Sensing and Bio-Sensing Research 4 (2015) 37-39

Contents lists available at ScienceDirect

Sensing and Bio-Sensing Research

journal homepage: www.elsevier.com/locate/sbsr

A bienzyme electrochemical biosensor for the detection of collagen L-hydroxyproline

SENSING AND

Hiroaki Sakamoto^a, Kazuya Watanabe^b, Ayako Koto^b, Gaku Koizumi^b, Takenori Satomura^c, Seiya Watanabe^d, Shin-ichiro Suye^{b,*}

^a Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

^b Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan ^c Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

^d Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan

Fuculty of Agriculture, Entrie Oniversity, 5-5-7 Turunit, Mutsuyuniu, Entrie 750-8500, Jupun

ARTICLE INFO

Keywords: Biosensor Electrochemistry L-hydroxyproline L-hydroxyproline epimerase D-hydroxyproline dehydrogenase

ABSTRACT

L-hydroxyproline (L-Hyp: *trans*-4-hydroxy-L-proline) is commonly found at high concentrations in connective tissue proteins such as collagen. It is a remarkably useful molecular marker because variation in the level of L-Hyp is associated with various diseases. Recently, the novel enzymes L-hydroxyproline epimerase and D-hydroxyproline dehydrogenase were isolated from bacteria. In this study, a novel electrochemical biosensor for L-Hyp was constructed using these two enzymes. L-hydroxyproline epimerase epimerized L-Hyp to D-hydroxyproline (D-Hyp: *cis*-4-hydroxy-D-proline), and D-Hyp was oxidized with the reaction catalyzed by D-hydroxyproline dehydrogenase and mediated by ferrocene. We found that the sensor could determine L-Hyp concentrations of 10–100 μ M with high-selectivity.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Collagen is the most abundant protein in the extracellular matrix of living organisms. The major amino acid components of collagen are glycine (\sim 33%), L-proline (L-Pro), L-hydroxyproline (L-Hyp) (21%), and alanine (11%). L-Hyp is a collagen-specific amino acid [1]. By measuring L-Hyp in urine, it is possible to determine collagen metabolism in the body, and in particular the degree of collagen degradation. Indeed, because L-Hyp is rarely present without collagen, it has become the specific biomarker for collagen degradation and is used to investigate collagen-related disease [2–4]. For example, collagen is an abundant protein in the bones and skin; therefore, abnormal collagen metabolism can occur with bone [5,6] and skin diseases [7], as well as fibrosis [8]. Additionally, collagen degradation is necessary in the cancer metastatic process [9,10]; thus, L-Hyp is also a useful marker for studying cancer metastasis.

* Corresponding author. Tel.: +81 776 27 8914. E-mail address: suyeb10@u-fukui.ac.jp (S.-i. Suye).

Various analytical techniques can be employed to measure L-Hyp in serum (for determination of bone composition) and urine, and to study rates of bone resorption and collagen metabolism. Colorimetric methods for measuring L-Hyp involve the oxidation of hydrolyzed L-Hyp; however, this process is time consuming, and controlling oxidation and color formation reactions can be difficult [11–13]. L-Hyp can also be analyzed by high-performance liquid chromatography [14–17] and gas chromatography [18,19], but these techniques require expensive equipment that is costly to maintain. An enzymatic method, in which amino acid dehydrogenase is used, could be a rapid and simple method of amino acid analysis. However, it is difficult to detect L-Hyp selectively using such a method because amino acid dehydrogenase has relatively broad substrate specificity, for example proline dehydrogenase Pyrobaculum calidifontis catalyzes the dehydrogenation of both L-proline and L-hydroxyproline (relative activity, 72% as compared to L-proline) [20].

Recently, we identified the pathway of L-Hyp metabolism in bacteria, and characterized D-hydroxyproline dehydrogenase. Two types of D-hydroxyproline dehydrogenase were characterized and showed similar high specificity for D-hydroxyproline, one from *Pseudomonas putida* and one from *Pseudomonas aeruginosa* [21]. Although the former is a simple homomeric enzyme containing only FAD as a prosthetic group, the purification of the protein

http://dx.doi.org/10.1016/j.sbsr.2015.03.002

2214-1804/© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: L-Hyp, L-hydroxyproline; D-Hyp, D-hydroxyproline; Pyr4H2C, Δ 1-pyrroline-4-hydroxy-2-carboxylate; L-Gln, L-glutamine; Gly, glycine; L-Ala, L-alanine; L-Val, L-valine; CV, cyclic voltammetry; SPE, screen-printed electrode.

Fig. 1. Schematic diagram of the electrochemical detection of L-hydroxyproline (L-Hyp). Epimerization of L-Hyp to D-hydroxyproline (D-Hyp) was performed by L-hydroxyproline epimerase, and D-Hyp was oxidized on the electrode surface in a reaction catalyzed by D-hydroxyproline dehydrogenase and mediated by ferrocene.

rapidly eliminates its activity. In contrast, the latter has a heterododecameric structure consisting of three different subunits ($\alpha_4\beta_4\gamma_4$), with two FADs, a FMN, and a [2Fe-2S]-iron sulfur cluster contained in $\alpha\beta\gamma$ of the heterotrimeric unit. Additionally, the latter p-hydroxyproline dehydrogenase, in contrast to the former, can be stored for a few months at least, suggesting the possibility that it could have bioindustrial applications. Although an efficient system for preparation of the recombinant enzyme has not been reported, in a recent study we successfully functionally expressed heteromeric p-hydroxyproline dehydrogenase from *Azospirillum brasilense* instead of *P. aeruginosa* in *Escherichia coli* cells [22].

Here, we constructed a novel electrochemical biosensor for L-Hyp using D-hydroxyproline dehydrogenase and another enzyme, L-hydroxyproline epimerase. Electrochemical biosensors offer several advantages; for example, they are readily obtained, easy to use, and involve compact instruments. In this study, we constructed a novel biosensor by using a two-step reaction. First, L-Hyp was epimerized to D-hydroxyproline (D-Hyp) by L-hydroxyproline epimerase; second, D-Hyp was oxidized to Δ 1-pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) by D-hydroxyproline dehydrogenase. Additionally, we obtained the oxidation current of ferrocenecarboxylic acid by D-hydroxyproline dehydrogenase (Fig. 1).

2. Materials and methods

2.1. Reagents

Amino acids (L-Hyp, L-Pro, L-glutamine [L-Gln], glycine [Gly], L-alanine [L-Ala], and L-valine [L-Val]) and ferrocenecarboxylic acid were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). All other chemicals were of analytical grade. Deionized water, which had been filtered through a Milli-Q water purification system (Millipore Co., Bedford, MA, USA), was used in all experiments.

2.2. Preparation of *L*-hydroxyproline epimerase and *D*-hydroxyproline dehydrogenase

L-hydroxyproline epimerase and (heteromeric) D-hydroxyproline dehydrogenase from *A. brasilense* were overexpressed in *E. coli* cells, and then purified homogeneously with a nickel-chelating affinity column, as previously described [22]. Using a spectrophotometric assay, the specific activities of the purified L-hydroxyproline epimerase and D-hydroxyproline dehydrogenase for L-Hyp and D-Hyp were 58.6 and 6.12 units/mg protein, respectively.

2.3. Electrochemical measurement

Cyclic voltammetry (CV) and chronoamperometry experiments were performed using a Model 800B Electrochemical Analyzer (BAS Inc., Tokyo, Japan) and a screen-printed electrode (SPE) (SP-P DEP Chip; Bio Device Technology, Ishikawa, Japan). The SPE consisted of carbon electrodes as the working and counter electrodes and an Ag/AgCl electrode as the reference electrode. All potentials were presented in terms of Ag/AgCl electrode potentials. CV was conducted with a potential range from -0.1 to +0.5 V and with a scan rate of 10 mV s⁻¹. The electrolyte solution was Tris–HCl (15μ L, 50 mM, pH 8.0), and the final concentrations of L-hydroxyproline epimerase, D-hydroxyproline dehydrogenase, and L-Pro were 2.5, 2.5, and 250 μ g/mL, respectively.

The electrochemical measurement of L-Hyp was carried out using chronoamperometry with the SPE. Tris–HCl (15 μ L, 50 mM, pH 8.0) was dropped onto the SPE, and a constant potential of 250 mV was applied to the working electrode, because ferrocene are oxidized selectively at this potential. When the current had stabilized, 1 μ L of each enzyme solution, 0.2 mg/ml L-hydroxyproline epimerase and 0.2 mg/ml D-hydroxyproline dehydrogenase were added. Current responses were defined as the difference between before the addition of a drop of L-Pro, and again 100 s after the addition of the droplets.

Fig. 2A. Cyclic voltammetry (CV) measurements for each condition. The black lines correspond to ferrocenecarboxylic acid; the green lines correspond to ferrocenecarboxylic acid and L-hydroxyproline (L-Hyp); the blue lines correspond to ferrocenecarboxylic acid, L-hydroxyproline epimerase, and D-hydroxyproline dehydrogenase; and the red lines correspond to ferrocenecarboxylic acid, L-hydroxyproline dehydrogenase, and L-Hyp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2B. Quantification of L-hydroxyproline (L-Hyp) based on current response. The error bars show the standard deviations of triplicate experiments (i.e., *n* = 3).

Fig. 2C. Comparison of the current response generated by L-hydroxyproline (L-Hyp) and other amino acids. Additional amino acids were as follows: L-Gln, L-glutamine; L-Val, L-valine; Gly, glycine; L-Ala, L-alanine; L-Pro, L-proline.

3. Results and discussion

We investigated the electrochemical response from the twostep enzymatic reaction using CV (Fig. 2A). We observed a typical pair of redox peaks derived from the redox couple of Fe (III)/Fe (II) ions in ferrocenecarboxylic acid at 0.2 V (Fig. 2A) For L-Hyp. the redox pair of ferrocenecarboxylic acid did not change because L-Hyp is a non-redox molecule (Fig. 2A). For L-hydroxyproline epimerase and *D*-hydroxyproline dehydrogenase, the redox pair of ferrocenecarboxylic acid also did not change because of the lack of substrate (Fig. 2A). However, for L-hydroxyproline epimerase, D-hydroxyproline dehydrogenase, and L-Hyp, the observed peak indicated that the oxidation current increased and appeared at 0.25 V, while the reduction current decreased (Fig. 2A). These results provided a strong indication that L-Hyp was epimerized by L-hydroxyproline epimerase and dehydrogenized by D-hydroxvproline dehydrogenase, and that the electrons generated from the catalytic reaction between D-hydroxyproline dehydrogenase and D-Hyp were detected through ferrocenecarboxylic acid.

The quantitative capabilities of our system were evaluated by plotting the current response against the amount of L-Hyp in the buffer solution (Fig. 2B). The current intensity value increased in a static dose-dependent manner as the amount of L-Hyp increased. We found that our L-Hyp biosensing system was capable of detecting 10 μ M L-Hyp electrochemically. The resultant calibration curve

showed linearity, with $R^2 = 0.984$. The detection limit and quantification limit were 2.4 μ M and 8.4 μ M, respectively. Signaling was linearly correlated to the amount of L-Hyp tested in the range 10–100 μ M in a buffer solution.

Serum and urine contain other amino acids at levels of 1–100 μ M [23]. In order to evaluate the selectivity of our sensor system, we investigated the current response of L-Gln, Gly, L-Ala, L-Val, and L-Hyp (Fig. 2C), which are all abundant in serum and urine. Results showed that 50 μ M of any interferent provided a much weaker response than that of 40 μ M of L-Hyp. Therefore, our sensing system distinguished L-Hyp from other amino acids with high-selectivity.

4. Conclusion

Here, we designed and implemented a biosensing system that could detect 10 M L-Hyp in buffer solution, with linear detection for concentrations in the range 10–100 μ M. We confirmed that the system distinguishes L-Hyp from other amino acids, including L-Pro. To our knowledge, this is the first reported enzymatic electrochemical biosensor for L-Hyp. The concentration of collagen in urine is in the μ M to mM range, and we suggest that our novel biosensing system would be useful for detecting collagen via L-Hyp. Therefore, it could be used in the diagnosis of various diseases, specifically for obtaining information regarding collagen degradation.

Conflict of interest

The authors have declared no conflicts of interest.

Acknowledgments

This work was partially supported by the A-STEP feasibility study program (AS242Z00554M) from the Japan Science and Technology Agency (JST) (to SW).

References

- [1] M.D. Shoulders, R.T. Raines, Annu. Rev. Biochem. 78 (2009) 929–958.
- [2] N.Y. Ignat'eva, N.A. Danilov, S.V. Averkiev, M.V. Obrezkova, V.V. Lunin, E.N. Sobol, J. Anal. Chem. 62 (2007) 51–57.
- [3] F. Pagani, C.M. Francucci, L. Moro, J. Endocrinol. Invest. 28 (2005) 8-13.
- [4] A.V.O. Francisco, F.G.M. Natalia, J. Food Compos. Anal. 9 (1996) 269–276.
- [5] D. Euli, L. Colombo, A. Bruno, E. Mussini, J. Chromatogr. B 724 (1999) 373–379.
- [6] R.H. Christenson, Clin. Biochem. 30 (1997) 573–593.
- [7] D.J. Prockop, K.I. Kivirikko, Annu. Rev. Biochem. 64 (1995) 403-434.
- [8] T.A. Wynn, J. Pathol. 214 (2008) 199–210.
- [9] A. Fontana, P.D. Delmas, Cancer 88 (2000) 2952–2960.
- [10] L.M. Demers, L. Costa, A. Lipton, Cancer 88 (2000) 2919–2926.
- [11] I.S. Jamall, V.N. Finelli, S.S. Que Hee, Anal. Biochem. 112 (1981) 70–75.
- [12] I. Bergman, R. Loxley, Clin. Chim. Acta 27 (1970) 347-349.
- [13] J.F. Woessner Jr., Arch. Biochem. Biophys. 93 (1961) 440–447.
- [14] Y. Tsuruta, H. Inoue, Anal. Biochem. 265 (1998) 15–21.
- [15] G. Mazzi, F. Fioravanzo, E. Burti, J. Chromatogr. B 678 (1996) 165–172.
- [16] H. Inoue, H. Iguch, A. Kouno, Y. Tsuruta, J. Chromatogr. B 757 (2001) 369–373.
 [17] R.A. Bank, M. Krikken, B. Beekman, R. Stoop, A. Maroudas, F.P.J.G. Lafebers, J.M. Te Koppele, Matrix Biol. 16 (1997) 233–243.
- [18] M. Delport, S. Maas, S.W. van der Merwe, J.B. Laurens, J. Chromatogr. B 804 (2004) 345–351.
- [19] P. Husek, A. Pohlídal, D. Slabík, J. Chromatogr. B 767 (2002) 169-174.
- [20] R. Kawakami, T. Satomura, H. Sakuraba, T. Ohshima, Appl. Microbiol. Biotechnol. 93 (2012) 83–93.
- [21] S. Watanabe, D. Morimoto, F. Fukumori, H. Shinomiya, H. Nishiwaki, M.K. Kawada, Y. Sasai, Y. Tozawa, Y. Watanabe, J. Biol. Chem. 287 (2012) 32674– 32688.
- [22] S. Watanabe, Y. Hiraoka, S. Endo, Y. Tanimoto, Y. Tozawa, Y. Watanabe, J. Biotechnol. 199 (2015) 9–16.
- [23] F. Duranton, U. Lundin, N. Gayrard, H. Mischak, M. Aparicio, G. Mourad, I.P. Daurès, K.M. Weinberger, A. Argilès, Clin. J. Am. Soc. Nephrol. 9 (2014) 37–45.