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Abstract

We consider the basic problem of searching for an unknown m-bit number by asking the
minimum possible number of yes–no questions, when up to a 5nite number e of the answers may
be erroneous. In case the (i+1)th question is adaptively asked after receiving the answer to the ith
question, the problem was posed by Ulam and R8enyi and is strictly related to Berlekamp’s theory
of error correcting communication with noiseless feedback. Conversely, in the fully non-adaptive
model when all questions are asked before knowing any answer, the problem amounts to 5nding
a shortest e-error correcting code. Let qe(m) be the smallest integer q satisfying Berlekamp’s
bound

∑e
i=0( qi ) 6 2q−m. Then at least qe(m) questions are necessary, in the adaptive, as well as

in the non-adaptive model. In the fully adaptive case, optimal searching strategies using exactly
qe(m) questions always exist up to 5nitely many exceptional m’s. At the opposite non-adaptive
case, searching strategies with exactly qe(m) questions—or equivalently, e-error correcting codes
with 2m codewords of length qe(m)—are rather the exception, already for e=2, and are generally
not known to exist for e¿2. In this paper, for each e¿1 and all su>ciently large m; we exhibit
searching strategies that use a 5rst batch of m non-adaptive questions and then, only depending
on the answers to these m questions, a second batch of qe(m)−m non-adaptive questions. These
strategies are automatically optimal. Since even in the fully adaptive case, qe(m)−1 questions do not
su>ce to 5nd the unknown number, and qe(m) questions generally do not su>ce in the non-
adaptive case, the results of our paper provide e fault tolerant searching strategies with minimum
adaptiveness and minimum number of tests. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider the following scenario: Two players, called Questioner and Responder,
5rst agree on 5xing an integer m ¿ 0 and a search space S = {0; : : : ; 2m − 1}. Then
the Responder thinks of a number x∗ ∈ S and the Questioner must 5nd out x∗ by
asking questions to which the Responder can only answer yes or no. It is agreed that
the Responder is allowed to lie (or just to be inaccurate) at most e times, where the
integer e¿ 0 is 5xed and known to both players.

We are interested in the problem of determining the minimum number of questions
the Questioner has to ask in order to infallibly guess the number x∗.

When the questions are asked adaptively, i.e., the ith question is asked knowing the
answer to the (i − 1)th question, the problem is generally referred to as the Ulam–
R8enyi game [37, p. 281; 32, p. 47], and is strictly related to Berlekamp’s theory of
error correcting communication with noiseless feedback [4] (also see Dobrushin’s paper
[16]). At the other, non-adaptive extreme, when the totality of questions is asked at
the outset, before knowing any answer, the problem amounts to 5nding a shortest e
error correcting binary code with 2m codewords.

It is known that at least qe(m) questions are necessary in the adaptive and, a fortiori,
in the non-adaptive case—where qe(m) is the smallest integer q satisfying Berlekamp’s
bound

∑e
i=0( qi ) 6 2q−m.

In the fully adaptive case, an important result of Spencer [34] shows that qe(m)
questions are always su>cient, up to 5nitely many exceptional m’s. Optimal searching
strategies had been previously exhibited by Pelc [27], Czyzowicz et al. [14], and Negro
and Sereno [26], respectively for the case e= 1, 2 and 3. Thus, fully adaptive fault
tolerant search can be performed in a very satisfactory manner.

However, in many practical situations it is desirable to have searching strategies
with “small degree” of adaptiveness, that is, searching strategies in which all questions
(or at least, many of them) can be prepared in advance, and asked in parallel. This is
the case, e.g., when the Questioner and the Responder are far away from each other
and can interact only on a slow channel; or, in all situations when the mere formulation
of each query is a costly process, and therefore the Questioner 5nds it more convenient
and time saving to prepare all questions in advance. We refer to the monographs [1, 17]
for a discussion on the power of adaptive and non-adaptive searching strategies and
their possible uses in diQerent contexts.

Unfortunately, in the totally non-adaptive case, searching strategies with exactly
qe(m) questions—or equivalently, binary e error correcting codes with 2m codewords of
length qe(m)—are sporadic exceptions already for e= 2; and are generally not known
to exist for e¿2, except in trivial cases. Moreover, a series of negative results culmi-
nating in the celebrated papers by TietRavRainen [36] and Zinoviev–Leontiev [39] (also
see [22]) shows that if q= qe(m); is such that

∑e
i=0( qi ) = 2q−m; then e error correcting

codes of length q with 2m codewords do not exist for all e¿2. 3 Thus, in general,

3 The only exceptions are the Golay code (m= 12; e= 3) [18] and the trivial repetition codes (m= 1; e ¿
1); the latter codes only contain two words, {111 · · · 1; 000 · · · 0}, each of length 2e + 1.
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adaptiveness in Ulam–R8enyi games can be completely eliminated only by signi6cantly
increasing the number of questions in the solution strategy. 4

Our purpose in this paper is to investigate the minimum amount of adaptiveness
required by any successful searching strategy with exactly qe(m) questions.

1.1. Our results

We exactly quantify the minimum amount of adaptiveness needed to solve the Ulam–
R8enyi problem, while still constraining the total number of questions to Berlekamp’s
minimum qe(m). Our main result is that for each e, and for all su>ciently large m,
there exist searching strategies of shortest length (using exactly the minimum number
qe(m) of questions) in which questions can be submitted to the Responder in only
two rounds. Speci5cally, for the Questioner to infallibly guess the Responder’s secret
number x∗ ∈ S it is su9cient to ask a 5rst batch of m non-adaptive questions, and
then, only depending on the m-tuple of answers, ask a second mini-batch of n non-
adaptive questions. Our strategies are perfect, in that m+n coincides with Berlekamp’s
minimum qe(m), the number of questions that are a priori necessary to accommodate
all possible answering strategies of the Responder—once he is allowed to lie up to e
times. Since the Questioner can adapt his strategy only once, our paper yields e fault
tolerant search strategies with minimum adaptiveness and the least possible number
of tests. As we shall see in Section 3, our results mainly rely on the correspondence
between e fault tolerant searching strategies, and certain non-uniform error correcting
codes. In Section 5, focusing on the case e= 3, we shall give an explicit description of
our searching strategies for the Ulam–R8enyi game, for all m¿ 99. Finally, in Section 6
we shall be concerned with the problem of shrinking the 6rst batch of questions: this
is equivalent to the concrete problem of minimizing the number of bits to be sent over
the expensive noiseless feedback channel of Berlekamp’s theory [4].

1.2. Related work

The general issue of coping with unreliable information (and=or unreliable compo-
nents) in computing is an important problem in computer science, its study going
back to the work of von Neumann [38]. After the pioneering paper [33], the prob-
lem of dealing with erroneous information in search strategies (what we call here the
Ulam–R8enyi game) has received rapidly increasing attention in the last two decades
(see, e.g., [3, 2, 5, 13–15, 25, 27, 34] and references therein). Also see the survey papers
[12, 19, 30].

Besides its relationship with Berlekamp’s theory of error correcting communication
with noiseless feedback [4], the Ulam–R8enyi game has several interesting connec-
tions with various areas of computer science, combinatorics and logic (see for instance
[7, 23, 20, 12]). It is not our aim in this paper to cover these topics: we shall only limit

4 The situation is completely diQerent in the case of no lies: here an optimal, totally non-adaptive searching
strategy with �log |S|� questions simply amounts to asking �log |S|� queries about the locations of the bit 1
in the binary expansion of the unknown number x∗ ∈ S.
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ourselves to mentioning those results which are directly related to our present issue of
adaptive vs. non-adaptive search.

Skipping the trivial case e= 0, for e= 1 Hamming codes turn out to yield non-
adaptive (also called, one round) searching strategies with the smallest possible number
q1(m) of questions. Further, Pelc [29] showed that adaptiveness is irrelevant even under
the stronger assumption that repetition of the same question is forbidden.

The 5rst signi5cant occurrence of the dichotomy between adaptive and non-adaptive
search is for e= 2. Two-round optimal strategies for the case e= 2 were given in [9].
Our paper extends the result of [9] to the case of an arbitrary number e of errors=lies.
See [15, 35] for more results about adaptive vs. non-adaptive searching strategies.

2. The Ulam–R�enyi game

For some 5xed integer m ¿ 0; let S = {0; 1; : : : ; 2m − 1} be the search space. By
a yes–no question we simply mean an arbitrary subset T of S. If the answer to the
question T is “yes”, numbers in T are said to satisfy the answer, while numbers in
S\T falsify it. A negative answer to question T has the same eQect as a positive
answer to the opposite question S\T . At any stage of the game, a number y∈ S must
be rejected from consideration if, and only if, it falsi5es more than e answers. The
remaining numbers of S still are possible candidates for the unknown x∗.

At any time during the game, the Questioner’s state of knowledge is represented by
an e-tuple �= (A0; A1; A2; : : : ; Ae) of pairwise disjoint subsets of S, where Ai is the set
of numbers falsifying exactly i answers, i= 0; 1; 2; : : : ; e. The initial state is naturally
given by (S; ∅; ∅; : : : ; ∅). A state (A0; A1; A2 : : : ; Ae) is 6nal iQ A0 ∪A1 ∪A2 ∪ · · · ∪Ae
either has exactly one element, or is empty.

For any state �= (A0; A1; A2; : : : ; Ae) and question T ⊆ S, the two states �yes and �no,
respectively resulting from a positive or a negative answer, are given by

�yes = (Ayes
0 ; Ayes

1 ; : : : ; Ayes
e ) and �no = (Ano

0 ; A
no
1 ; : : : ; A

no
e ); (1)

where, for the sake of de5niteness, we let A−1 = ∅, and

Ayes
i = (Ai ∩ T ) ∪ (Ai−1\T ) and Ano

i = (Ai\T ) ∪ (Ai−1 ∩ T ) (2)

for each i= 0; 1; : : : ; e. Given a state �, suppose questions T1; : : : ; Tt have been asked
and answers b= b1; : : : ; bt have been received (with bi ∈{yes; no}). Iterated application
of the above formulas yields a sequence of states

�0 = �; �1 = �b1
0 ; �2 = �b2

1 ; : : : ; �t = �btt−1: (3)

By a strategy S with q questions we mean the binary tree of depth q, where
each node � is mapped into a question T�, and the two edges �left ; �right generated
by � are, respectively, labelled yes and no. Let �= �1; : : : ; �q be a path in S, from
the root to a leaf, with respective labels b1; : : : ; bq, generating nodes �1; : : : ; �q and
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associated questions T�1 ; : : : ; T�q . Fix an arbitrary state �. Then, according to (3), iterated
application of (1) and (2) naturally transforms � into �� (where the dependence on
the bj and Tj is understood). We say that strategy S is winning for � iQ for every
path � the state �� is 5nal. A strategy is said to be non-adaptive iQ all nodes at the
same depth of the tree are mapped into the same question.

Let �= (A0; A1; A2; : : : ; Ae) be a state. For each i= 0; 1; 2; : : : ; e let ai = |Ai| be the
number of elements of Ai. Then the e-tuple (a0; a1; a2; : : : ; ae) is called the type of �.
The Berlekamp weight of � before q questions, q= 0; 1; 2; : : : ; is given by

wq(�) =
e∑
i=0
ai

e−i∑
j=0

(
q
j

)
: (4)

The character ch(�) of a state � is the smallest integer q¿ 0 such that wq(�) 6 2q.
By abuse of notation, the weight of any state � of type (a0; a1; a2; : : : ; ae) before

q questions will be denoted wq(a0; a1; a2; : : : ; ae). Similarly, its character will also be
denoted ch(a0; a1; a2; : : : ; ae).

As an immediate consequence of the above de5nition we have the following mono-
tonicity properties: For any two states �′ = (A′

0; A
′
1; A

′
2; : : : ; A

′
e) and �′′ = (A′′

0 ; A
′′
1 ; A

′′
2 ; : : : ;

A′′
e ) respectively of type (a′0; a

′
1; a

′
2; : : : ; a

′
e) and (a′′0 ; a

′′
1 ; a

′′
2 ; : : : ; a

′′
e ); if a′i 6 a′′i for all

i= 0; 1; 2; : : : ; e then

ch(�′) 6 ch(�′′) and wq(�′) 6 wq(�′′) (5)

for each q ¿ 0. Moreover, if there exists a winning strategy for �′′ with q questions
then there exists also a winning strategy for �′ with q questions [4]. Note that ch(�) = 0
iQ � is a 5nal state.

Lemma 2.1 (Berlekamp [4]). Let � be an arbitrary state; and T ⊆ S a question. Let
�yes and �no be as in (1) and (2).
(i) (Conservation Law): For any integer q¿ 1 we have wq(�)=wq−1(�yes)+wq−1(�no).

(ii) (Berlekamp’s lower bound). If � has a winning strategy with q questions then
q¿ ch(�).

A strategy S of size q for a state � is said to be perfect if S is winning for �
and q= ch(�). 5 In agreement with the above notation, we shall write qe(m) instead
of ch(2m; 0; : : : ; 0).

Let �= (A0; A1; A2; : : : ; Ae) be a state. Let T ⊆ S be a question. We say that T is
balanced for � iQ for each j= 0; 1; 2; : : : ; e; we have |Aj ∩T |= |Aj\T |.

The following is easy to prove.

Lemma 2.2. Let T be a balanced question for a state �= (A0; A1; A2; : : : ; Ae). Let
n= ch(�). Let �yes and �no be as in (1) and (2) above. Then

5 There shall be no danger of confusion between the usual meaning of “perfect code”, and the present
generalization. Because a perfect strategy S uses the least possible number of questions, as given by
Berlekamp’s bound, S is optimal, in the sense that it cannot be superseded by a shorter strategy.
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(i) wq(�yes) =wq(�no); for each integer q¿ 0;
(ii) ch(�yes) = ch(�no) = n− 1.

3. Strategies vs. codes

We refer to [22] for background in error correcting codes. Here we shall only 5x a
few notions and notations for later use.

Fix an integer n¿0 and let x; y∈{0; 1}n. The Hamming distance dH (x; y) is de5ned
by

dH (x; y) = |{i ∈ {1; : : : ; n} | xi �= yi}|;
where, as above, |A| denotes the number of elements of A; and xi (resp. yi) denotes
the ith components of x (resp. y).

The Hamming sphere Br(x) with radius r and center x is the set of elements of
{0; 1}n whose Hamming distance from x is at most r; in symbols,

Br(x) = {y ∈ {0; 1}n |dH (x; y) 6 r}:
Notice that for any x∈{0; 1}n; and r ¿ 0; we have |Br(x) |= ∑r

i=0( ni ). The Hamming
weight wH (x) of x is the number of non-zero digits of x. Throughout this paper, by
a code we shall mean a binary code, in the following sense:

De!nition 3.1. A (binary) code C of length n is a non-empty subset of {0; 1}n. Its
elements are called codewords. The minimum distance of C is given by

�(C) = min{dH (x; y) | x; y ∈ C; x �= y}:
We say that C is an (n;M; d) code iQ C has length n; |C|=M and �(C) =d. The
minimum weight of C is the minimum of the Hamming weights of its codewords, in
symbols,

�(C) = min{wH (x) | x ∈ C}:
Let C1 and C2 be two codes of length n. The minimum distance between C1 and

C2 is de5ned by

�(C1;C2) = min{dH (x; y) | x ∈ C1; y ∈ C2}:

The following lemma is known as Gilbert’s bound [22].

Lemma 3.2. Let n= 2; 3; : : : : Then for any two integers 1 6 d6 n; and

1 6 M 6
2n∑d−1

i=0

( n
i

) ;
there exists an (n;M; d) binary code C:
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We now describe a correspondence between non-adaptive winning strategies and
certain special codes. This will be a key tool to prove the main results of our paper.

Lemma 3.3. Fix an integer e= 1; 2; 3; : : :. Let �= (A0; A1; A2; : : : ; Ae) be a state of
type (a0; a1; a2; : : : ; ae): Let n ¿ ch(�): Then a non-adaptive winning strategy for �
with n questions exists if and only if for all i= 0; 1; 2; : : : ; e − 1 there are integers
di ¿ 2(e − i) + 1; together with an e-tuple of codes  = (C0;C1;C2; : : : ;Ce−1); such
that each Ci is an (n; ai; di) code, and �(Ci ;Cj) ¿ 2e − (i + j) + 1; (whenever 0 6
i¡j 6 e − 1):

Proof. We 5rst prove the implication strategy⇒ codes.
Assume �= (A0; A1; A2; : : : ; Ae) to be a state of type (a0; a1; a2; : : : ; ae) having a non-

adaptive winning strategy S with n questions T1; : : : ; Tn; n¿ ch(�). Let the map

z ∈ A0 ∪ A1 ∪ A2 ∪ · · · ∪ Ae �→ zS ∈ {0; 1}n

send each z ∈A0 ∪A1 ∪A2 ∪ · · · ∪Ae into the n-tuple of bits zS = zS1 · · · zSn arising
from the sequence of “true” answers to the questions “does z belong to T1 ?”, “does
z belong to T2 ?” ; : : : ; “does z belong to Tn ?”, via the identi5cations 1 =yes; 0 = no.
More precisely, for each j= 1; : : : ; n; zSj = 1 iQ z ∈Tj: Let C⊆{0; 1}n be the range of
the map z �→ zS: We shall 5rst prove that, for every i= 0; : : : ; e − 1; there exists an
integer di ¿ 2(e− i) + 1 such that the set Ci = {yS ∈C |y∈Ai} is an (n; ai; di) code.

Since S is winning, the map z �→ zS is one to one, whence in particular |Ci|= ai;
for any i= 0; 1; 2; : : : ; e − 1: Moreover by de5nition, the Ci’s are subsets of {0; 1}n:
Claim 1. �(Ci) ¿ 2(e − i) + 1; for i= 0; : : : ; e − 1:
For otherwise (absurdum hypothesis) assuming c and d to be two distinct elements

of Ai such that dH (cS; dS) 6 2(e− i); we will prove that S is not a winning strategy.
We can safely assume cSj =dSj for each j= 1; : : : ; n − 2(e − i): Suppose the answer
to question Tj is “yes” or “no” according as cSj = 1 or cSj = 0; respectively. Then
after n − 2(e − i) answers, the resulting state has the form �′ = (A′

0; : : : ; A
′
i ; : : : ; A

′
e);

with {c; d}⊆A′
i ; whence the type of �′ is (a′0; : : : ; a

′
i ; : : : ; a

′
e) with a′i ¿ 2: Since by

Berlekamp [4, Lemma 2:5], ch(�′) ¿ ch(0; 0; : : : ; 0; 2; 0; : : : ; 0) = 2(e− i) + 1 then from
Lemma 2.1(ii) it follows that the remaining 2(e − i) questions=answers do not su>ce
to reach a 5nal state, thus contradicting the assumption that S is winning.
Claim 2. For any 0 6 i¡j 6 e − 1 and for each y∈Ai and h∈Aj we have the

inequality dH (yS; hS) ¿ 2e − (i + j) + 1:
For otherwise (absurdum hypothesis) let y∈Ai; h∈Aj be a counterexample, and

dH (yS; hS) 6 2e− (i+ j): Writing yS =yS1 : : : ySn and hS = hS1 : : : h
S
n ; it is no loss of

generality to assume hSk =ySk ; for all k = 1; : : : ; n−(2e−(i+j)): Suppose that the answer
to question Tk is “yes” or “no” according as hSk = 1 or hSk = 0; respectively. Then the
state resulting from these answers has the form �′′ = (A′′

0 ; A
′′
1 ; A

′′
2 ; : : : ; A

′′
e ); where y∈A′′

i

and h∈A′′
j : Since by Berlekamp [4, Lemma 2:5], ch(�′′) ¿ ch(0; : : : ; 0; 1; 0; : : : ; 0;

1; 0; : : : ; 0) = 2e−(i+j)+1, then Lemma 2.1(ii) again shows that 2e−(i+j) additional
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questions will not su>ce to 5nd the unknown number. This contradicts the assumption
that S is a winning strategy.

In conclusion, for all i= 0; 1; : : : ; e−1; Ci is an (n; ai; di) code with di ¿ 2(e− i)+1
and for all j= 0; : : : ; i − 1; i + 1; : : : ; e− 1; we have the desired inequality �(Ci ;Cj) ¿
2e − (i + j) + 1.

Now we prove the converse implication: strategy⇐ codes.
Let  = (C0;C1;C2; : : : ;Ce−1) be an e-tuple of codes satisfying the hypothesis. Let

H =
e−1⋃
i=0

⋃
x∈Ci

Be−i(x):

By hypothesis, for any i; j∈{0; 1; : : : ; e − 1} and x∈Ci ; y∈Cj we have dH (x; y) ¿
2e − (i + j) + 1: It follows that the Hamming spheres Be−i(x);Be−j(y) are pairwise
disjoint and hence

|H| =
e−1∑
i=0

ai
e−i∑
j=0

(
n
j

)
: (6)

Let D= {0; 1}n\H: Since n¿ ch(a0; a1; a2; : : : ; ae); by de5nition of character we have
2n ¿

∑e
i=0 ai

∑e−i
j=0( nj ): From (6) it follows that

|D| = 2n −
e−1∑
i=0

ai
e−i∑
j=0

(
n
j

)
¿ ae: (7)

Let �= (A0; A1; A2; : : : ; Ae) be an arbitrary state of type (a0; a1; a2; : : : ; ae). Let us now
5x, once and for all, e + 1 one–one maps fi :Ai→Ci ; for i= 0; 1; : : : ; e − 1 and
fe :Ae→D. The existence of the map fi; for all i= 0; 1; : : : ; e; is ensured by our
assumptions about  , together with (7).

Let the map f :A0 ∪A1 ∪A2 ∪ · · · ∪Ae→{0; 1}n be de5ned by cases as follows:

f(y) =




f0(y); y ∈ A0

f1(y); y ∈ A1
...
fe(y); y ∈ Ae:

(8)

Note that f is one–one. For each y∈A0 ∪A1 ∪A2 ∪ · · · ∪Ae and j= 1; : : : ; n let f(y)j
be the jth bit of the n-tuple f(y)∈{0; 1}n. We can now exhibit the questions Tj of
our searching strategies:

For each j= 1; : : : ; n let the set Tj ⊆ S be de5ned by Tj = {z ∈ ⋃e
i=0 Ai |f(z)j = 1}:

Intuitively, letting x∗ denote the unknown number, Tj asks “is the jth bit of f(x∗)
equal to one ?”

Again writing yes = 1 and no = 0; the answers to questions T1; : : : ; Tn determine an n-
tuple of bits b= b1 · · · bn: We shall show that the sequence T1; : : : ; Tn yields an optimal
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non-adaptive winning strategy for �. Let �1 = �b1 ; �2 = �b2
1 ; : : : ; �n = �bnn−1: Arguing by

cases we shall show that �n = (A∗
0 ; A

∗
1 ; : : : ; A

∗
e ) is a 5nal state.

By (1) and (2), for all i= 0; 1; : : : ; e; any z ∈Ae−i that falsi5es ¿i answers does not
survive in �n—in the sense that z =∈A∗

0 ∪A∗
1 ∪ · · · ∪A∗

e :
Case 1: b =∈ ⋃e

i=0

⋃
y∈Ai Be−i(f(y)): For all i= 0; 1; : : : ; e; and for each y∈Ai we

must have y =∈A∗
0 ∪A∗

1 ∪ · · · ∪A∗
e . Indeed, the assumption b =∈Be−i(f(y)) implies dH

(f(y); b)¿e − i, whence y falsi5es ¿e − i of the answers to T1; : : : ; Tn; and y does
not survive in �n: We have proved that A∗

0 ∪A∗
1 ∪ · · · ∪A∗

e is empty, and �n is a 5nal
state.
Case 2: b∈Be−i(f(y)) for some i∈{0; 1; : : : ; e} and y∈Ai. Then y∈A∗

0 ∪A∗
1 ∪ · · ·

∪A∗
e ; because dH (f(y); b) 6 e−i; whence y falsi5es 6 e−i answers. Our assumptions

about  ensure that, for all j= 0; 1; : : : ; e and for all y′ ∈Aj and y �=y′; we have
b =∈Be−j(f(y′)): Thus, dH (f(y′); b)¿e − j and y′ falsi5es ¿e − j of the answers
to T1; : : : ; Tn, whence y′ does not survive in �n: This shows that for any y′ �=y; we
have y′ =∈A∗

0 ∪A∗
1 ∪ · · · ∪A∗

e : Therefore, A∗
0 ∪A∗

1 ∪ · · · ∪A∗
e only contains the element

y, and �n is a 5nal state.

4. Optimal strategies with minimum adaptiveness

4.1. The 6rst batch of questions

As the reader will recall, for any two integers e; m¿ 0 we denote by qe(m) = ch(2m;
0; : : : ; 0) the smallest integer q¿ 0 such that 2q ¿ 2m(( qe )+( q

e−1 )+ · · ·+( q2 )+q+1).
By Lemma 2.1(ii), at least qe(m) questions are necessary to guess the unknown number
x∗ ∈ S = {0; 1; : : : ; 2m − 1}, if up to e answers may be erroneous. The aim of the rest
of this paper is to prove that, conversely, for all suitably large m; qe(m) questions
are su9cient under the following constraint: 5rst we use a predetermined non-adaptive
batch of m questions D1; : : : ; Dm, and then, only depending on the answers, we ask the
remaining qe(m) − m questions in a second non-adaptive batch.

The 6rst batch of questions is easily described as follows:

For each i= 1; 2; : : : ; m; let Di⊆ S denote the question “Is the ith binary digit of
x∗ equal to 1?” Thus a number y∈ S belongs to Di iQ the ith bit yi of its binary
expansion y=y1 · · ·ym is equal to 1:

Upon identifying 1 = yes and 0 = no; let bi ∈{0; 1} be the answer to question Di:
Let b= b1 · · · bm: Repeated applications of (1) and (2) beginning with the initial state
�= (S; ∅; : : : ; ∅), shows that the resulting state as an eQect of the answers b1 · · · bm; is
an (e + 1)-tuple �b = (A0; A1; : : : ; Ae), where

Ai = {y ∈ S |dH (y; b) = i} for all i = 0; 1; : : : ; e:

Direct veri5cation yields

|A0| = 1; |A1| = m; : : : ; |Ae| =
(m
e

)
:
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Thus �b has type (1; m; (m2 ); : : : ; (me )). As in (3), let �i be the state resulting after the
5rst i answers, beginning with �0 = �: Since each question Di is balanced for �i−1; an
easy induction using Lemma 2.2 yields ch(�b) = qe(m) − m:

For each m-tuple b∈{0; 1}m of possible answers, we shall construct a non-adaptive
strategy Sb with ch(1; m; (m2 ); : : : ; (me )) questions, which turns out to be winning for
the state �b. To this purpose, let us consider the values of ch(1; m; (m2 ); : : : ; (me )) for
m¿ 1.

De!nition 4.1. Let e¿ 0 and n¿ 2e be arbitrary integers. The critical index mn; e is
the largest integer m¿ 0 such that ch(1; m; (m2 ); : : : ; (me )) = n.

Lemma 4.2. Let e¿ 1 and n¿ 2e be arbitrary integers. Then mn; e¡
e
√
e! 2n=e + e:

Proof. By de5nition, mn; e = max{m |wn(1; m; (m2 ); : : : ; (me )) 6 2n}: Setting now m∗ =
e
√
e! 2n=e + e; the desired result directly follows from the inequality wn(1; m∗; (m

∗

2 ); : : : ;
(m

∗

e ))¿2n: As a matter of fact,

wn

(
1; m∗;

(
m∗

2

)
; : : : ;

(
m∗

e

))
¿wn

(
0; 0; : : : ; 0;

(
m∗

e

))

=
(
m∗

e

)
=
m∗(m∗ − 1) · · · (m∗ − e + 1)

e!

¿
( e
√
e! 2n=e)e

e!
= 2n:

4.2. The second batch of questions

We now prove that for all su>ciently large m there exists a second batch of
n= qe(m) − m= ch(1; m; (m2 ); : : : ; (me )) non-adaptive questions allowing the Questioner
to infallibly guess the Responder’s secret number. We 5rst need the following lemma. 6

Lemma 4.3. For any 6xed e= 1; 2; : : : and all su9ciently large integers n; there exists
an e-tuple of codes  = (C0;C1; : : : ;Ce−1) together with integers di ¿ 2(e − i) +
1 (i= 0; 1; : : : ; e − 1) such that

(i) Each Ci is an (n; (mn; ei ); di) code;
(ii) �(Ci ;Cj) ¿ 2e − (i + j) + 1; (whenever 0 6 i¡j 6 e − 1).

Proof. Let n′ = n − e2: First we prove the existence of an (n′; (mn; ee−1 ); d′) code, with
d′ = 2e + 1: From Lemma 4.2 together with the trivial inequality e! 6 (e + 1)e=2e; it

6 The problem of 5nding families of error-correcting codes with 5xed reciprocal distances was also ad-
dressed in [40], where the authors proved a result related to our Lemma 4.3 showing the existence of
asymptotically optimal such families.
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follows that, for all su>ciently large n

(
mn;e
e − 1

)
¡ (mn;e)e−1

¡ ( e
√
e! 2n=e + e)e−1

6 (e2n=e)e−1

= ee−12n−n=e

= ee−1 2n−e
2

2n=e−e2

6
2n−e

2

∑2e
j=0

(
n− e2

j

) ;

since
∑2e

j=0( n−e
2

j ) is polynomial in n:
The existence of the desired (n′; (mn; ee−1 ); d′) code now follows from Gilbert’s Bound.

We have proved that, for all su>ciently large n, there exists an (n−e2; (mn; ee−1 ); d′) code
C′ with d′ ¿ 2e + 1: For each i= 0; 1; : : : ; e − 1 let the e2-tuple ai be de5ned by

ai = 00 : : : 0︸ ︷︷ ︸
ie

11 : : : 1︸ ︷︷ ︸
e

0 : : : 0︸ ︷︷ ︸
e2−(i+1)e

:

Furthermore, let C′′
i be the code obtained by appending the su>x ai to the codewords

of C′; in symbols,

C′′
i = C′ ⊗ ai :

Trivially, C′′
i is an (n; (mn; ee−1 ); 2e+1) code for all i= 0; 1; : : : ; e−1: Furthermore, we have

�(C′′
i ;C

′′
j ) = 2e¿ 2e−(i+j)+1; whenever 0 6 i¡j 6 e−1: For each i= 0; 1; : : : ; e−1;

pick a subcode Ci⊆C′′
i with |Ci|= (mn; ei ). Then the new e-tuple of codes  = (C0;

C1; : : : ;Ce−1) satis5es both conditions (i) and (ii), and the proof is complete.

The following corollary implies the existence of minimum adaptiveness perfect
searching strategies.

Corollary 4.4. Fix an integer e¿ 0: Then for all su9ciently large integers m and for
every state � of type (1; m; (m2 ); : : : ; (me )) there exists a non-adaptive winning strategy
S such that the number of questions in S coincides with Berlekamp’s lower bound
ch(�) = qe(m) − m.

Proof. Skipping all trivialities, assume e¿ 1: Let n= ch(�): By de5nition, n→∞ as
m→∞: Lemmas 4.3 and 3.3 yield a non-adaptive winning strategy with n questions
for any state of type (1; mn; e; (

mn; e
2 ); : : : ; (mn; ee )): By De5nition 4.1, m 6 mn; e; and a
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fortiori, for all su>ciently large m; a non-adaptive winning strategy with n questions
exists for any state of type (1; m; (m2 ); : : : ; (me )):

5. Ulam–R�enyi game with three lies and minimum adaptiveness

In this section we restrict to the particular case e= 3: We recall that two-round
optimal strategies for the case e= 2 were given in [9]. We shall prove that for all m¿
99 perfect (hence, a fortiori, optimal) searching strategies do exist to 5nd an unknown
m-bit number x∗ with minimum adaptiveness and up to three lies in the answers.
States now have the form (A0; A1; A2; A3): Proceeding as in the previous section, we
may safely assume that after a 5rst batch of m non-adaptive questions asking for the
binary expansion of x∗, the resulting state � is of type (1; m; (m2 ); (m3 )) and character
n= ch(�) = q3(m)−m: We shall explicitly describe non-adaptive winning strategies with
n questions for such �, whenever m ¿ 99: 7 We shall use the following preliminary
lemma.

Lemma 5.1. Let n and m be arbitrary integers ¿ 1: For each i= 1; 2; let Ci be an
(n;Mi; di) code with �(Ci) ¿ gi; for suitable integers

Mi ¿
(
m+ i − 1

i

)
; di ¿ 7 − 2i; gi ¿ 7 − i:

Suppose further that �(C1;C2) ¿ 4: Then for all j= 1; 2; 3; : : : ; there exists an (n+
3j;M ′; 5) code D

( j)
1 with M ′ ¿ 2jm; �(D( j)

1 ) ¿ g1; together with an (n+ 3j;M ′′; 3)

code D
( j)
2 such that M ′′ ¿ ( 2jm

2 ); �(D( j)
2 ) ¿ g2 and �(D( j)

1 ;D( j)
2 ) ¿ 4:

Proof. Let D(0)
1 =C1 and D

(0)
2 =C2: For each j= 1; 2; 3; : : : let us de5ne 8

D
( j)
1 = {D( j−1)

1 ⊕ 0 · · · 0} ⊗ 000 ∪ {D( j−1)
1 ⊕ 110 · · · 0} ⊗ 111;

D
( j)
2 = {D( j−1)

2 ⊕ 0 · · · 0} ⊗ 000 ∪ {D( j−1)
2 ⊕ 10 · · · 0} ⊗ 110

∪{D( j−1)
2 ⊕ 010 · · · 0} ⊗ 101 ∪ {D( j−1)

2 ⊕ 110 · · · 0} ⊗ 011:

It is not hard to verify (see also [22, Chapter 18, Section 7, Theorem 9] that for all
j= 1; 2; : : : ;

�(D(j)
1 )¿5; �(D( j)

2 )¿3 �(D( j)
1 ;D( j)

2 ) = �(D(j−1)
1 ;D( j−1)

2 ) = �(C1;C2)¿4:

7 This bound can be further optimized. As the result of computer search for special tuples of codes, it turns
out that non-adaptive winning strategies with ch(�) questions, for any such state � do exist for all m¿ 44;
[8]. Remarkably enough, for all 9 6 m 6 12; the Golay code [18] yields perfect non-adaptive winning
strategies to 5nd an unknown m-bit number when up to three of the answers are mendacious=erroneous.

8 Given any code G of length n together with tuples x= x1 · · · xn ∈{0; 1}n and a= a1a2 · · · as ∈{0; 1}s;
we denote by {G⊕ x} ⊗ a the code of length n+ s whose codewords are obtained by adding x (termwise
and modulo 2) to every codeword of G, and then appending the su>x a to the resulting n-tuple.
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Moreover for i= 1; 2 we have �(D( j)
i ) = �(D( j−1)

i ) ¿ gi: Finally,

|D( j)
1 | = 2|D( j−1)

1 | = 2j|D(0)
1 |¿ 2jm;

|D( j)
2 | = 4|D( j−1)

2 | = 4j|D(0)
2 |¿ 4j

(
m+ 1

2

)

=
4j(m2 + m)

2
¿

4jm2 − 2jm
2

=
(

2jm
2

)

as required.

Lemma 5.2. For all n¿ 19 there is an (n;M1; d1) code Cn;1 and an (n;M2; d2) code
Cn;2 such that

M1 ¿ mn;3; d1 ¿ 5; M2 ¿
(
mn;3

2

)
; d2 ¿ 3;

�(Cn;1) ¿ 6; �(Cn;2) ¿ 5; �(Cn;1;Cn;2) ¿ 4:

Proof. By direct inspection in [6, Table I-A, I-B], for n= 20; 21; 22; there exist codes
Dn;1;Dn;2;Dn;3 such that

(i) Dn;1 is an (n;Mn;1; 6) code and wH (x) = 6 for any x∈Dn;1;
(ii) Dn;2 is an (n;Mn;2; 4) code and wH (x) = 10 for any x∈Dn;2;

(iii) Dn;3 is an (n;Mn;3; 4) code and wH (x) = 13 for any x∈Dn;3:
Moreover,

Mn;1 ¿
3
√

6 2n=3 + 3 ¿ mn;3

and

Mn;2 +Mn;3 ¿
( 3
√

6 2n=3 + 4
2

)
¿

(
mn;3 + 1

2

)
¿

(
mn;3

2

)
:

It is apparent that �(Dn;2;Dn;3) ¿ 3:
De5ne Cn;1 =Dn;1 and Cn;2 =Dn;2∪Dn;3. Trivially, �(Cn;1)¿6 and �(Cn;2)¿5.

Hence the claim holds for n= 20; 21; 22.
For any n¿23; write n= n′+3j with n′ ∈{20; 21; 22} and j¿1. Then by Lemma 5.1

there exist an (n;M ′; 5) code Cn;1 with

M ′ ¿ 2jmn′ ;3 ¿ mn′+3j;3 = mn;3

and an (n;M ′′; 3) code Cn;2 with

M ′′ ¿
(

2jmn′ ;3
2

)
¿

(
mn;3

2

)

such that �(Cn;1)¿6; �(Cn;2)¿5 and �(Cn;1;Cn;2)¿4. Hence the desired result holds
for all n¿20.
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For the remaining case n= 19; direct inspection in [6, Table I-A, I-B] again yields
three codes Dn; i (i= 1; 2; 3) as above, with Mn;1 = 172¿127 =m19;3 and Mn;2 +Mn;3 =
8322¿8001 = (m19; 3

2 ). This concludes the proof.

Corollary 5.3. Fix an integer m¿99; and let � be an arbitrary state of type (1; m; (m2 );
(m3 )). Then there exists a perfect non-adaptive winning strategy S for � (in the
sense that the number of questions in S coincides with Berlekamp’s lower bound
ch(�) = q3(m) − m).

Proof. Let n= ch(�). From the assumption m¿99 by direct inspection, we get n¿19.
Lemma 5.2 yields an (n; a1; d1) code D1 with a1¿mn;3; �(D1)¿6; d1¿5 together
with an (n; a2; d2) code D2 with a2¿(mn; 32 ); �(D2)¿5; d2¿3 satisfying the inequality
�(D1;D2)¿4. By de5nition, m6mn;3. Pick subcodes C1 ⊆D1 and C2 ⊆D2 such that
|C1|=m and |C2|= (m2 ).Finally let the (n; 1; 7) code C0 be de5ned by C0 = {0 : : : 0}.
Then the desired conclusion directly follows by Lemma 3.3, using the triplet of codes
 = (C0;C1;C2).

6. Shrinking the !rst batch of questions

The problem considered in this section naturally arises from the asymmetric nature
of the communication between Questioner and Responder. Indeed, in our scenario the
forward Questioner-to-Responder channel is noiseless, while the feedback channel is
noisy. In the cooperative model, where Questioner and Responder have agreed on the
searching strategy, and lies are replaced by distortions, our results show that error
correction can be achieved via the following protocol:

(i) Send m bits over the noisy Responder-to-Questioner channel.
(ii) Over the noiseless feedback channel, send to the Responder the m−tuple of bits,

as actually received by the Questioner.
(iii) Finally, send to the Questioner a 5nal tip of qe(m)−m bits, over the noisy channel.

Since in many concrete situations the noiseless feedback channel is much more
costly than the forward noisy channel, one can reasonably consider the problem of
minimizing the number of feedback bits to be sent during stage (ii). The following
problem is especially interesting for us:
To which extent can one decrease the number of bits sent over the noiseless channel,

while still keeping to a minimum both the total number of questions and the number
of non-adaptive batches of questions?

As we shall see, for every integer k¿1 one can always reduce from m to by m− k
the number of questions in the 5rst batch (whence similarly reduce the number of
feedback bits over the noiseless channel), for all suitably large m.

Fix an integer k¿1 and let m be a su>ciently large integer. Suppose that the Ques-
tioner’s 5rst batch of questions only consists of the 5rst m− k queries of Section 4.1.
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Then a direct computation shows that the resulting state �k = (A0; A1; : : : ; Ae) is of type

(
2k ; 2k(m− k); 2k

(
m− k

2

)
; : : : ; 2k

(
m− k
e

))

and ch(�k) = qe(m)−m+k. For the desired perfect two-round strategy, we must exhibit,
for the state �k ; a non-adaptive winning strategy with qe(m)−m+ k questions. To this
purpose, we need the following generalization of Lemma 4.3:

Lemma 6.1. For any two 6xed integers e; k¿1; and for all su9ciently large integers n
there exists an e-tuple of codes  = (C0;C1; : : : ;Ce−1) together with integers di¿2(e−
i) + 1 (i= 0; 1; : : : ; e − 1) such that

(i) Each Ci is an (n+ k; 2k(mn; e−ki ); di) code;
(ii) �(Ci ;Cj)¿2e − (i + j) + 1; (whenever 06i¡j6e − 1:)

Proof. Let n′ = n−e2+k. First we prove the existence of an (n′; 2k(mn; ee−1 ); d′) code, with
d′ = 2e+ 1. From Lemma 4.2 together with the well known inequality e!6(e+ 1)e=2e;
it follows that, for all su>ciently large n

(
mn; e − k
e − 1

)
2k ¡ (mn;e)e−12k

¡ 2k( e
√
e!2n=e + e)e−1

6 2k(e2n=e)e−1

= ee−12n(e−1)=e+k

6
2n−e

2+k∑2e
j=0

(
n−e2+k

j

) :

The existence of the desired (n′; 2k(mn; e−ke−1 ); d′) code follows from Gilbert’s Bound. We

have proved that, for all su>ciently large n, there exists an (n− e2 + k; 2k(mn; e−ke−1 ); d′)
code C′ with d′¿2e+1. Proceeding now as in the proof of Lemma 4.3, we can easily
prove the existence of a new e-tuple of codes  = (C0;C1; : : : ;Ce−1) satisfying both
conditions (i) and (ii). This completes the proof.

The following corollary implies the existence of minimum adaptiveness perfect
searching strategies with a 5rst batch of m− k, rather than m, questions.

Corollary 6.2. Fix two integers e¿0; and k¿0. Then for all su9ciently large integers
m and for every state �k of type (2k ; (m− k)2k ; (m−k2 )2k ; : : : ; (m−ke )2k) there exists a
non-adaptive winning strategy S such that the number of questions in S coincides
with Berlekamp’s lower bound ch(�k) = qe(m) − m+ k.
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Proof. We can safely assume e; k¿1. Let n= ch(�k). By de5nition, n→∞ as m→∞.
Lemmas 6.1 and 3.3 yield a non-adaptive winning strategy with n questions for any
state of type (2k ; 2k(mn; e − k); 2k(mn; e−k2 ); : : : ; 2k(mn; e−ke )). By De5nition 4.1, m6mn; e;
whence a fortiori, for all su>ciently large m; a non-adaptive winning strategy with n
questions exists for any state of type (2k ; 2k(m− k); 2k(m−k2 ); : : : ; 2k(m−ke )).

7. Conclusions and open problems

For all su>ciently large search spaces we have proved the existence of perfect e
error correcting search strategies where adaptiveness occurs only once. Our results also
suggest several interesting problems, as follows:
1. With reference to Section 6, what is the minimum number of questions, )(m; e);

in the 5rst batch of a two round perfect strategy for searching an unknown m-bit
number when up to e of the answers are lies?

2. Which sorts of minimally adaptive perfect strategies exist if questions allow the Re-
sponder to choose between several (rather than merely two) options, as in [2, 13, 10]?

3. It is of practical interest to extend to e¿3 the non-asymptotic results of Section 5.
4. A further line of research deals with the applicability of our methods to various

related problems in the area of computing with unreliable tests (e.g., [21]).
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