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Grete Hermann proved in [8] that for any idealI in ann-dimensional polynomial ring
over the field of rational numbers, ifI is generated by polynomialsf1, . . . , fk of degree
at mostd , then it is possible to writef = ∑

rifi such that eachri has degree at mos
degf +(kd)(2n). Mayr and Meyer in [11] found (generators of) a family of ideals for wh
a doubly exponential bound inn is indeed achieved. Bayer and Stillman [1] showed tha
these Mayr–Meyer ideals any minimal generating set of syzygies has elements of
exponential degree inn. Koh [9] modified the original ideals to obtain homogene
quadric ideals with doubly exponential syzygies and ideal membership equations.

Bayer, Huneke, and Stillman asked whether the doubly exponential behavior is
the number of associated prime ideals, or to the nature of one of them? By compa
Kollár’s effective Nullstellensatz [10], the suspicion is that the exponential behavior i
to some deeply embedded component. This paper examines the minimal compone
minimal prime ideals of the Mayr–Meyer ideals. In particular, in Section 2 it is proved
the intersection of the minimal components of the Mayr–Meyer ideals does not satis
doubly exponential property, so that the doubly exponential behavior of the Mayr–M
ideals must be due to the embedded prime ideals.

The structure of the embedded prime ideals of the Mayr–Meyer ideals is exa
in [14].

There exist algorithms for computing primary decompositions of ideals (see G
et al. [5], Eisenbud et al. [3], or Shimoyama and Yokoyama [12]), and they have
partially implemented on the symbolic computer algebra programs Singular [7
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Macaulay2 [6]. However, the Mayr–Meyer ideals have variable degree and a va
number of variables over an arbitrary field, and there are no algorithms to dea
this generality. Thus any primary decomposition of the Mayr–Meyer ideals has
accomplished with traditional proof methods. Small cases of the primary decompo
analysis were partially verified on Macaulay2 and Singular, and the emphasis her
“partially”: the computers quickly run out of memory.

The Mayr–Meyer ideals are binomial, so by the results of Eisenbud and Sturmfels
all the associated prime ideals themselves are also binomial ideals. It turns out tha
minimal prime ideals are even monomial, which simplifies the calculations.

The Mayr–Meyer ideals depend on two parameters,n and d , where the number o
variables in the ring is O(n) and the degree of the given generators of the ideal is Od).
Bothn andd are positive integers.

Here is the definition of the Mayr–Meyer ideals: letn,d � 1 be integers andk a field of
arbitrary characteristic. Lets, f, sr+1, fr+1, br1, br2, br3, br4, cr1, cr2, cr3, cr4 be variables
overk, with r = 0,1, . . . , n− 1. The notation here closely follows that of [9]. Set

S = k[s = s0, f = f0, sr+1, fr+1, bri, cri | r = 0, . . . , n− 1; i = 1, . . . ,4].

ThusS is a polynomial ring of dimension 10n+ 2. The following generators define th
Mayr–Meyer idealJl(n, d) (subscriptl for “long,” there will be a “shortened” version late
on): first the four level 0 generators:

H0i = c0i
(
s − f bd0i

)
, i = 1,2,3,4;

then the first six levelr generators,r = 1, . . . , n:

Hr1 = sr − sr−1cr−1,1,

Hr2 = fr − sr−1cr−1,4,

Hr3 = fr−1cr−1,1 − sr−1cr−1,2,

Hr4 = fr−1cr−1,4 − sr−1cr−1,3,

Hr5 = sr−1(cr−1,3 − cr−1,2),

Hr6 = fr−1(cr−1,2br−1,1 − cr−1,3br−1,4),

the last four levelr generators,r = 1, . . . , n− 1:

Hr,6+i = fr−1cr−1,2cri(br−1,2 − bribr−1,3), i = 1, . . . ,4,

and the last leveln generator:

Hn7 = fn−1cn−1,2(bn−1,2 − bn−1,3).

The maximum degree of a given generator ofJl(n, d) is max{d+2,4,5δn�2}, whereδn�2
is the (extended) Kronecker delta function: it is 1 ifn� 2 and is 0 otherwise. The degree
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elementsn − fn of S is in Jl(n, d), and when written as anS-linear combination of the
given generators, theS-coefficient ofH04 has degree which is doubly exponential inn (see
any of [1,2,9,11]).

The main result of this paper is the computation of the minimal prime ideals
the minimal primary components of these Mayr–Meyer ideals. Another result i
computation of the intersection of all the minimal components, which also shows th
doubly exponential behavior of theJl(n, d) is due to the embedded prime ideals.

The following summarizes the elementary facts used in the paper:

Facts.

0.1. For any idealsI , I ′ andI ′′ with I ⊆ I ′′, (I + I ′)∩ I ′′ = I + I ′ ∩ I ′′.
0.2. For any idealI and elementx, (x)∩ I = x(I :x).
0.3. Letx1, . . . , xn be variables over a ringR. Let S = R[x1, . . . , xn]. For anyf1 ∈ R,

f2 ∈ R[x1], . . . , fn ∈ R[x1, . . . , xn−1], letL be the ideal(x1−f1, . . . , xn−fn)S in S.
Then an idealI in R is primary (respectively, prime) if and only ifIS +L is primary
(respectively, prime) inS. Furthermore,

⋂
i qi = I is a primary decomposition ofI if

and only if
⋂
i (qiS +L) is a primary decomposition ofIS +L.

0.4. Letx be an element of a ringR andI an ideal. Suppose that there is an integerk such
that for allm, I :xm ⊆ I :xk. ThenI = (I :xk) ∩ (I + (xk)). Thus to find a (possibly
redundant) primary decomposition ofI it suffices to find primary decompositions
(possibly larger)I :xk and ofI + (xk).

We immediately apply this: in order to find a primary decomposition of the Mayr–M
idealsJl(n, d), by the structure of theHr1,Hr2 and by Fact 0.3, it suffices to find a prima
decomposition of the idealsJ (n, d) obtained fromJl(n, d) by rewriting the variablessr , fr
in terms of other variables, and then omitting the generatorsHr1,Hr2, r � 1. An idealq is
a component (respectively associated prime) ofJ (n, d) if and only if (q + (Hr1,Hr2|r))S
is a component (respectively associated prime) ofJl(n, d). Thus to simplify the notation
throughout we will be searching for the primary components and associated prime
of the “shortened” Mayr–Meyer idealsJ (n, d) in a smaller polynomial ringR obtained as
above. When we list the new generators explicitly, the casen= 1 is rather special. In fac
the primary decomposition in the casen= 1 is very different from the casen� 2, and is
given in [13]. In this paper it is always assumed thatn� 2.

Thus explicitly, we will be working with the following “shortened” Mayr–Meyer idea
for any fixed integersn � 2, d , setR = k[s, f, bri, cri | r = 0, . . . , n − 1; i = 1, . . . ,4],
a polynomial ring in 8n+ 2 variables, and setJ (n, d) to be the ideal inR generated by the
following polynomialshri : first the four level 0 generators:

h0i = c0i
(
s − f bd0i

)
, i = 1,2,3,4;

then the eight level 1 generators:

h13 = f c01 − sc02,

h14 = f c04 − sc03,
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h15 = s(c03 − c02),

h16 = f (c02b01 − c03b04),

h1,6+i = f c02c1i (b02 − b1ib03), i = 1, . . . , 4,

the first four levelr generators,r = 1, . . . , n:

hr3 = sc01c11 · · ·cr−3,1(cr−2,4cr−1,1 − cr−2,1cr−1,2),

hr4 = sc01c11 · · ·cr−3,1(cr−2,4cr−1,4 − cr−2,1cr−1,3),

hr5 = sc01c11 · · ·cr−2,1(cr−1,3 − cr−1,2),

hr6 = sc01c11 · · ·cr−3,1cr−2,4(cr−1,2br−1,1 − cr−1,3br−1,4),

the last four levelr generators,r = 1, . . . , n− 1:

hr,6+i = sc01c11 · · ·cr−3,1cr−2,4cr−1,2cri(br−1,2 − bribr−1,3), i = 1, . . . ,4,

and the last leveln generator:

hn7 = sc01c11 · · ·cn−3,1cn−2,4cn−1,2(bn−1,2 − bn−1,3).

For simpler notation,J (n, d) will often be abbreviated toJ .
Observe that the maximum degree of the given generators ofJ (n, d) is max{n+ 2,

5, d + 2}. The imagesc01c11 · · ·cn−2,1(cn−1,1 − cn−1,4) of sn − fn by construction lies in
J (n, d) and has degreen+ 1. When this element is written as anR-linear combination of
thehri , the coefficient ofh04 is doubly exponential inn. Note that the contrast betwee
a number doubly exponential inn and the degreen+1 of the input polynomial arising from
this instance of the ideal membership problem forJ (n, d) is not as striking as the contra
between a number doubly exponential inn and the degree 1 of the input polynomial arisi
from the ideal membership examplesn − fn for Jl(n, d).

Thus while J (n, d) is a useful simplification ofJl(n, d) as far as the primar
decomposition and associated prime ideals are concerned, its doubly exponentia
is partially concealed.

This paper consists of two sections. Section 1 is about all the minimal prime id
their components, and their heights. For simplicity we assume that the underlying fiek is
algebraically closed. Then the number of minimal prime ideals overJ (n, d) is n(d ′)2 + 20
(Proposition 1.6), whered ′ is the largest divisor ofd which is relatively prime to the
characteristic of the field. Most of the minimal components are simply the prime i
(Proposition 1.7). Section 2 shows that the doubly exponential behavior of the Mayr–M
ideals is due to the existence of embedded prime ideals.

The computation of embedded prime ideals is tackled in [14]. [14] also constructs
family of ideals with the doubly exponential ideal membership problem. Recursion c
applied to this new family in the construction of the embedded prime ideals, see [15
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1. Minimal prime ideals and their components

The minimal prime ideals overJ (n, d) and their components are easy to compute.
d ′ denote the largest divisor ofd which is relatively prime to the characteristic of the fie
Then there aren(d ′)2 + 20 minimal prime ideals, many of which are their own prima
components ofJ (n, d).

The minimal prime ideals are analyzed in two groups: those on whichs and f are
non-zerodivisors, and the rest of them. The first group consists ofn(d ′)2 + 1 prime ideals.

The minimal prime ideals not containingsf are denotedPr_ , wherer varies from 0
to n, and the other part _ of the subscript depends onr. For the rest of the minimal prim
ideals the front part of the subscript varies from−1 to−4.

Lemma 1.1. LetP be an ideal ofR containingJ such thats andf are non-zero-divisors
moduloP (in particular sf /∈ P). Letr ∈ {0, . . . , n− 1}. Suppose that for allj < r and all
i = 1,2,3,4, cji is not a zero-divisor moduloP . Then

(1) For all j ∈ {0, . . . , r},
cj3 − cj2, cj4 − cj1, c01 − c02b

d
01 ∈ P,

and if j > 0,

cj2 − cj1 ∈ P.
(2) If r > 0, cri ∈ P for somei ∈ {1,2,3,4} if and only ifcri ∈ P for all i ∈ {1,2,3,4}.
(3) For all j ∈ {0, . . . , r − 1},

bj4 − bj1 ∈ P.
Also, for allj ∈ {0, . . . , r − 2},

bj2 − bj+1,ibj3 ∈ P, i = 1,2,3,4.

(4) Assume thatr > 0. Then for alli, j ∈ {1,2,3,4},
s − f bd01, b

d
0i − bd0j ∈ P.

(5) Assume thatr > 1 and thatP is a prime ideal such that nob0i lies inP . Then wheneve
1 � i < j � 4, there exists a(d ′)th root of unityαij ∈ k such thatb0i −αij b0j ∈ P and

α14 = 1, α24 = α−1
12 , α34 = α−1

13 .

Proof. By the assumption thatsf is a non-zerodivisor moduloJ , if j = 0, h15 =
s(c03− c02) being inP implies thatc03− c02 is in P . Also,h14−h13 equalsf (c04− c01),
so thatc04 − c01 ∈ P . Note thath01 + bd01h13 = s(c01 − c02b

d
01), so thatc01 − c02b

d
01 ∈ P .

This proves (1) forj = 0.
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Now assume thatj > 0. If j � r < n,hj+1,5 = sc01c11 · · ·cj−1,1(cj3 − cj2) being inP
implies thatcj3 − cj2 is in P . Furthermore,

hj+1,4 − hj+1,3 + hj+1,5 = sc01c11 · · ·cj−2,1cj−1,4(cj4 − cj1) ∈ P,

so that cj4 − cj1 is in P . Then hj+1,3 equalssc01c11 · · ·cj−1,1(cj1 − cj2) modulo
(cj−1,4 − cj−1,1), so thatcj1 − cj2 lies inP . This proves (1).

With (1) established, (2) is an easy consequence.
To prove (3), observe that modulo(c03 − c02)⊆ P , h16 equalsf c02(b01 − b04). Hence

if r > 0, b01 − b04 is in P . If 0 � j < r,

hj+1,6 ≡ sc01c11 · · ·cj−2,1cj−1,4cj2(bj1 − bj4) modulo(cj3 − cj2),

hencebj1 − bj4 is in P . Furthermore, for alli = 1, . . . ,4,

h1,6+i ≡ f c02c14(b02 − b1ib03) ∈ P,
hj,6+i ≡ sc01c11 · · ·cj−3,1cj−2,4cj−1,2cji (bj−1,2 − bjibj−1,3) ∈ P for j > 1,

so thatbj−1,2 − bjibj−1,3 is in P for all j = 1, . . . , r − 1 and all i = 1, . . . ,4. This
proves (3).

If r > 0, h0i = c0i (s − f bd0i) ∈ P implies thats − f bd0i ∈ P . Hence whenever 1� i <

j � 4, f (bd0i − bd0j ) is in P so thatbd0i − bd0j is in P . This proves (4), and then (5) follow
easily. ✷

For notational purposes define the following ideals inR:

E = (
s − f bd01

)+ (
b01 − b04, b

d
02 − bd03, b

d
01 − bd02

)
,

F = (
b02 − b11b03, b14 − b11, b13 − b11, b12 − b11, b

d
12 − 1

)
,

Cr = (cr1, cr2, cr3, cr4), r = 0, . . . , n− 1,

Cn = (0),

D0 = (
c04 − c01, c03 − c02, c01 − c02b

d
01

)
,

Dr = (cr4 − cr1, cr3 − cr2, cr2 − cr1), r = 1, . . . , n− 1,

Dn = (0),

B0 = B1 = (0),

Br = (1− b2i ,1− b3i , . . . ,1− bri | i = 1, . . . ,4), r = 2, . . . , n− 1.

With the previous lemma and this notation then:
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Proposition 1.2. LetP be a minimal prime ideal containingJ and not containingsf .

(1) If P contains one of thec0i , thenP equals the height four prime ideal

P0 = (c01, c02, c03, c04)= C0.

(2) If P contains nocji , setr = n, otherwise setr to be the smallest integer such thatP
contains somecri . If r = 1, P contains

p1 = C1 +E +D0,

and if r > 1, P contains

pr = Cr +E + F +Br−1 +D0 +D1 + · · · +Dr−1.

(3) For all r = 1, . . . , n, J ⊆ pr .

Proof. Suppose thatP containsc01 or c04. By Lemma 1.1,P contains bothc01 andc04.
Similarly, if P containsc02 or c03, thenP containsP0. AsP containsf c01− sc02, f c04−
sc03 and does not contains, thenP contains all thec0i , and thusP0. As P0 containsJ ,
this verifies (1).

If r � 1, pr obviously containsJ , thus verifying (3). By Lemma 1.1,Cr + E +
D0 + D1 + · · · + Dr−1 lies in P . Thus it remains to prove thatF + Br−1 ⊆ P when
r > 1. As bj2 − bj+1,ibj3 ∈ P for all j = 0, . . . , r − 2, i = 1, . . . ,4, it follows that
(bj+1,i − bj+1,i′)bj3 is in P for any i, i ′ ∈ {1,2,3,4}. If bj3 ∈ P , by an application o
Lemma 1.1(3),bj−1,2 ∈ P , whencebj−2,2 ∈ P, . . . , b02 is in P . But thenc02s = c02(s −
f bd02)+ c02f b

d
02 ∈ J , contradicting the assumptions. Thus necessarilybj+1,i − bj+1,i′ is

in P for all j = 0, . . . , r−2, or thatbj−1,i−bj−1,i′ is inP for all j = 2, . . . , r. Once this is
established, thenhj,6+i equalssc01c11 · · ·cj−3,1cj−2,4cj−1,2cjibj−1,3(1− bji) moduloP
so that 1− bji is in P for all i = 1, . . . ,4 and allj = 2, . . . , r − 1. A similar argumen
shows thatbd11 − 1 is inP .

The remaining caser = n has essentially the same proof.✷
From this one can read off the minimal prime ideals and components:

Proposition 1.3. Let d ′ be the largest divisor ofd which is relatively prime to the
characteristic of the field. Writed = d ′e for some integere. All the minimal prime ideals
overJ which do not containsf are

P0,

P1αβ = p1 + (b01 − αb02, b02 − βb03),

Prαβ = pr + (b01 − αb02, b02 − βb03, β − b1i | i = 1, . . . ,4),

whereα andβ vary over the(d ′)th roots of unity. The heights of these ideals are as follo:
ht(P0)= 4, for r ∈ {1, . . . , n− 1}, ht(Prαβ)= 7r + 4, andht(Pnαβ)= 7n.
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Furthermore, with notation as in the previous proposition, for allr � 1,

⋂
α,β

Prαβ = √
pr = pr + (

bd
′

02 − bd ′
03, b

d ′
01 − bd ′

02, b
d ′
12 − 1

)
.

Proof. The case ofP0 is trivial. It is easy to see that forr > 0, the listed prime idealsPrαβ
are minimal overpr and that the intersection of the(d ′)2 Prαβ equalspr . It is trivial to
calculate the heights, and it is straightforward to prove the last statement.✷

This completes the list of all the minimal prime ideals overJ (n, d)which do not contain
s andf . Their primary components follow easily:

Proposition 1.4. Adopt the notation of Proposition1.3. TheP0-primary component ofJ
is P0. Wheneverr � 1, andα andβ are (d ′)th roots of unity, thePrαβ -primary componen
prαβ of J is

p1αβ = p1 + (
be01 − αebe02, b

e
02 − βebe03

)
,

prαβ = pr + (
be01 − αebe02, b

e
02 − βebe03, β

e − be1i | i = 1, . . . ,4
)
.

Furthermore, for allr � 1,
⋂
α,β prαβ = pr .

The next group of minimal prime ideals all contains:

Proposition 1.5. LetP be a prime ideal minimal overJ . If P containss, thenP is one of
the following19 prime ideals:

P−1 = (s, f ),

P−2 = (s, c01, c02, c04, b03, b04),

P−3 = (s, c01, c04, b02, b03, c02b01 − c03b04),

P−4Λ = (c1i | i /∈Λ)+ (b1i | i ∈Λ)+ (s, c01, c03, c04, b01, b02),

asΛ varies over the subsets of{1,2,3,4}. The heights of these prime ideals are2,6,6 and
10, respectively.

Proof. Note that

J + (s)= (
c0if b

d
0i, f c02c1i(b02 − b1ib03) | i = 1,2,3,4

)
+ (
s, f c01, f c04, f (c02b01 − c03b04)

)
.

If P containsf , it certainly equalsP−1. Now assume thatP does not containf . ThenP
is minimal over(

c0ib
d , c02c1i (b02 − b1ib03) | i = 1,2,3,4

)+ (s, c01, c04, c02b01 − c03b04).
0i
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If c02 ∈ P , thenP is minimal over

(
c03b

d
03, s, c01, c02, c04, c03b04

)
,

so it is either(s, c01, c02, c03, c04) or (s, c01, c02, c04, b03, b04) = P−2. However, the first
option is not minimal overJ as it strictly containsP0 from Proposition 1.2.

Now assume thatP does not containf c02. ThenP is minimal over

(
b02, c03b

d
03

)+ (c1ib1ib03 | i = 1,2,3,4)+ (s, c01, c04, c02b01 − c03b04).

If P containsb03, thenP = (s, c01, c04, b02, b03, c02b01 − c03b04), which isP−3.
Finally, assume thatP does not containf c02b03. ThenP is minimal over

(b02, c03)+ (c1ib1i | i = 1,2,3,4)+ (s, c01, c04, b01),

whenceP is one of theP−4Λ. ✷
It turns out that there are no other minimal prime ideals overJ (n, d):

Proposition 1.6. The prime ideals from the previous three propositions are the only p
ideals minimal overJ . Thus there are1 + n(d ′)2 + 3 + 24 = n(d ′)2 + 20 minimal prime
ideals.

Proof. Proposition 1.3 determined all the minimal prime ideals overJ not containingsf ,
and Proposition 1.5 determined all those minimal prime ideals which contains. It remains
to find all the prime ideals containingf andJ but nots. As J + (f ) contains(c0is | i =
1,2,3,4), a minimal prime ideal containingJ + (f ) but nots contains, and even equa
(f, c01, c02, c03, c04). However, this prime ideal properly containsP0, and hence is no
minimal overJ . The proposition follows as there are no containment relations amon
given prime ideals. ✷

Then(d ′)2 + 20 minimal primary components can be easily computed:

Proposition 1.7. For all possible subscripts◦, let p◦ be theP◦-primary component ofJ .
Then

p−2 = (
s, c01, c02, c04, b

d
03, b04

)
,

p−4Λ = (c1i | i /∈Λ)+
(
bd1i, b02 − b1ib03, b1i − b1j | i, j ∈Λ)

+ (
s, c01, c03, c04, b01, b

d
02

)
,

andp−1 = P−1, p−4Λ = P−4Λ.

Proof. By Proposition 1.4, it remains to calculatep−1,p−2,p−3 andp−4Λ. As c03 − c02
is not an element ofP−1,P−2,P−3 andP−4Λ, and sinceh15 = s(c03 − c02) is in J , it
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follows thats ∈ p−1,p−2,p−3 andp−4Λ. Thenc01f b
d
01 ∈ p−1, so thatf ∈ p−1, and so

p−1 = P−1.
As h13 = f c01 − sc02, h14 = f c04 − sc03 are inJ , thenf c01, f c04 ∈ p−2,p−3 and

p−4Λ, whencec01, c04 ∈ p−2,p−3,p−4Λ. For all i = 1, . . . ,4, ash1,6+i = f c02c1i (b02 −
b1ib03) ∈ J , it follows thatb02 − b1ib03 ∈ p−3. Thus asb11 − b12 /∈ P−3, it follows that
b03 and hence alsob02 are inP−3. Now it is clear thatp−3 is theP−3-primary componen
of J .

Further, fori = 2,3, c0if b
d
0i ∈ pj implies thatbd02 ∈ p−4Λ, bd03 ∈ p−2, c02 ∈ p−2, and

c03 ∈ p−4Λ. As h16 = f (c02b01 − c03b04) is in J , thenf c03b04 is in p−2 so thatb04 is in
p−2. Also f c02b01 is in p−4Λ so thatb01 is in p−4Λ. Thus theP−2-primary componen
containsp−2. But p−2 containsJ andp−2 is clearly primary, sop−2 is theP−2-primary
component ofJ .

Lastly, asJ containsh1,6+i , i = 1, . . . ,4, eachp−4Λ contains eachc1i (b02 − b1ib03).
If i /∈ Λ, thenb02 − b1ib03 is not in P−4Λ, so thatc1i ∈ p−4Λ. If insteadi ∈ Λ, then
c1i /∈ P−4Λ, so thatb02 − b1ib03 is in p−4Λ. Hencebd02 − bd1ib

d
03 is in p−4Λ, so that as

bd02 ∈ p−4Λ, so isbd1ib
d
03. Hencebd1i is inp−4Λ. Furthermore, fori, j ∈Λ, b03(b1j −b1i)=

(b02 − b1ib03)− (b02 − b1jb03) is in p−4Λ, so thatb1j − b1i is in p−4Λ. Thus

p−4Λ ⊇ (c1i | i /∈Λ)+
(
bd1i, b02 − b1ib03, b1i − b1j | i, j ∈Λ)+ (

s, c01, c03, c04, b01, b
d
02

)
,

but the latter ideal is primary and containsJ , so equality holds. ✷
The structure ofp−2 shows that:

Proposition 1.8. For n,d � 2, J (n, d) is not a radical ideal.

Table 1 contains all the minimal prime ideals overJ (n, d). There,d = d ′e with d ′ the
greatest divisor ofd relatively prime to the characteristic of the field, andα andβ are
varying over the(d ′)th roots of unity.

Table 1

Minimal prime ideal Height Component ofJ(n,d)

P0 = (c01, c02, c03, c04) 4 p0 = P0
P1αβ = p1 + (b01 − αb02, b02 − βb03) 11 P1αβ = p1 + (be01 − αebe02, b

e
02 − βebe03)

Prαβ = pr 7r prαβ = pr
+ (b01 − αb02, b02 − βb03, β − b1i ) +4δr<n + (be01 − αebe02, b

e
02 − βebe03, b

e
12 − βe)

P−1 = (s, f ) 2 p−1 = P−1
P−2 = (s, c01, c02, c04, b03, b04) 6 p−2 = (s, c01, c02, c04, b

d
03, b04)

P−3 = (s, c01, c04, b02, b03) 6 p−3 = P−3
+ (c02b01 − c03b04)

P−4Λ = (s, c01, c03, c04, b01, b02) 10 p−4Λ = (s, c01, c03, c04, b01, b
d
02)+ (c1i , b1j | i /∈Λ,j ∈Λ) + (c1i | i /∈Λ)

+ (bd1j , b02 − b1j b03, b1j − b1j ′ | j, j ′ ∈Λ)
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2. Doubly exponential behavior is due to embedded prime ideals

The aim of this section is to compute the intersection of all the minimal componen
Not surprisingly, the doubly exponential behavior is not due to the minimal prime id

or their components. We prove this below. Explicitly, it is straightforward to see tha
elementf c02b

d
02c11c21 · · ·cn−2,1(cn−1,1 − cn−1,4) lies in every minimal component ofJ .

(This will be verified below explicitly in the computation of the intersection of all
minimal components.) But any ideal containingJ and the element above does not exh
the doubly exponential behavior. Namely, setc′ = c11c21 · · ·cn−2,1(cn−1,1 − cn−1,4). Then

sc01 · · ·cn−2,1(cn−1,1 − cn−1,4)

= c01
(
s − f bd01

)
c′ + (f c01 − sc02)b

d
01c

′ + c02
(
s − f bd02

)
bd01c

′ + bd01f c02b
d
02c

′,

and the degrees of the coefficientsc′, bd01c
′, bd01c

′ andbd01 of the elementsh01, h13, h02 and
f c02b

d
02c

′, respectively, are not doubly exponential inn. This proves:

Proposition 2.1. The doubly exponential ideal membership problem of the Mayr–M
idealsJ (n, d) andJl(n, d) for the elementsc01 · · ·cn−2,1(cn−1,1 − cn−1,4) is not due to
the minimal components, but to some embedded prime ideal.

We compute below the intersection of all the minimal components ofJ (n, d), and show
that the elementf c02b

d
02c11c21 · · ·cn−2,1(cn−1,1 − cn−1,4) is even in a natural minima

generating set of this intersection.
First define the ideal

p−4 = (
s, c01, c03, c04, b01, b

d
02

)
+ (
c1i(b02 − b1ib03), c1ib

d
1i , c1ic1j (b1i − b1j ) | i, j = 1, . . . ,4

)
.

Note thatp−4 : c11 = p−4 : c2
11, so that by Fact 0.4,p−4 = (p−4 : c11) ∩ (p−4 + (c11)).

Similarly,

p−4 = (p−4 : c11c12)∩
(
(p−4 : c11)+ (c12)

)∩ ((p−4 + (c11)
)
: c12

)∩ (p−4 + (c11, c12)
)

= · · ·
=
⋂
Λ

(((
(p−4 ∗1 c11) ∗2 c12

) ∗3 c13
) ∗4 c14

)
,

where∗i vary over the operations colon and addition. But the resulting component i
are just the variousp−4Λ, so that

p−4 =
⋂
Λ

p−4Λ.

Next we compute the intersection ofp−4 andp−2 (using Fact 0.1):
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p−2 ∩ p−4 = (
(s, c01, c04)+

(
c02, b

d
03, b04

))∩ p−4

= (s, c01, c04)+
(
c02, b

d
03, b04

)
· (c03, b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i, c1ic1j (b1i − b1j )

)
,

so that

p−2 ∩ p−3 ∩ p−4 = (s, c01, c04, c02b01 − c03b04)

+ (
bd03

)(
c03, b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i, c1ic1j (b1i − b1j )

)
+ (c02, b04) ·

(
bd02, c1i (b02 − b1ib03)

)
+ (c02, b04) ·

(
c03, b01, c1ib

d
1i, c1ic1j (b1i − b1j )

) · (b02, b03)

= (s, c01, c04, c02b01 − c03b04)

+ (
bd03

)(
c03, b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i, c1ic1j (b1i − b1j )

)
+ (c02, b04)

(
bd02, c1i (b02 − b1ib03), c03b02, c03b03, b01b02, b01b03,

c1ib
d
1ib02, c1ib

d
1ib03

)
.

Thus the intersection of the minimal components ofJ (n, d) which contains equals:

p−1 ∩ p−2 ∩ p−3 ∩ p−4

= (
s, f c01, f c04, f (c02b01 − c03b04)

)
+ f (bd03

)(
c03, b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i , c1ic1j (b1i − b1j )

)
+ f (c02, b04)

(
bd02, c1i (b02 − b1ib03), c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib02,

c1ib
d
1ib03

)
= J + (s)+ f bd03

(
b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i , c1ic1j (b1i − b1j )

)
+ f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03

)
+ f b04

(
bd02, c1i (b02 − b1ib03), b01b02, b01b03, c1ib

d
1ib02, c1ib

d
1ib03

)
.

We can simplify this intersection in terms of the generators ofJ if we first intersect the
intersection with the minimal componentp0:

p0 ∩ · · · ∩ p−4 = J + sC0

+ f bd03C0
(
b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i, c1ic1j (b1i − b1j )

)
+ f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03

)
+ f b04C0

(
bd02, c1i (b02 − b1ib03), b01b02, b01b03, c1ib

d
1ib02, c1ib

d
1ib03

)
.

As, J + fC0 = J + f (c02, c03) andJ + sC0 = J + sD0 + (f c02b
d ), it follows that
02
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p0 ∩ · · · ∩ p−4

= J + sC0 + f bd03(c02, c03)
(
b01, b

d
02, c1i (b02 − b1ib03), c1ib

d
1i, c1ic1j (b1i − b1j )

)
+ f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03

)
+ f b04(c02, c03)

(
bd02, c1i(b02 − b1ib03), b01b02, b01b03, c1ib

d
1ib02, c1ib

d
1ib03

)
= J + sC0 + f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03

)
= J + sD0 + f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03, b

d
02

)
.

Next we compute the intersection of all the minimal components ofJ (n, d) which do
not contains and are different fromp0:

Lemma 2.2. For 2 � r � n,

p1 ∩ p2 ∩ · · · ∩ pr =E +D0 +C1F +
r−1∑
i=0

C1C2 · · ·Ci(Di+1 +Bi)+C1C2 · · ·Cr.

Proof. Whenr = 2,

p1 ∩ p2 = (C1 +E +D0)∩ (C2 +E + F +D0 +D1 +B1)

= E +D0 +C1 ∩ (C2 +E + F +D0 +D1 +B1)

= E +D0 +D1 +C1 ∩ (C2 +E + F +D0 +B1)

= E +D0 +D1 +C1 · (C2 +E + F +D0 +B1)

= E +D0 +D1 +C1F +C1 · (C2 +B1),

which starts the induction. Then by induction assumption forr � 2 andr � n− 1,

p1 ∩ · · · ∩ pr+1 =
(
E +D0 +C1F +

r−1∑
i=0

C1C2 · · ·Ci(Di+1 +Bi)+C1 · · ·Cr
)

∩ pr+1

= E +D0 +C1F +
r−1∑
i=0

C1C2 · · ·Ci(Di+1 +Bi)+ (C1 · · ·Cr)∩ pr+1,

and by multihomogeneity, the last intersection equals

C1 · · ·Cr(Cr+1 +E + F +Br)+
r∑
j=1

(
Dj

r∏
k �=j

Ck

)
.

Combining the last two displays proves the lemma.✷
Thus the intersection of all the minimal components ofJ (n, d) equals:
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n
s

n⋂
r=−4

pr = (
J + sD0 + f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03, b

d
02

))∩
n⋂
r=1

pr

= J + sD0 + (
f c02

(
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03, b

d
02

))∩
n⋂
r=1

pr

= J + sD0 + f c02

((
c03b02, c03b03, b01b02, b01b03, c1ib

d
1ib03, b

d
02

)∩
n⋂
r=1

pr

)
.

Let A = (c03b02, c03b03, b01b02, b01b03, c1ib
d
1ib03, b

d
02) ∩⋂n

r=1pr . Thus the intersectio
of all the minimal components ofJ (n, d) equalsJ + sD0 +f c02A. Finding the generator
of A takes up most of the rest of this section. We will use the decomposition

A= (
c03, b01, c1ib

d
1i , b

d
02

)∩ (c03, b01, b03, b
d
02

)∩ (b02, b03)∩
n⋂
r=1

pr,

and start computingA via the indicated partial intersections, again using Fact 0.1:

(b02, b03)∩
n⋂
r=1

pr = (
bd02 − bd03, c11(b02 − b11b03)

)+ (b02, b03) ·L′

= (
bd02 − bd03, c11(b02 − b11b03)

)+ b03 ·L′ + b02L
′′,

where

L′ = L′′ + c11
(
b1i − b1j , b

d
12 − 1

)+
n−1∑
i=0

c11 · · ·ci1(Di+1 +Bi),

L′′ = (
s − f bd01, b01 − b04, b

d
01 − bd03

)+D0 +D1.

Note thatL′ is generated by all the generators of
⋂
r�1pr other thanbd02 − bd3. Then the

intersection of the last three components ofA is

(
c03, b01, b03, b

d
02

)∩ (b02, b03) ∩
n⋂
r=1

pr

= (
bd02 − bd03

)+ b03 ·L′ + (
c03, b01, b03, b

d
02

)∩ ((c11(b02 − b11b03)
)+ b02L

′′)
= (
bd02 − bd03, b02

(
bd01 − bd03

))+ b03 ·L′

+ (
c03, b01, b03, b

d
02

)∩ ((c11(b02 − b11b03)
)

+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

= (
bd − bd , b02

(
bd − bd ))+ b03 ·L′
02 03 01 03
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+ (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ (
b03, b

d
02

)∩ ((c11(b02 − b11b03)
)+ b02

((
s − f bd01, b01 − b04

)+D0 +D1
))

= (
bd02 − bd03, b02

(
bd01 − bd03

))+ b03 ·L′

+ (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ (
b03, b

d
02

)∩ (c11(b02 − b11b03), b02
)

∩ ((c11(b02 − b11b03)
)+ (

s − f bd01, b01 − b04
)+D0 +D1

)
= (
bd02 − bd03, b02

(
bd01 − bd03

))+ b03 ·L′

+ (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ (
b03c11b11, b

d
02, b02b03

)∩ ((c11(b02 − b11b03), s − f bd01, b01 − b04
)+D0 +D1

)
= (
bd02 − bd03, b02

(
bd01 − bd03

))+ b03 ·L′

+ (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ (
b03c11b11, b

d
02, b02b03

) · ((s − f bd01, b01 − b04
)+D0 +D1

)
+ (
b03c11b11, b

d
02, b02b03

)∩ (c11(b02 − b11b03)
)

= (
bd02 − bd03, b02

(
bd01 − bd03

))+ b03 ·L′

+ (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ c11(b02 − b11b03)
(
b03, b

d−1
02

)
= (
bd02 − bd03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

+ (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))
.

HenceA, the intersection of all of its components, equals

A = (
c03, b01, c1ib

d
1i, b

d
02

)∩ (c03, b01, b03, b
d
02

)∩ (b02, b03)∩
n⋂
r=1

pr

= (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ (
c03, b01, c1ib

d
1i, b

d
02

)
∩
((
bd02 − bd03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

)

= (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd , b01 − b04

)+D0 +D1
))
01
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+ c03

((
bd02 − bd03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

)

+ (
b01, c1ib

d
1i , b

d
02

)
∩
((
bd02 − bd03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

)
.

LetA′ be the last intersection above. The second intersectand ideal ofA′ decomposes as

(
bd02 − bd03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

=
n⋂
r=1

pr ∩
((
bd02, b

d
03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

)
,

so that

A′ =
n⋂
r=1

pr ∩ (b01, c1ib
d
1i, b

d
02

)∩
((
bd02, b

d
03, b02b

d
01, b

d−1
02 c11b11b03

)+ b03

n⋂
r=1

pr

)

=
n⋂
r=1

pr ∩
((
bd02, b02b

d
01

)
+ (
b01, c1ib

d
1i , b

d
02

)∩
((
bd03, b

d−1
02 c11b11b03

)+ b03

n⋂
r=1

pr

))

=
n⋂
r=1

pr ∩
((
bd02, b02b

d
01

)

+ b03

((
b01, c1ib

d
1i, b

d
02

)∩
((
bd−1

03 , bd−1
02 c11b11

)+
n⋂
r=1

pr

)))

=
n⋂
r=1

pr ∩
((
bd02, b02b

d
01, b03

(
c1ib

d
1i − c11b

d
11

)
, b03b

d
01

)

+b03

((
b01, c11b

d
11

) ∩
((
bd−1

03 , bd−1
02 c11b11

)+
n⋂
r=1

pr

)))

=
n⋂
r=1

pr ∩
((
bd02, b02b

d
01, b03

(
c1ib

d
1i − c11b

d
11

)
, b03b

d
01

)

+b03
((
b01, c11b

d
11

)∩ ((bd−1
03 , bd−1

02 c11b11
)+L′′′))),
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whereL′′′ is generated by all the given generators of
⋂
r�1pr other thanbd01 − bd03:

L′′′ = (
s − f bd01, b01 − b04, b

d
02 − bd03

)+D0 +C1F +
n−1∑
i=0

C1 · · ·Ci(Di+1 +Bi).

With this,

A′ =
n⋂
r=1

pr ∩
((
bd02, b02b

d
01, b03

(
c1ib

d
1i − c11b

d
11

)
, b03b

d
01

)
+ b03b01

((
bd−1

03 , bd−1
02 c11b11

)+L′′′)
+ b03

((
c11b

d
11

)∩ ((bd−1
03 , bd−1

02 c11b11
)+L′′′)))

=
n⋂
r=1

pr ∩
((
bd02, b02b

d
01, b03

(
c1ib

d
1i − c11b

d
11

)
, b03b

d
01

)
+ b03b01

((
bd−1

03 , bd−1
02 c11b11

)+L′′′)
+ b03c11b

d
11

((
bd−1

03 , bd−1
02

)+L′′′ : c11
))

= (
b02
(
bd01 − bd02

)
, b03

(
c1ib

d
1i − c11b

d
11

)
, b03

(
bd01 − bd02

)
, b01

(
bd03 − bd02

))
+ (
b01b

d−1
02 c11(b02 − b03b11)

)+ b03b01L
′′′

+ (
c11b

d
11

(
bd03 − bd02

)
, bd−1

02 bd−1
11 c11(b02 − b03b11)

)
+ b03c11b

d
11

(
L′′′ : c11

)+
n⋂
r=1

pr ∩ (bd02

)
= (

b02
(
bd01 − bd02

)
, b03

(
c1ib

d
1i − c11b

d
11

)
, b03

(
bd01 − bd02

)
, b01

(
bd03 − bd02

))
+ (
b01b

d−1
02 c11(b02 − b03b11)

)+ b03b01L
′′′

+ (
c11b

d
11

(
bd03 − bd02

)
, bd−1

02 bd−1
11 c11(b02 − b03b11)

)
+ b03c11b

d
11

(
L′′′ : c11

)+ bd02 ·
n⋂
r=1

pr .

HenceA equals

A = (c03, b01) ·
((
c11(b02 − b11b03)

)+ b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ c03

((
bd02 − bd03, b02

(
bd01 − bd03

)
, bd−1

02 c11(b02 − b11b03)
)+ b03

n⋂
r=1

pr

)

+ (
b02
(
bd − bd ), b03

(
c1ib

d − c11b
d
)
, b03

(
bd − bd ), b01

(
bd − bd ))
01 02 1i 11 01 02 03 02
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+ (
b01b

d−1
02 c11(b02 − b03b11)

)+ b03b01L
′′′

+ (
c11b

d
11

(
bd03 − bd02

)
, bd−1

02 bd−1
11 c11(b02 − b03b11)

)
+ b03c11b

d
11

(
L′′′ : c11

)+ bd02 ·
n⋂
r=1

pr .

Thus finally,

n⋂
r=−4

pr = J + sD0 + f c02A

= J + sD0 + f c02(c03, b01) ·
(
b02
((
s − f bd01, b01 − b04

)+D0 +D1
))

+ f c02c03

((
bd02 − bd03, b02

(
bd01 − bd03

))+ b03

n⋂
r=1

pr

)

+ f c02
(
b02
(
bd01 − bd02

)
, b03

(
c1ib

d
1i − c11b

d
11

)
, b03

(
bd01 − bd02

)
,

b01
(
bd03 − bd02

)
, c11b

d
11

(
bd03 − bd02

))
+ f c02b03b01L

′′′ + f c02b03c11b
d
11

(
L′′′ : c11

)+ f c02b
d
02 ·

n⋂
r=1

pr,

or, in nicer form:

Theorem 2.3. The intersection of all the minimal components ofJ (n, d) equals

n⋂
r=−4

pr = J + sD0 + f c02b02(c03, b01)
(
s − f bd01, b01 − b04

)

+ f c02b02(c03, b01)(D0 +D1)+ f c02c03
(
bd02 − bd03, b02

(
bd01 − bd03

))
+ f c02c03b03 ·

(
E +D0 +C1F +

n−1∑
i=0

c11 · · ·ci1(Di+1 +Bi)
)

+ f c02
(
b02
(
bd01 − bd02

)
, b03

(
c1ib

d
1i − c11b

d
11

)
, b03

(
bd01 − bd02

))
+ f c02

(
b01
(
bd03 − bd02

)
, c11b

d
11

(
bd03 − bd02

))
+ f c02b03b01

(
E′′′ +D0 +C1F +

n−1∑
i=0

c11 · · ·ci1(Di+1 +Bi)
)

+ f c02b03b
d
11c11

(
E′′′ +D0 + F +

n−1∑
c21 · · ·ci1(Di+1 +Bi)

)

i=0
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bove

and

147.
ons, I,

h. 110

ideals,

tative

try and

(1926)

25–245.

omial

bolic

2002.
+ f c02b
d
02 ·

(
E +D0 +C1F +

n−1∑
i=0

c11 · · ·ci1(Di+1 +Bi)
)
,

where

E′′′ = (
s − f bd01, b01 − b04, b

d
03 − bd02

)
.

(With Macaulay2 I verified this theorem and intermediate computations in the proof a
for the casen= 3, d = 2.)
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