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Abstract 

The ageing of fluorescent materials (phenyleneethynylene) has been studied to evaluate there lifetime as chemical sensors and to 
identify the ageing mechanism. 
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1. Summary 

During the last 10 years counterterrorism activities have been strengthened and various explosive detection 
technologies have been developed (e.g.: HPLC, GC/MS, NMR and IMS). Chemical sensors, especially fluorescent 
ones, seem to fill the need in terms of reliability, cost and handling ability. We have developed an optical device 
based on the capability of π-conjugated fluorescent materials (phenyleneethynylenes) to detect explosives vapors, in 
particular nitroaromatic compounds (TNT and DNT) [1,2,3]. As far as we know the ageing of phenyleneethynylenes 
is the subject of only few studies and none of them linked the ageing to the performances of the device [4, 5]. This 
paper is focused on the ageing of these materials studied by two means. First, we evaluated the influences of oxygen 
and light on the performances and the lifetime of the Polyimine compound (Fig. 1). Secondly, we undertook an 
accelerated ageing by the means of UV lamps to characterize (by FT-IR, Raman and XPS) the degradation process 
of the fluorescent part of the molecule: the Phenylene (Fig. 1). 
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Fig. 1: Polyimine (left) and Phenylene (right) 
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2. Lifetime evaluation of fluorescent sensors. 

To validate the lifetime of the chemical sensor, it is essential to evaluate its performance in the larger range of 
time and, to identify the best way to store it. To do so, we evaluated the performances of a polymer by the way of a 
routine detection test of DNT using a prototype and a testing bench at different time intervals. 

2.1. Testing bench and detection test description 

The bench described in Fig. 2 was used to distribute either dry air to the prototype or air contaminated with 2,4-
dinitrotoluène (DNT). The DNT concentration (120 ppb) was measured by spectroscopy after bubbling in a reactor 
full-up with HPLC grade acetonitrile.  

The general testing procedure was: 
 - 30 minutes of stabilisation under air to obtain the signal base-line. 
 - 10 minutes of DNT exposure, the quenching of the fluorescence is then observed. 
 - 45 minutes of dry air to get the original signal back. 
The sensitivity of the material is then defined as the percentage of fluorescence inhibition after 10 minutes. 
 

 

Fig. 2: DNT vapour generation bench (left) and typical detection test (right). 

2.2. Results 

The effects of day-light and oxygen were evaluated on four spin casted Polyimine thin films for different time 
intervals. The effectiveness for a day corresponds to the sensitivity of the film reported to its initial performance, as 
for the remaining fluorescence. As can be seen in Fig. 3, both the effectiveness and remaining fluorescence of films 
decreased quickly under light. The presence of light is thus critical for the ageing of the material. The storage under 
inert atmosphere (Argon) seems to nearly stop the ageing of the Polyimine. According to these results, we believe 
photo-oxydation to be the ageing process of the films. 
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Fig. 3: Effectiveness (left) and remaining fluorescence (right) of four thin films. Storage conditions: O2+hv: Air and light, O2-hv: Air without 
light, Ar+hv: Argon with light, Ar-hv: Argon without light. 
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3. Ageing comprehension. 

To better understand the ageing process, we used a model compound, the Phenylene, which is the fluorescent part 
of the Polyimine. As a smaller compound, we believe it’s degradation to be easier to study. 

 

3.1. Infra-red studies. 

Phenylene was deposited on silicon wafer and an Epiq6000 UV Fusion lamp was used to produce a quick 
degradation. As can be seen on Fig. 4 (left), the compound loses its fluorescence after each irradiation, transmission 
IR spectra were recorded, but we obtained no significant results.  

On Fig. 4 (right), we reported an IR spectrum for a fresh film and two spectra (ATR and transmission) after 
fourth irradiation, we can notice that the two transmission spectra are quite the same, revealing no noticeable 
degradation. Huge differences can be noticed on the ATR spectrum: a large band at 1730 cm-1 (carbonyl band) and 
at 3200 cm-1 (OH groups), the alkoxy signal (2950 cm-1) is doubled as well as the majority of the bands found 
between 700 and 1500 cm-1. The comparison of these spectra led us to the conclusion that only a small part of the 
film thickness seems to be engaged in the degradation process, with the creation of carbonyl or ester chemical 
functions. 
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Fig. 4: Phenylene fluorescence spectra after several irradiations under an UV-Fusion lamp (left) and Transmission IR spectrum of fresh 
Phenylene as well as ATR and transmission spectra after four irradiations (right). 

3.2. XPS studies 

To corroborate the previous observation, XPS analyses were carried out on fresh Phenylene films and on 
deteriorated ones, the XPS carbon signals are reported in Fig. 5. 
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Fig. 5: XPS carbon signals of a fresh Phenylene film (left) and a deteriorated one (right) 
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The carbon signal of the deteriorated Phenylene exhibits carbonyl and ester (or carboxylic acid) signal contrary to 
fresh film. Moreover, after Ar+ bombardment, the XPS signals were the same as the one obtained on fresh films. 
These observations suit with the infrared results and the hypothesis that only a few nanometers of the film thickness 
are engaged in the degradation process. 

To clarify the location of the degradation (the alkoxy chains or the π-conjugated part) we carried-out the XPS 
analyses on a non-substituted Phenylene derivative. The presence of two contribution from ester (or carboxylic acid) 
and carbon-oxygen single bond proves the oxidation of the π-conjugated part of the material (on the triple bonds or 
phenyl rings). 
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Fig. 6: XPS carbon signal and chemical formula of non-substituted Phenylene 

4. Conclusion 

The ageing of phenyleneethynylene compounds has been studied. Photo-oxydation seems to be the ageing 
process, but kept safe from day-light, films were able to detect nitroaromatic compounds 150 days after being spin 
casted. 

The XPS and IR analyses showed that only a small part of the film thickness was involved in the ageing process 
with creation of carbonyl functions. 
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