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Grete Hermann proved in [8] that for any iddain anr-dimensional polynomial ring
over the field of rational numbers, Ifis generated by polynomials, ..., f; of degree
at mostd, then it is possible to writef = Y _r; f; such that each; has degree at most
degf + (kd)?". Mayr and Meyer in [11] found (generators of) a family of ideals for which
a doubly exponential bound inis indeed achieved. Bayer and Stillman [1] showed that for
these Mayr—Meyer ideals any minimal generating set of syzygies has elements of doubly
exponential degree in. Koh [9] modified the original ideals to obtain homogeneous
guadric ideals with doubly exponential syzygies and ideal membership equations.

Bayer, Huneke, and Stillman asked whether the doubly exponential behavior is due to
the number of associated prime ideals, or to the nature of one of them? By comparing to
Kollar's effective Nullstellensatz [10], the suspicion is that the exponential behavior is due
to some deeply embedded component. This paper examines the minimal components and
minimal prime ideals of the Mayr—Meyer ideals. In particular, in Section 2 it is proved that
the intersection of the minimal components of the Mayr—Meyer ideals does not satisfy the
doubly exponential property, so that the doubly exponential behavior of the Mayr—Meyer
ideals must be due to the embedded prime ideals.

The structure of the embedded prime ideals of the Mayr—Meyer ideals is examined
in [14].

There exist algorithms for computing primary decompositions of ideals (see Gianni
et al. [5], Eisenbud et al. [3], or Shimoyama and Yokoyama [12]), and they have been
partially implemented on the symbolic computer algebra programs Singular [7] and
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Macaulay2 [6]. However, the Mayr—Meyer ideals have variable degree and a variable
number of variables over an arbitrary field, and there are no algorithms to deal with

this generality. Thus any primary decomposition of the Mayr—Meyer ideals has to be

accomplished with traditional proof methods. Small cases of the primary decomposition
analysis were partially verified on Macaulay2 and Singular, and the emphasis here is on
“partially”: the computers quickly run out of memory.

The Mayr—Meyer ideals are binomial, so by the results of Eisenbud and Sturmfels in [4]
all the associated prime ideals themselves are also binomial ideals. It turns out that many
minimal prime ideals are even monomial, which simplifies the calculations.

The Mayr—Meyer ideals depend on two parametersndd, where the number of
variables in the ring is @ and the degree of the given generators of the ideal i§.0(
Bothn andd are positive integers.

Here is the definition of the Mayr—Meyer ideals: ietd > 1 be integers ankl a field of
arbitrary characteristic. L&t f, sy+1, fr+1, br1, br2, b3, bra, cr1, ¢r2, ¢r3, cr4 b€ variables
overk,withr =0, 1,...,n — 1. The notation here closely follows that of [9]. Set

S =k[s =s0, f = fo,S+1, fr+1, bri,cri |r=0,...,n =1 i=1...,4].

Thus S is a polynomial ring of dimension 10+ 2. The following generators define the
Mayr—Meyer ideal/; (n, d) (subscript for “long,” there will be a “shortened” version later
on): first the four level 0 generators:

Hoi =coi(s — /b)), i=1,234
then the first six levet generators; =1, .. ., n:
Hy1 = sy —sr—10r-11,
Hy2 = fr —sr—10r-1,4,
Hi3 = fr-1¢r-11— Sr—16r-12,
Hia = fr-1¢r-1,4 — Sr—10r-13,

Hy5 = s,_1(cr—1,3—¢r-1,2),

Hyg = fr-1(cr—1,2br—11— ¢r—1,3b,-1,4),
the last four level generators; =1,...,n — 1;
Hyeyi = froacr—12¢ri(br—12—brib_13), i=1,...,4,
and the last levet generator:
Hy7 = fu—1cn-1,2(bn-1,2 — bn-13).

The maximum degree of a given generatodfh, d) is maxd + 2, 4, 53, >}, wheres, »»
is the (extended) Kronecker delta function: itis L if: 2 and is 0 otherwise. The degree 1
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elements,, — f, of S isin J;(n,d), and when written as asi-linear combination of the
given generators, thg-coefficient ofHps has degree which is doubly exponentiaki(see
any of [1,2,9,11]).

The main result of this paper is the computation of the minimal prime ideals and
the minimal primary components of these Mayr—Meyer ideals. Another result is the
computation of the intersection of all the minimal components, which also shows that the
doubly exponential behavior of thg(n, d) is due to the embedded prime ideals.

The following summarizes the elementary facts used in the paper:

Facts.

0.1. Foranyideal$, I’ andI” with I C 1", I +1)YNI"=1+1'N1".

0.2. For anyideal and element, (x) NI =x(I:x).

0.3. Letxs,...,x, be variables over a rin@. Let S = R[x1,...,x,]. For any fi € R,
foeR[x1],..., fu € Rlx1,...,x,-1], letL betheidealx1— f1,...,x,— fr)Sin S.
Then anideal in R is primary (respectively, prime) if and only IfS + L is primary
(respectively, prime) ir§. Furthermore(); g; = I is a primary decomposition df if
and only if(");(¢; S + L) is a primary decomposition dfs + L.

0.4. Letx be an element of a ring and/ an ideal. Suppose that there is an intdgeuch
that for allm, I:x™ C I:x*. Thenl = (I :x*) N (I + (x¥)). Thus to find a (possibly
redundant) primary decomposition bfit suffices to find primary decompositions of
(possibly largerY : x¥ and of I + (x*).

We immediately apply this: in order to find a primary decomposition of the Mayr—Meyer
idealsJ; (n, d), by the structure of thél,.1, H,2 and by Fact 0.3, it suffices to find a primary
decomposition of the ideals(n, d) obtained fromJ; (rn, d) by rewriting the variables., f.
in terms of other variables, and then omitting the generdipisH,2, r > 1. An idealq is
a component (respectively associated primej @f, d) if and only if (¢ + (H,1, Hy2|r))S
is a component (respectively associated prime);6f, d). Thus to simplify the notation,
throughout we will be searching for the primary components and associated prime ideals
of the “shortened” Mayr—Meyer ideal&(n, d) in a smaller polynomial ringk obtained as
above. When we list the new generators explicitly, the eas€l is rather special. In fact,
the primary decomposition in the cage= 1 is very different from the case> 2, and is
given in [13]. In this paper it is always assumed that 2.

Thus explicitly, we will be working with the following “shortened” Mayr—Meyer ideals:
for any fixed integera > 2,d, setR = k[s, f,byi,cri |r=0,...,n—1;i=1,...,4],

a polynomial ring in @ + 2 variables, and set(n, d) to be the ideal irR generated by the
following polynomialsh,;: first the four level O generators:

hoi = coi(s — fbg), i=1,2,34
then the eight level 1 generators:

h13= fco1— sco2,

h1a= fcoa— sco3,
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h1s=s(co3 — c02),
h16= f(co2bo1 — co3boa),

hi164i = fcozcii(boz — b1ibo3), i=1,...,4,

the first four level- generators; =1, ..., n:

hr3 = scoic11- -+ ¢r—3,1(Cr—2,4¢r—1,1 — C;—2,1Cr-1,2),

hra = scoic11---¢r—3,1(Cr—2,4Cr—1,4 — Cr—2,1Cr-1,3),

hys = scoic11- -+ ¢r—2,1(Cr—1,3 — C¢r—1,2),

hre = scoic11- - ¢r—3,1¢r—2,4(Cr—1,2br 11 — ¢r—1,3b,-1.4),
the last four level generators; =1,...,n — 1;
hr6+i =sco1€11- - - €r—3,1Cr—2,4¢r—1,2Cri (br—12 — briby—13), i=1,...,4,
and the last levet generator:
hn7 =sco1c11- - €p—3,1¢n—2,4¢n—1,2(bn-1,2 — by—13).

For simpler notation/ (n, d) will often be abbreviated td.

Observe that the maximum degree of the given generatorginfd) is maxn + 2,

5,d 4 2}. The imagescoic11- - - cn—2.1(cn—1.1 — cn—1.4) Of s, — f,, Dy construction lies in
J(n,d) and has degree+ 1. When this element is written as &ilinear combination of
the h,;, the coefficient ofigg is doubly exponential im. Note that the contrast between
a number doubly exponential inand the degree+ 1 of the input polynomial arising from
this instance of the ideal membership problemJor, d) is not as striking as the contrast
between a number doubly exponentiatiand the degree 1 of the input polynomial arising
from the ideal membership example— f, for J;(n, d).

Thus while J(n,d) is a useful simplification of/;(n,d) as far as the primary
decomposition and associated prime ideals are concerned, its doubly exponential nature
is partially concealed.

This paper consists of two sections. Section 1 is about all the minimal prime ideals,
their components, and their heights. For simplicity we assume that the underlyingigeld
algebraically closed. Then the number of minimal prime ideals dverd) is n(d’)? + 20
(Proposition 1.6), wherd’ is the largest divisor of/ which is relatively prime to the
characteristic of the field. Most of the minimal components are simply the prime ideals
(Proposition 1.7). Section 2 shows that the doubly exponential behavior of the Mayr—Meyer
ideals is due to the existence of embedded prime ideals.

The computation of embedded prime ideals is tackled in [14]. [14] also constructs a new
family of ideals with the doubly exponential ideal membership problem. Recursion can be
applied to this new family in the construction of the embedded prime ideals, see [15].
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1. Minimal primeidealsand their components

The minimal prime ideals ovef(n, d) and their components are easy to compute. Let
d’ denote the largest divisor dfwhich is relatively prime to the characteristic of the field.
Then there are(d’)? + 20 minimal prime ideals, many of which are their own primary
components of (n, d).

The minimal prime ideals are analyzed in two groups: those on whiahd f are
non-zerodivisors, and the rest of them. The first group consist&df° + 1 prime ideals.

The minimal prime ideals not containing are denoted?,_, wherer varies from 0
to n, and the other part _ of the subscript depends.dfor the rest of the minimal prime
ideals the front part of the subscript varies frer to —4.

Lemma 1.1. Let P be an ideal ofR containingJ such thats and f are non-zero-divisors
moduloP (in particularsf ¢ P). Letr € {0, ...,n —1}. Suppose that for all < r and all
i=123,4,cj; isnota zero-divisor modul®. Then
(1) Forall j €{0,...,r},
cja—cja.Cja— Cj1, co1— cozbly € P,
andif j > 0,
cj2—cj1 € P.

(2) If r >0, c¢,; € P forsome € {1,2,3,4}ifand only ifc,; € P forall i € {1, 2, 3, 4}.
(3) Forall j€{0,...,r —1},

bja—bj1€P.
Also, forallj € {O,...,r — 2},
bjo—bjt1ibjse P, i=1,234
(4) Assume that > 0. Then for alli, j € {1, 2, 3, 4},
s — fbgy. bl — b, € P.

(5) Assume that > 1 and thatP is a prime ideal such that ny; lies in P. Then whenever
1<i < j <4, there exists &')th root of unityw;; € k such thato; —«;jbo; € P and

-1 -1
a14=1, ap4=10t5, o34 =103

Proof. By the assumption thatf is a non-zerodivisor moduld, if j = 0, h15 =
s(co3 — co2) being in P implies thatcgs — co2is in P. Also, h14 — h13 equalsf (coa — co1),
so thatcgs — co1 € P. Note thathgy + bglhl?’ =s(co1— cozbgl), so thatcgy — 00217611 eP.
This proves (1) forj = 0.
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Now assume that > 0. If j <r <n,hj115=sco1c11---¢j—1,1(c;3—cj2) beinginP
implies thatc ;3 — c;2 is in P. Furthermore,

hjt14—hjy13+hjr15=scoic11---cj—21¢j-14(cj4a—cj1) € P,

so0 thatcjs — c¢j1 is in P. Then hji13 equalsscoicii---cj—11(cj1 — ¢;2) modulo
(cj—1,4—cj-11), sothatc;1 — ¢z liesin P. This proves (1).

With (1) established, (2) is an easy consequence.

To prove (3), observe that modulens — co2) € P, hi1e €equalsfco2(bo1 — bos). Hence
if r>0,bo1—boaisinP. IfO<j<r,

hjy16=scoic11---cj_21¢j-1,4cj2(bj1 —bja) modulo(c;z — c;2),

henceb;1 — bjsisin P. Furthermore, forall =1, ..., 4,

h16+i = fcozc14(bo2 — b1ibo3) € P,
hjeri = scorc11---¢j—3,1¢j—24¢j—12¢ji(bj_12—bjibj_13) e P forj>1,
so thatb;_1o — bj;bj_13isin P forall j=1,...,r —1 and alli =1,...,4. This
proves (3).
If r > 0, ho; = coi(s — fb&) € P implies thats — fb% € P. Hence whenever & i <

Jj <4, f(b§ — b)) isin P so thatbg; — bf; isin P. This proves (4), and then (5) follows
easily. O '

For notational purposes define the following ideal®in

E = (s = fbgy) + (bor — boa, b — byz. by — ).

F = (boz — b11bo3, bra — b1, b1z — b1, b1o — b11, by — 1),
Cr = (cr1,¢r2,¢r3,¢r4), r=0,...,n—1,
Cn = (0),

Do = (coa — co1, cos — coz, co1 — co2bdy),

D, = (cra—cr1,¢r3—Cr2,¢2—¢r1), r=1...,n—-1,
D, = (0),
Bo = B1=(0),

B, = (1—bp,1—b3i,...,1—b,; |i=1,...,4), r=2,...,n—1

With the previous lemma and this notation then:
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Proposition 1.2. Let P be a minimal prime ideal containing and not containing f .
(1) If P contains one of they;, then P equals the height four prime ideal
Py = (co1, €02, co3, co4) = Co.

(2) If P contains nocj;, setr = n, otherwise set to be the smallest integer such that
contains some,;. If r = 1, P contains

p1=C1+ E + Do,
and ifr > 1, P contains
pr=C+E+F+B_1+Do+D1+---+ Dy_1.
(3) Forallr=1,...,n,J Cp,.

Proof. Suppose thaP containscgy or cps. By Lemma 1.1,P contains botheg; andcog.
Similarly, if P containscoz or co3, thenP containsPg. As P containsf co1 — sco2, fcos—
scoz and does not contaifn, then P contains all therg;, and thusPy. As Py containsJ,
this verifies (1).

If » > 1, p, obviously contains/, thus verifying (3). By Lemma 1.1C, + E +
Do+ D1+ ---+ D,_1 lies in P. Thus it remains to prove that + B,_1 € P when
r>1 Asbjp —bjy1;bjze Pforall j=0,....,r —2,i=1,...,4, it follows that
(bj+1i —bjy1i)bj3is in P for anyi,i’ € {1,2,3,4}. If b;3 € P, by an application of
Lemma 1.1(3)pj_1,2 € P, whenceb; o€ P,...,bozis in P. But thencoas = coa(s —
fbd) + coaf b, € J, contradicting the assumptions. Thus necessagily ; — b1, is
inPforall j=0,...,r—2,0orthath; _1;—b;_y; isin P forall j =2,...,r. Once thisis
established, theh; ; equalsscoicii---cj—3,1¢j—2,4cj—1,2¢jibj—1,3(1—bj;) moduloP
sothat 1-b;; isin Pforalli =1,...,4and allj =2,...,r — 1. A similar argument
shows thab{, — Lisin P.

The remaining case=n has essentially the same proofa

From this one can read off the minimal prime ideals and components:

Proposition 1.3. Let d’ be the largest divisor off which is relatively prime to the
characteristic of the field. Writd = d’e for some integee. All the minimal prime ideals
overJ which do not contair f are

Po,
Piyg = p1+ (bo1 — aboz, bo2 — Bbos),
Prop = pr + (bo1 — abo2, bo2 — Bbo3, B —b1i i =1,...,4),

wherea and g vary over the(d’)th roots of unity. The heights of these ideals are as follows
ht(Po) =4, forr e {1,...,n — 1}, ht(Prop) = 7r + 4, andht(P,up) = 7n.
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Furthermore, with notation as in the previous proposition, forralt 1,

& ad gd pd d
() Prap = /Pr = pr + (b — by, by — b, b5 — 1).
o,pB

Proof. The case of is trivial. It is easy to see that fer> 0, the listed prime idealB, s
are minimal overp, and that the intersection of th@’)? Pqp €Qualsp,. It is trivial to
calculate the heights, and it is straightforward to prove the last statemant.

This completes the list of all the minimal prime ideals o¥ét, d) which do not contain
s and f. Their primary components follow easily:

Proposition 1.4. Adopt the notation of Propositioh 3. The Py-primary component of
is Po. Whenever > 1, anda andg are (d')th roots of unity, theP,o4-primary component
Prap of Jis

P1ap = p1+ (b — a®bi,. b, — BCbG).
Prag = Pr + (b81 - aebgz, b82 - ,Beb83, ,Be — bil |i= 1,..., 4)
Furthermore, for allr > 1, (M, 4 Prap = pr-

The next group of minimal prime ideals all contain

Proposition 1.5. Let P be a prime ideal minimal ovef. If P containss, thenP is one of
the following19 prime ideals

P_1 = (s, f),
P_2 = (s, co1, co2, co4, bos, boa),
P_3 = (s, co1, €04, b2, boz, co2bo1 — co3boa),
P_gp = (c1i|i ¢ A)+ (b1 | i € A) + (s, co1, €03, 04, bo1, bo2),

as A varies over the subsets {f, 2, 3, 4}. The heights of these prime ideals &, 6 and
10, respectively.

Proof. Note that

J + (s) = (coi fbl;. feozcii(boz — b1iboa) |i = 1,2,3,4)
+ (s, fcot. fcoa f (cozbo1 — cosboa)).

If P containsf, it certainly equalsP—;. Now assume thaP does not contairf. ThenP
is minimal over

(coib:, coocri (bop — bibos) | i =1, 2,3, 4) + (s, co1, coa, co2bo1 — cozboa).
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If co2 € P, thenP is minimal over

(coabls, 5. co1, co2. coa, cosboa).

so it is either(s, co1, co2, co3, co4) OF (s, co1, co2, co4, bos, boa) = P_». However, the first
option is not minimal over as it strictly containg’y from Proposition 1.2.
Now assume thaP does not contairf cg2. ThenP is minimal over

(bo2, Cosbgg) + (c1ib1ibos| i =1, 2, 3,4) + (s, co1, co4, co2bo1 — c03b04).

If P containsbgs, thenP = (s, co1, cos, bo2, bos, co2bo1r — cozboa), Which is P_3.
Finally, assume thaP does not contairf co2bgs. ThenP is minimal over

(bo2, co3) + (c1:b1i | i =1,2,3,4) + (s, co1, coa, bo1),
whenceP is one of theP_44. O
It turns out that there are no other minimal prime ideals ouer, d):

Proposition 1.6. The prime ideals from the previous three propositions are the only prime
ideals minimal over/. Thus there ard + n(d’)? + 3 + 2* = n(d’) + 20 minimal prime
ideals.

Proof. Proposition 1.3 determined all the minimal prime ideals ov@ot containingf,

and Proposition 1.5 determined all those minimal prime ideals which cantdiremains

to find all the prime ideals containing andJ but nots. As J + (f) contains(cg;s | i =
1,2,3,4), a minimal prime ideal containing + (/) but nots contains, and even equals
(f, co1, co2, co3, coa). However, this prime ideal properly contai®s, and hence is not
minimal overJ. The proposition follows as there are no containment relations among the
given prime ideals. O

Then(d’)? + 20 minimal primary components can be easily computed:

Proposition 1.7. For all possible subscripts, let p, be the P,-primary component of .
Then

P72 = (S, €01, €02, €04, ng: b04)7
p—an = (c1i |i ¢ A)+ (b, boo — b1ibos, b1 — b1 |, j € A)
+ (s, co1. co3. cos. bot, bgz),
andp_1=P_1, p_aa = P_44.

Proof. By Proposition 1.4, it remains to calculgte 1, p—2, p—3 andp_44. AS co3 — co2
is not an element oP_1, P_», P_3 and P_44, and sincehis = s(co3 — co2) is in J, it
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follows thats € p_1, p—2, p—3 and p_44. Thencolfbg1 € p_1, so thatf € p_1, and so
p-1=P_1.

AS h13= fco1 — sco2, h14 = fcoq — scoz are inJ, then fco1, fcos € p—2, p—3 and
p—aa, Whenceco, cos € p—2, p—3, p—an. Foralli =1,...,4, ash16+i = fcoxc1i(bo2 —
b1;bo3) € J, it follows thatbgs — b1;bo3 € p—3. Thus ash11 — b12 ¢ P_3, it follows that
boz and hence alsbgy are in P_3. Now it is clear thatp_3z is the P_z-primary component
of J.

Further, fori = 2,3, co; fbd; € p; implies thatbd, € p_aa, bz € p_2, co2 € p—2, and
03 € p—aa- AS h1g = f(co2bo1 — co3bos) iS in J, then fcosboa is in p_2 SO thatbp4 is in
p—2. AlSO fco2bo1 is in p_as SO thatbog is in p_44. Thus theP_»-primary component
containsp_». But p_» contains/ and p_; is clearly primary, sqg_ is the P_-primary
component of/.

Lastly, asJ containshieyi, i =1,...,4, eachp_a4 contains eacl; (bo2 — b1ibo3).
If i ¢ A, thenbga — b1;bo3 is not in P_g4, SO thatcy; € p_g4. If insteadi € A, then
c1i ¢ P_aa, SO thatboz — b1;bos is in p_aa. Hencebl, — b{.bd5 is in p_sa4, so that as
bd, € p_as, S0 isb{.bls Hencebd, isin p_s. Furthermore, for, j € A, boa(b1j — b1;) =
(bo2 — b1ibo3) — (boz — b1jbo3) IS in p_44, SO thatby; — by; isin p_44. Thus

p-aa 2 (c1i|i ¢ A)+ (b, boz— b1ibos, by — b1 i, j € A) + (s, co1, coa, coa, bot, by),
but the latter ideal is primary and contaihisso equality holds. O

The structure op_» shows that:
Proposition 1.8. For n,d > 2, J(n, d) is not a radical ideal.

Table 1 contains all the minimal prime ideals ovén, d). There,d = d’e with d’ the
greatest divisor ot/ relatively prime to the characteristic of the field, amcand g8 are
varying over thed’)th roots of unity.

Table 1
Minimal prime ideal Height Component df(n, d)
Pg = (o1, €02, €03 €04) 4 ro=Po
P1og = p1+ (bo1 — abo2, bo2 — Bbo3) 11 P1og = p1+ (bgy — a®bip, bl — B°bG)
Praﬂ =Dr r Prap = Pr
+ (bo1 — aboz, boz — Bboz, B —b1i) +46r<n + (bgq — @by, by — B°bhg: o — BY)
P_1=(s, 1) 2 p-1=P_3
P_3 = (s, co1. c02: €04, bo3. boa) 6 Pp—2= (5,01, €02, c04- by, boa)
P_3 = (s, co1, 04, b02, bo3) 6 p-3=P_3
+ (co2bo1 — co3boa)
P_44 = (s, co1, €03, €04, bo1, bo2) 10 P—4a = (5. 01, €03. c04- bo1. b
+(c1ib1jlig A, jeA +(c1i li ¢ A)

+ (b}, boz — b1jboz. b1j — bajr | ). j' € A)
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2. Doubly exponential behavior isdueto embedded primeideals

The aim of this section is to compute the intersection of all the minimal components.
Not surprisingly, the doubly exponential behavior is not due to the minimal prime ideals
or their components. We prove this below. Explicitly, it is straightforward to see that the
elementfcozbgzcllczr -~cp—2.1(cn-1,1 — cn—1.4) lies in every minimal component of.
(This will be verified below explicitly in the computation of the intersection of all the
minimal components.) But any ideal containiigand the element above does not exhibit
the doubly exponential behavior. Namely, 8et c11¢21- - - cn—2,1(cn—1.1 — cu—1.4). Then

sco1 - cp—2,1(Cn—1,1 — Cn—1.4)
= co1(s — fbd1)c + (fcor— sco2)bdic’ + coa(s — fbE,)b81c" + b3, fcoabic,

and the degrees of the coefficientsbd,c’, bg,c’ andbg, of the elementéos, h13, hoz and
f cozbgzc’, respectively, are not doubly exponentiakinThis proves:

Proposition 2.1. The doubly exponential ideal membership problem of the Mayr—Meyer
ideals J (n, d) and J;(n, d) for the elementcor---cp—21(cn—1.1 — cn—1.4) is not due to
the minimal components, but to some embedded prime ideal.

We compute below the intersection of all the minimal componenigofd), and show
that the elemeny‘cozbgzcllc21~~c,,,2,1(cn,1,1 — cp—1,4) IS even in a natural minimal
generating set of this intersection.

First define the ideal

p—a= (s, co1, coa, coa, box, bg)
+ (€11 (boz2 — b1ibo3), c1ibs;, c1ic1j (b —baj) i, j=1,...,4).

Note thatp_s:c11 = p_a:c?;, so that by Fact 0.4p_s4 = (p_sa:c11) N (p—a + (c11).
Similarly,

p-a = (p-4:c11c12) N ((pa:c11) + (c12)) N ((p-a + (c11)) ic12) N (p—a + (c11. c12))

ﬂ((((ﬁ% 1 C11) *2 C12) %3 €13 ) %4 C14),
A

wherex; vary over the operations colon and addition. But the resulting component ideals
are just the varioup_4,4, so that

p-a=[\p-aa-
A

Next we compute the intersection pf 4 andp_» (using Fact 0.1):
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p—2N p_a = ((s, cox, coa) + (coz, b(‘)lg, boa)) N p—a
= (s, co1. c04) + (co2. bz, boa)
 (cos, bo1. b5, c1i(boz — b1ibo3), c1ibl;, c1ic1j (b1 — b1))),

so that

p-2N p-3N p_a = (s, co1, €4, c02bo1 — c03b04)
+ (b3) (cos. bor, by c1i (boz — b1iboa), c1iby;, caic1j(bai — b1j))
+ (co2, boa) - (b, c1i(boz — b1ibo3))
+ (co2, boa) - (co3, box, Clib‘li,-, c1ic1j(b1i — b1j)) - (boz, bo3)
= (s, co1, €04, c02b01 — co3boa)
+ (b3) (cos. bor, by, c1i (boz — b1iboa), c1iby;, caic1j(bai — b1j))
+ (co2, boa) (bgz, c1; (bo2 — b1:bo3), co3bo2, co3bos, bo1bo2, bo1bos,

d d
c1ib3;bo2, c1ib4;b03).

Thus the intersection of the minimal componentd 61, d) which contains equals:

p-1Np_20Np_3Np_a
= (s. fco1. fcoa, f(cozbo1— cozbos))
+ £ (b83) (co3. bot. by, c1i (boz — b1ibo3), c1:by;, cric1;(bai — 1))
+ f(co2, boa) (bgz, c1; (bo2 — b1:bo3), co3bo2, co3bos, bo1bo2, bo1bos, Clib‘li,-boz,
Clibi[,-boa)
=J +(s) + fbs(bor, by, c1i(boz — baibo3), c1ibl;, ciic1; (b1 — baj))
+ fcoz(cozboz, cozbos, boboz, bo1bos, c1ib;bo3)

+f b04(b612, c1i(boz — b1:b03), bo1bo2, bo1bos, c1:b%;boz, Clibi[,-bos)-

We can simplify this intersection in terms of the generatord d@f we first intersect the
intersection with the minimal componepg:

poN---Np_a=J+s5Co
+f bggco(bm, bgz, ¢1i (bo2 — b1ibo3), Clib‘li,-, c1ic1j(b1i — b1j))
+ fco2(cosbo2, co3bos. bo1bo2, bo1bos. Clibilib03)
+ fboaCo(bdy, c1i (boz — b1ibo3), bo1boz, boibos, c1:b5;bo2, Clibi,'bOB)o

As,J + fCo=J + f(co co3) andJ + sCo = J + s Do + ( fcozbl,), it follows that
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pon---Np_s
=J +5Co+ fbds(coz. co3) (bo1. by c1i(boz — b1:bo3), c1:b;. c1ic1j (b — b1y))
+ fco2(cozboz, cosbos, bo1boz, bo1bos, c1ib4;bo3)
+ fboa(coz, c03) (b3, c1i (boz — b1ibo3), bo1boz, bo1bos, c1ib4;boz, c1:b5;bo3)
=J +5Co+ fco2(cozboz, cozbos, borboz, bo1bos, c1:b;bo3)
= J +5Do+ fco2(cosboz, co3bos, bo1boz, bo1bos, c1ibs;bos, bly).

Next we compute the intersection of all the minimal components(af d) which do
not contains and are different frompg:

Lemmaz2.2. For2<r <n,

r—1
p1NpaN--Np,=E+ Do+ C1F + Y C1Cz2- Ci(Diy1+ Bj) + C1C2---C;.
i=0

Proof. Whenr =2,

p1Np2 = (Ci+E+ Do)N(Co+ E + F + Do+ D1+ B1)
=E+Do+C1N(Co+ E+ F+ Do+ D1+ B1)
=E+Dog+D1+C1N(C2+E+ F+ Do+ By)
=FE+Dog+D1+C1-(Co+ E+ F+ Do+ B1)
= E+ Do+ D1+ C1F + C1-(C2+ B1),

which starts the induction. Then by induction assumption-far2 andr <n — 1,

r—1
piN - N prs1 = (E+D0+C1F+ZC1C2---Ci(D,~+1+B,~)+C1---Cr> N pro1
i=0
r—1
= E+Do+C1F + ) CiC2---Ci(Dit1+ B) + (C1---C) N prya,
i=0

and by multihomogeneity, the last intersection equals

C1--Cr(Cri1+E+F+B,) +Z(Dj I1 ck).
J=IN\ K
Combining the last two displays proves the lemma

Thus the intersection of all the minimal componentd ¢f, d) equals:
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ﬂ pr = (J +sDo+ feoz(cosboz, cozbos, boiboz, boibos, c1:b;bos, b)) N ﬂ pr
r=—4 r=1

J + 5 Do + (f coz(cosboz, cosbos, boboz, boibos, c1:b%;bos, b3,)) N ﬂ pr

n
=J+sDo+ f Coz<(603b02, c03bo3, bo1bo2, bo1bo3, Clib‘li,-bos, bgz) N ﬂ Pr>-
r=1

Let A = (co3bo2, co3bos, bo1bo2, bo1bo3, C]_,'bi»bo:g, bgz) N ﬂle pr. Thus the intersection
of all the minimal components of(n, d) equals/ + s Do + fco2A. Finding the generators
of A takes up most of the rest of this section. We will use the decomposition

n
A = (co3, box, c1:b;. b)) N (cos, bot, bos. by) N (boz, bos) N ﬂ Prs
r=1

and start computing via the indicated partial intersections, again using Fact 0.1:

n
(bo2, boz) N ﬂ pr = (béz — b3, c11(boz — b11b03)) + (bo2, bo3) - L’

r=1
= (b, — bl c11(bo2 — b11b03)) + boz- L' + booL”,
where
n—1
L' = L" + c11(byi — byj, b, — 1)+ 2611- --cit(Diy1+ Bi),
i=0

L' = (s— fbgl, bo1 — boa, bgl - bgg) + Do+ Dy.

Note thatZ’ is generated by all the generators(Qf, p, other tharbg, — b4. Then the
intersection of the last three componentsiaf

n
(co3. bo1, bos, bgz) N (bo2, boz) N ﬂ Dr
r=1

= (b, — blz) +bos- L' + (cos, box, bos, ) N ((c11(boz — b11b03)) + bozL”)
= (b — b3 boa(bgy — b3s)) + bos- L’
+ (co3, box, bos, b3) N ((c11(boz — b11b03))
+ boz((s — fb3;. bor — boa) + Do+ D1))
= (b§2 — bg boz(bgy — bi3)) +bos- L'
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+ (co3, bo1) - ((c11(boz2 — b11b03)) + bo2((s — fbly, bor — boa) + Do + D1))
+ (boz, b3,) N ((c11(boz2 — b11b03)) + boa((s — fb3y, bor — boa) + Do + D1))
= (b§ — b bo2(bhy — bis)) + bos- L'
+ (co3, boy) - ((c12(boz2 — b11b03)) + boa((s — fb&y. bor — boa) + Do + D1))
+ (bo, b3,) N (c11(boz — b11b03). bo2)
N ((c11(boz — b11b03)) + (s — fbl1, bor — boa) + Do + D1)
= (G — b bo2(bGy — b)) +bos- L’
+ (co3, bo1) - ((c11(boz2 — b11b03)) + bo2((s — fbly, o1 — boa) + Do + D1))
+ (boac11b11, by, bozboz) N ((c11(boz — b11b03), s — fbiy, bor — boa) + Do + D)
= (bga — b3 bo2(bGy — b3)) + boz- L’
+ (cos, boa) - ((c11(boz — b11b03)) + bo2((s — £ b1, bor — boa) + Do + D1))
+ (boac11b11, by, bozbos) - ((s — £bg,. bor — boa) + Do + D1)
+ (bose11b11. by, bozbos) N (c11(boz — b11b03))
= (b2 — bg: boz(by — bis)) +bos- L'
+ (co3. boa) - ((c11(bo2 — b11b03)) + boa((s — fb{. bo1 — boa) + Do + D1))
+ c11(bo2 — b11b03) (bos. bg{ h
= (bl — big. bo2(bl; — bl3). by *c11(bo2 — b11b03)) + boa ﬂ Pr
r=1

+ (cos, boa) - ((c11(boz2 — b11b03)) + bo2((s — fb8;, bor — boa) + Do + D1)).
HenceA, the intersection of all of its components, equals

n
A = (co3, box, c1:b;, b)) N (cos, bo1, bos, biy) N (boz, bos) N ﬂ Pr
r=1

= (coa, bov) - ((c11(boz2 — b11b03)) + boz((s — fb§y, bor — boa) + Do + D1))
+ (coz, bot, c1:b5;, b3,)
n
N ((bgz — b, boz(b; — bis). b5 Me11(boz — b11b03)) + bos( ") pr>
r=1

= (co3, bo1) - ((c11(boz — b11b03)) + boz((s — fbl, bor — boa) + Do + D1))
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n
+ o3 ((bgz — bz, bo2(bfy — ba). b3 "c11(boz — b11b03)) + bos( ") pr)
r=1

+ (bow, cuibf;, b))

n
N ((béz — b3, boo(b3; — bl3), bgz_ Lera(boz — b11b03)) + bo3 ﬂ Pr> :
r=1

Let A’ be the last intersection above. The second intersectand iddaldefcomposes as

n
(b8, — b3, boo(bd; — bds), bg{ Ye11(bo2 — b11b03)) + bo3 m Dr
r=1

n
= ﬂ ( by bs. boa(biyy — bl3), b5 c11(boz — b11b03)) + bos ﬂ pr)
r=1 r=1

so that

n
ﬂ pr N (bo, eib;, bp) N ((bgz’ bia. boobdy, B35 *c11b11b03) + bo3 ﬂ pr)
r=1

n
=0 ((bgz’ bozby)
r=1

n
+ (bow, c1ib;, by) N ((1983’ b5 te11b11b03) + bos m pr))
r=1

n
=(pn ((bgz’ bo2b{,)
r=1
n
+ b03((b01a c1ib;, bp) N ((bég L by fenabar) + () pr)))

r=1

n
= ﬂ pr 0 ((bgz’ bOZbgl’ bos(cw bili - Cllbil)’ b03b611)

n
+ b03((b01’ cllbil) <(b613 17 boz_lcllbll) + ﬂ pr)))

r=1

n
= ﬂ pri <(b82’ b02b611’ b03(cli bélii - Cllbil)’ b03b81)

+bos((bo1, c11b97) N (b5t b 611b11)+L”'))),
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whereL” is generated by all the given generator§ 9f. ; p, other thanbg, — bi:

n—1
L" = (s — fbgy. bo1 — boa. by — blz) + Do+ C1F + Y C1-+-Ci(Di1+ By).
i=0

With this,

n
= () pr (1 (b, bozbty. boa(cribd; — c1iby). bosb)

+ bosbo1((bd3 . b, te11b11) + L)

+ bosf(exaby) 0 (b5 ™ b exsbur) + 1))

n
ﬂ ( (b2 bo2bGy, bos(cribf; — c11b44), boabyy)

+ bosboa((bg3 " by “c11baz) + L")
+ bosenaby ((bg3 ™. bg; ) + L7 611))
= (boa(b61 — b2). bos(cribl; — c11671). bos(b§y — bGy). bo1(bGs — b))
+ (bo1bl, *e11(boz — bosb11)) + bogborL”

+ (c11051(b85 — bEy) . by 041 fer1(boz — bosbir))
+ boge11b§; (L 1 c11) + m pr 0 (bgy)

= (bo2(b3y — b32). bos(cuib; — c11b%1), boa(bgy — b5y)s bor(bgs — bg2))
+ (bo1bfy *c11(boz — bosb11)) + bogborL”
+ (Cllbill(bgs - bgz)7 bgz_lbil_lcll(boz — bosh11))
n
+ bogcllbill(LW te11) + bgz’ m Dr-
r=1

HenceA equals
A = (co3, bo1) - ((611(1702 — b11b03)) + boz((s — fbl1, bor — bos) + Do + Dl))

n
+ coa((b(‘)lz — b, bo2(b; — ba). b5 "c11(boz — b11b03)) + bos( ") pr)
r=1

+ (bo2(b§y — b3y). bos(cuiby; — c11b4y). boa(b§y — b,). bor(bs — bGy))
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+ (bo1b3y te11(bo2 — bogb11)) + bozborL”
+ (c1269 (b3 — b52). bz b1 "c11(bo2 — bosbin)
n
+ bosc11bd; (L s c11) + by - () pr-
r=1

Thus finally,

n
M »r

r=—4

J+sDg+ fco2A

= J + Do+ fcoz(cos. bor) - (boz((s — b3y, bor — boa) + Do + D1))

n
+ fCozCos((bgz — byg, boz(b1 — b3)) + bos ﬂ p’)
r=1

+ feoa(boa(by — bia) bos(ciibf; — c11b9;). boa(bGy — b(y).

bo1(bgz — bia). c11b51 (b3 — b))

n
+ fcozbosborl” + fCozbo?,cllbil(LW : Cll) + fcozbgz. ﬂ Drs
r=1

or, in nicer form:

Theorem 2.3. The intersection of all the minimal componentgét, d) equals

n
ﬂ pr = J +sDo+ fcozbocos. bor) (s — f bgl, bo1 — bos)
r=—4

+ feozboz(cos, bor) (Do + D1) + fcozco3(bl, — bis, boz2(b, — bis))

n—1
+ fcozco3bos - (E +Do+C1F + ) crn---cin(Div1 + Bi))
i=0
+ feoa(boz(bgy — bGp). bos(cwiby; — c11b%;). boa(bg; — b3y))
+ feoa(bow(bgs — bgp). c11b41 (b3 — b52))
n—1
+ fcozb03b01<E”/ + Do+ C1F + Y c1a-+-ca(Di1+ B)
i=0
n—1

+ fCozboabillcn(E”/ + Do+ F + Zczr --¢i1(Diy1+ B;)
i=0



I. Swanson / Journal of Algebra 267 (2003) 137-155 155

n—1
+ feobly- | E+ Do+ C1F + 2611- —cin(Diy1+ Bi) |,
i=0

where
E" = (s — fbgl, bo1 — boa, bga - ng)'

(With Macaulay?2 | verified this theorem and intermediate computations in the proof above
forthe caser =3,d =2.)
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