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L-hydroxyproline (L-Hyp: trans-4-hydroxy-L-proline) is commonly found at high concentrations in
connective tissue proteins such as collagen. It is a remarkably useful molecular marker because variation
in the level of L-Hyp is associated with various diseases. Recently, the novel enzymes L-hydroxyproline
epimerase and D-hydroxyproline dehydrogenase were isolated from bacteria. In this study, a novel
electrochemical biosensor for L-Hyp was constructed using these two enzymes. L-hydroxyproline epimer-
ase epimerized L-Hyp to D-hydroxyproline (D-Hyp: cis-4-hydroxy-D-proline), and D-Hyp was oxidized
with the reaction catalyzed by D-hydroxyproline dehydrogenase and mediated by ferrocene. We found
that the sensor could determine L-Hyp concentrations of 10–100 lM with high-selectivity.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Collagen is the most abundant protein in the extracellular
matrix of living organisms. The major amino acid components of
collagen are glycine (�33%), L-proline (L-Pro), L-hydroxyproline
(L-Hyp) (21%), and alanine (11%). L-Hyp is a collagen-specific amino
acid [1]. By measuring L-Hyp in urine, it is possible to determine
collagen metabolism in the body, and in particular the degree of
collagen degradation. Indeed, because L-Hyp is rarely present with-
out collagen, it has become the specific biomarker for collagen
degradation and is used to investigate collagen-related disease
[2–4]. For example, collagen is an abundant protein in the bones
and skin; therefore, abnormal collagen metabolism can occur with
bone [5,6] and skin diseases [7], as well as fibrosis [8]. Additionally,
collagen degradation is necessary in the cancer metastatic process
[9,10]; thus, L-Hyp is also a useful marker for studying cancer
metastasis.
Various analytical techniques can be employed to measure
L-Hyp in serum (for determination of bone composition) and urine,
and to study rates of bone resorption and collagen metabolism.
Colorimetric methods for measuring L-Hyp involve the oxidation
of hydrolyzed L-Hyp; however, this process is time consuming,
and controlling oxidation and color formation reactions can be
difficult [11–13]. L-Hyp can also be analyzed by high-performance
liquid chromatography [14–17] and gas chromatography [18,19],
but these techniques require expensive equipment that is costly
to maintain. An enzymatic method, in which amino acid dehydro-
genase is used, could be a rapid and simple method of amino acid
analysis. However, it is difficult to detect L-Hyp selectively using
such a method because amino acid dehydrogenase has relatively
broad substrate specificity, for example proline dehydrogenase
Pyrobaculum calidifontis catalyzes the dehydrogenation of both
L-proline and L-hydroxyproline (relative activity, 72% as compared
to L-proline) [20].

Recently, we identified the pathway of L-Hyp metabolism in
bacteria, and characterized D-hydroxyproline dehydrogenase.
Two types of D-hydroxyproline dehydrogenase were characterized
and showed similar high specificity for D-hydroxyproline, one from
Pseudomonas putida and one from Pseudomonas aeruginosa [21].
Although the former is a simple homomeric enzyme containing
only FAD as a prosthetic group, the purification of the protein
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Fig. 1. Schematic diagram of the electrochemical detection of L-hydroxyproline
(L-Hyp). Epimerization of L-Hyp to D-hydroxyproline (D-Hyp) was performed by
L-hydroxyproline epimerase, and D-Hyp was oxidized on the electrode surface in a
reaction catalyzed by D-hydroxyproline dehydrogenase and mediated by ferrocene.
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rapidly eliminates its activity. In contrast, the latter has a hetero-
dodecameric structure consisting of three different subunits
(a4b4c4), with two FADs, a FMN, and a [2Fe-2S]-iron sulfur cluster
contained in abc of the heterotrimeric unit. Additionally, the latter

D-hydroxyproline dehydrogenase, in contrast to the former, can be
stored for a few months at least, suggesting the possibility that it
could have bioindustrial applications. Although an efficient system
for preparation of the recombinant enzyme has not been reported,
in a recent study we successfully functionally expressed
heteromeric D-hydroxyproline dehydrogenase from Azospirillum
brasilense instead of P. aeruginosa in Escherichia coli cells [22].

Here, we constructed a novel electrochemical biosensor for
L-Hyp using D-hydroxyproline dehydrogenase and another enzyme,

L-hydroxyproline epimerase. Electrochemical biosensors offer sev-
eral advantages; for example, they are readily obtained, easy to
use, and involve compact instruments. In this study, we constructed
a novel biosensor by using a two-step reaction. First, L-Hyp was
epimerized to D-hydroxyproline (D-Hyp) by L-hydroxyproline epi-
merase; second, D-Hyp was oxidized to D1-pyrroline-4-hydroxy-
2-carboxylate (Pyr4H2C) by D-hydroxyproline dehydrogenase.
Additionally, we obtained the oxidation current of ferrocenecar-
boxylic acid by D-hydroxyproline dehydrogenase (Fig. 1).
2. Materials and methods

2.1. Reagents

Amino acids (L-Hyp, L-Pro, L-glutamine [L-Gln], glycine [Gly],
L-alanine [L-Ala], and L-valine [L-Val]) and ferrocenecarboxylic acid
were purchased from Wako Pure Chemical Industries, Ltd. (Osaka,
Japan). All other chemicals were of analytical grade. Deionized
water, which had been filtered through a Milli-Q water purification
system (Millipore Co., Bedford, MA, USA), was used in all
experiments.
Fig. 2A. Cyclic voltammetry (CV) measurements for each condition. The black lines
correspond to ferrocenecarboxylic acid; the green lines correspond to ferrocenecar-
boxylic acid and L-hydroxyproline (L-Hyp); the blue lines correspond to fer-
rocenecarboxylic acid, L-hydroxyproline epimerase, and D-hydroxyproline
dehydrogenase; and the red lines correspond to ferrocenecarboxylic acid,
L-hydroxyproline epimerase, D-hydroxyproline dehydrogenase, and L-Hyp. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
2.2. Preparation of L-hydroxyproline epimerase and D-hydroxyproline
dehydrogenase

L-hydroxyproline epimerase and (heteromeric) D-hydroxypro-
line dehydrogenase from A. brasilense were overexpressed in E. coli
cells, and then purified homogeneously with a nickel-chelating
affinity column, as previously described [22]. Using a
spectrophotometric assay, the specific activities of the purified
L-hydroxyproline epimerase and D-hydroxyproline dehydrogenase
for L-Hyp and D-Hyp were 58.6 and 6.12 units/mg protein,
respectively.

2.3. Electrochemical measurement

Cyclic voltammetry (CV) and chronoamperometry experiments
were performed using a Model 800B Electrochemical Analyzer
(BAS Inc., Tokyo, Japan) and a screen-printed electrode (SPE)
(SP-P DEP Chip; Bio Device Technology, Ishikawa, Japan). The SPE
consisted of carbon electrodes as the working and counter elec-
trodes and an Ag/AgCl electrode as the reference electrode. All
potentials were presented in terms of Ag/AgCl electrode potentials.
CV was conducted with a potential range from �0.1 to +0.5 V and
with a scan rate of 10 mV s�1. The electrolyte solution was
Tris–HCl (15 lL, 50 mM, pH 8.0), and the final concentrations of

L-hydroxyproline epimerase, D-hydroxyproline dehydrogenase,
and L-Pro were 2.5, 2.5, and 250 lg/mL, respectively.

The electrochemical measurement of L-Hyp was carried out
using chronoamperometry with the SPE. Tris–HCl (15 lL, 50 mM,
pH 8.0) was dropped onto the SPE, and a constant potential of
250 mV was applied to the working electrode, because ferrocene
are oxidized selectively at this potential. When the current had
stabilized, 1 lL of each enzyme solution, 0.2 mg/ml L-hydroxypro-
line epimerase and 0.2 mg/ml D-hydroxyproline dehydrogenase
were added. Current responses were defined as the difference
between before the addition of a drop of L-Pro, and again 100 s
after the addition of the droplets.



Fig. 2B. Quantification of L-hydroxyproline (L-Hyp) based on current response. The
error bars show the standard deviations of triplicate experiments (i.e., n = 3).

Fig. 2C. Comparison of the current response generated by L-hydroxyproline (L-Hyp)
and other amino acids. Additional amino acids were as follows: L-Gln, L-glutamine;
L-Val, L-valine; Gly, glycine; L-Ala, L-alanine; L-Pro, L-proline.
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3. Results and discussion

We investigated the electrochemical response from the two-
step enzymatic reaction using CV (Fig. 2A). We observed a typical
pair of redox peaks derived from the redox couple of Fe (III)/Fe
(II) ions in ferrocenecarboxylic acid at 0.2 V (Fig. 2A) For L-Hyp,
the redox pair of ferrocenecarboxylic acid did not change because

L-Hyp is a non-redox molecule (Fig. 2A). For L-hydroxyproline
epimerase and D-hydroxyproline dehydrogenase, the redox pair
of ferrocenecarboxylic acid also did not change because of the lack
of substrate (Fig. 2A). However, for L-hydroxyproline epimerase,
D-hydroxyproline dehydrogenase, and L-Hyp, the observed peak
indicated that the oxidation current increased and appeared at
0.25 V, while the reduction current decreased (Fig. 2A). These
results provided a strong indication that L-Hyp was epimerized
by L-hydroxyproline epimerase and dehydrogenized by D-hydrox-
yproline dehydrogenase, and that the electrons generated from
the catalytic reaction between D-hydroxyproline dehydrogenase
and D-Hyp were detected through ferrocenecarboxylic acid.

The quantitative capabilities of our system were evaluated by
plotting the current response against the amount of L-Hyp in the
buffer solution (Fig. 2B). The current intensity value increased in
a static dose-dependent manner as the amount of L-Hyp increased.
We found that our L-Hyp biosensing system was capable of detect-
ing 10 lM L-Hyp electrochemically. The resultant calibration curve
showed linearity, with R2 = 0.984. The detection limit and quan-
tification limit were 2.4 lM and 8.4 lM, respectively. Signaling
was linearly correlated to the amount of L-Hyp tested in the range
10–100 lM in a buffer solution.

Serum and urine contain other amino acids at levels of 1–
100 lM [23]. In order to evaluate the selectivity of our sensor
system, we investigated the current response of L-Gln, Gly, L-Ala,

L-Val, and L-Hyp (Fig. 2C), which are all abundant in serum and
urine. Results showed that 50 lM of any interferent provided a
much weaker response than that of 40 lM of L-Hyp. Therefore,
our sensing system distinguished L-Hyp from other amino acids
with high-selectivity.
4. Conclusion

Here, we designed and implemented a biosensing system that
could detect 10 M L-Hyp in buffer solution, with linear detection
for concentrations in the range 10–100 lM. We confirmed that
the system distinguishes L-Hyp from other amino acids, including

L-Pro. To our knowledge, this is the first reported enzymatic
electrochemical biosensor for L-Hyp. The concentration of collagen
in urine is in the lM to mM range, and we suggest that our novel
biosensing system would be useful for detecting collagen via
L-Hyp. Therefore, it could be used in the diagnosis of various dis-
eases, specifically for obtaining information regarding collagen
degradation.
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