1 ≤ i ≤ N,

illustrated for N = 100 in Fig. 4. The geometry of these nodes results in the usual interpolation system (6) being very ill-
conditioned. The first function to fit, f , is defined only at the interpolation nodes and is chosen to have a large high frequency
component. It is

f (xi) = fi = (−1)i, 1 ≤ i ≤ N.

The second function to fit is the smooth function

g(x) = exp(−(x2 + y2)) cos(x).

The results of fitting these functions with either 100 or 200 nodes are shown in Table 4. The table gives infinity norm
condition numbers of the relevant interpolation matrices, and the infinity norm of the relevant parameter vector λ or µ.
Evaluation accuracy was measured by the infinity norm relative residual in the RBF, s, at the interpolation nodes.
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In the table rows labelled ‘‘Usual’’ show the results for fitting via system (3), and evaluating with the Φ(· − xj) functions.
The rows labelled ‘‘Ψ ’s to Φ ’s A’’ show the results of solving the preconditioned system and then converting s to the basis of
Φ functions before evaluation. The rows labelled ‘‘Ψ ’s to Φ ’s B’’ show the results of solving the preconditioned system and
then evaluating each individual Ψi function in terms of its constituent Φ(· − xj)’s. This groups terms in the sum differently
than for the ‘‘Ψ ’s to Φ ’s A’’ rows. The rows labelled ‘‘Ψ ’s only’’ show the results of fitting with the preconditioned system
and then evaluating the Ψ ’s indirectly.

It can be seen from the table that the evaluation accuracywas consistently better for the smooth signal comparedwith the
high frequency signal. Further, as alreadymentioned above, fittingwith the preconditioned system and then evaluatingwith
the Φ functions, by either of the two methods described, typically improves the evaluation accuracy only slightly. Finally,
the ‘‘Ψ ’s only’’ rows show that fitting with the preconditioned system and then evaluating the Ψ functions indirectly yields
almost five more significant figures of accuracy.

We now turn to the question of showing analytically why the use of far field expansions to evaluate theΨi’s can give such
an increase in accuracy. The short answer is that there are frame like bounds between the coefficients of far field expansions
and the function they represent (restricted to the far field). Thus evaluating via these expansions automatically avoids loss of
significance resulting from expressing a small quantity as the difference of two large quantities. It leads to greater accuracy
provided, the forming of the coefficients of the far field expansion is itself not problematic.

8.1. Far field expansions for evaluation—polyharmonic case

The untruncated expansion for an (m + 1)-harmonic RBF in R2 is, writing z = x + i y,

gp(z) = ℜ


m−
j=0

z j
j−

k=0

ajkzk

log |z| +

m−
j=0

z j
∞−

σ=max(1−m,−j)

cjσ z−σ


;

see [16]. Handling terms that grow at infinity separately, and restricting to the biharmonic case for simplicity, the interesting
part of the expansion can be rewritten in terms of polar coordinates as

g(r, θ) + r2h(r, θ) =

∞−
k=0

d0,k cos(kθ) + e0,k sin(kθ)

rk
+

∞−
k=0

r2
d1,k+2 cos((k + 2)θ) + e1,k+2 sin((k + 2)θ)

rk+2
, (14)

converging uniformly for r ≥ R. Then using Parseval

1
π

∫ π

−π

g(r, θ)2dθ =
1
2
d20,0 +

∞−
j=1

d20,j + e20,j
r2j

,

and
1
π

∫ π

−π

r4h(r, θ)2 dθ =

∞−
j=2

d21,j + e21,j
r2j−4

,

all quantities being decreasing in r ≥ R. Thus the sizes of the sequences of coefficients are directly related to the norms of
the functions g(r, θ) and h(r, θ). Also the terms multiplying the coefficients (except for the constant term) are bounded by
negative powers of r . Thus there can be no catastrophic loss of significance in evaluating the far field expansion (14). It is an
orthogonal expansion and thus inherently well conditioned.
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