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Inter-individual variability has been a major hurdle to optimize disease management. Precision medicine holds
promise for improving health and healthcare via tailor-made therapeutic strategies. Herein, we outline the par-
adigm of “pharmacometabolomics-aided pharmacogenomics” in autoimmune diseases. We envisage merging
pharmacometabolomic and pharmacogenomic data (to address the interplay of genomic and environmental in-
fluences) with information technologies to facilitate data analysis as well as sense- and decision-making on the
basis of synergy between artificial and human intelligence. Humans can detect patterns, which computer algo-
rithms may fail to do so, whereas data-intensive and cognitively complex settings and processes limit human
ability. We propose that better-informed, rapid and cost-effective omics studies need the implementation of
holistic and multidisciplinary approaches.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tailor-made therapeutics and cost-effective disease management
will only become possible when inter-individual variability is ad-
dressed. Indeed, the interplay of genomic and environmental influences
(diet, lifestyle, polypharmacy, toxins, gut microbiome) forms a data-
intensive and cognitively complex context that offers great intervention
opportunities, but also presents challenges. In the current era of big
of Health Sciences, Department
reece.

. This is an open access article under
data, a major challenge is that of merging several high throughput
datasets coming from various platforms and tools to generate and/or
test hypotheses with regard to disease heterogeneity or mechanisms
for variation in drug response.

Herein, we outline the paradigm of “pharmacometabolomics-
aided pharmacogenomics” in autoimmune disease. We envisage ad-
dressing the interplay of genes and the environment by merging
pharmacometabolomic and pharmacogenomic data with information
technologies. The latter will not only facilitate data analysis, but also
sense- and decision-making via the synergy between artificial and
human intelligence. We feel that this synergy is of fundamental impor-
tance, if rapid and efficient data processing is anticipated. Notably,
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humans can detect patterns, which computer algorithmsmay fail to do
so (Agrawal et al., 2012). On the other hand, data-intensive and cogni-
tively complex processes limit human ability. We propose that better-
informed, rapid and cost-effective omics studies need the implementa-
tion of holistic and multidisciplinary approaches.
2. Pharmacogenomics in Precision Medicine

Pharmacogenomics, the prediction of the outcomeof a drug or xeno-
biotic intervention in an individual based on an analysis of that
individual's genetic profile (Everett et al., 2013), is an integral part of
precision medicine (personalized evidence-based medicine that ad-
dresses patient-to-patient variability) that explores how a person's ge-
nome relates to drug efficacy/toxicity as well as disease phenotype.
The ultimate goal of pharmacogenomics is an efficacious patient-
tailored therapeutic strategy that minimizes toxicity and ensures treat-
ment efficacy taking into account the genetic basis of inter-individual
variability following drug administration (Roden and George Jr, 2002;
Ma and Lu, 2011) (Table 1). Today, FDA-approved drug labeling may
contain information on genomic biomarkers that relate to (i) drug expo-
sure and clinical response patient-to-patient variability, (ii) risk for ad-
verse reactions, (iii) genotype-specific dosing, (iv) mechanisms of drug
action as well as (v) polymorphic drug target and disposition genes.

In 2009, one of the first pharmacogenomics successes took place. All
the protein-coding DNA of a very ill 4-year old boy was sequenced and
data were used to determine a causative gene mutation of his life-
threatening gut inflammation, leading to an ultimately effective treat-
ment (Katsnelson, 2013). Since then, the prospect of sequencing
whole exomes or genomes for less than $1000 has reshaped our think-
ing about genetic testing approaches (Hayden, 2014). Recently, Mizzi
et al. (2014) analyzed whole-genome sequences of 482 unrelated indi-
viduals of various ethnic backgrounds to obtain their personalized
pharmacogenomics profiles. In a continuous effort to define genotype-
to-phenotype associations, pharmacogenomics research has focused
on large-scale analyses (Genome Wide Association studies). At the
same time single nucleotide polymorphism (SNP) studies aim to char-
acterize functional differences in similar gene outputs (Monte et al.,
2012).

Today, recent technological advances have dramatically improved
the prospect of applying broadly the concept of precision medicine.
Large-scale databases, omics technologies, cellular assays, epigenetics,
informatics aswell as imaging technologies converge towards optimum
disease prevention, diagnosis and treatment. Hence, disease classifica-
tion is refined, often accompanied by diagnostic, prognostic and treat-
ment implications (Collins and Varmus, 2015). Successful examples
include the FDA-approved use of chip technologies for the detection of
variations in patients' CYP2D6, CYP2C19 and UGT genes that are of fun-
damental importance in drugmetabolism (Swen et al., 2007). Notwith-
standing, clinical pharmacogenomics depends on validated actionable
genomic data that will inform diagnosis, prognosis or treatment
(Lander, 2015). We feel that forthcoming trials are needed to demon-
strate pharmacodynamic associations with genomic variants (Caraco
Table 1
The genetic basis of inter-individual variability in drug response.

Genetics Effect

Poor metabolizer Metabolic rate: slower than normal
Extensive metabolizer Metabolic rate: normal
Rapid metabolizer Metabolic rate: faster than normal
Therapeutic targets Drug efficacy (pharmacodynamics)

Drug transporters Drug disposition (pharmacokinetics)

Modulators (drug action) Metabolic rate: faster than normal
et al., 2008; Mega et al., 2011). Notably, the currently available screen-
ing tests are characterized by unacceptable positive and negative pre-
dictive values (less than a 50% success rate in terms of safety and
efficacy prediction), implying that inter-individual variability is not ex-
clusively shaped by genomics. Indeed, combining screening for genomic
variants in the CYP2C19 and VKORC1 genes – the most effective
pharmacogenomics screen to date – resulted in a mere 41% prediction
of the variability in warfarin doses (Namazi et al., 2010).
3. Pharmacometabolomics in Precision Medicine

Pharmacogenomics does not consider environmental influences
on drug pharmacokinetics (absorption, distribution, metabolism,
excretion) and/or pharmacodynamics — neither the role of gut
microbiome (Walter and Ley, 2011; Gurwitz, 2013; Li and Jia, 2013).
More recently, in an alternative, but yet complementary discipline,
pharmacometabolomics aims to predict and/or evaluate drug metabo-
lism (Everett, 2015; Nicholson et al., 2011).

Pharmacometabolomics is the later term used synonymously with
pharmacometabonomics, the prediction of the outcome of a drug or xe-
nobiotic intervention in an individual based on a mathematical model of
preintervention metabolite signatures (Clayton et al., 2006). Historically,
Jeremy Everett and Jeremy Nicholson first defined metabonomics in
1999, during the course of collaboration between Pfizer R&D, UK and Im-
perial College London (Nicholson et al., 1999). Pharmacometabonomics
was established in 2000 as a result of inconsistent findings among sub-
groups of animal models. The hypothesis of Clayton et al. was that post-
dose drug metabolism and safety were related to pre-dose metabolic
profile differences (Clayton et al., 2006).

Pharmacometabolomics is based on metabolic phenotypes
(metabotypes), which are considered as the net result of genetic, phys-
iological, chemical, and environmental influences (Holmes et al., 2008;
Everett et al., 2013). Metabolic profiles refer to a huge list of chemical
entities, both endogenous and exogenous, such as peptides, amino
acids, nucleic acids, carbohydrates, fatty acids, organic acids, vitamins,
hormones, drugs, food additives, phytochemicals, and toxins (Wishart
et al., 2007). Surprisingly enough, even though the overall number of
endogenous metabolites has been reported to be extremely high
(~100,000), the major metabolites relevant for clinical diagnostics
and/or drugdevelopmenthave been estimated at 1400–3000molecules
(Xu et al., 2009). What is also rather interesting to note is that metabo-
lites are not just end- or by-products, as they can regulate gene expres-
sion and/or affect cell biology. Betaine, for example, is an osmolyte
(protects from environmental stress) and methyl donor (participates
in methionine cycle in human liver and kidneys) (Craig, 2004; Friesen
et al., 2007), while it is a positive regulator of mitochondrial respiration
and cytochrome c oxidase activity (Lee, 2015).

In the presence or absence of chemometrics, a pre-dose metabotype
can assist modeling and prediction of inter-individual drug responses
(Nicholson et al., 2011). Similarly, Kaddurah-Daouk et al. (2007) inves-
tigated the lipid profiles of 50 patients with schizophrenia, before and
after olanzapine-, risperidone- and aripiprazole-treatment. Pre- and
Phenotype (active drug) Phenotype (pro-drug)

High toxicity risk Lack of efficacy
Expected drug effect

Lack of efficacy High toxicity risk
High toxicity risk
Reduced efficacy
High toxicity risk
Reduced efficacy
High toxicity risk
Reduced efficacy
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post-treatment profiles were compared resulting in the identification of
baseline lipid alterations that correlated with acute treatment response
(Kaddurah-Daouk et al., 2007). Clayton et al. (2009) demonstrated a
clear connection between a pre-dose urinarymetabolite profile of an in-
dividual, and themetabolic fate of a standard dose of acetaminophen. It
was reported that in individualswith high bacteriallymediated p-cresol
generation, competitive O-sulfonation of p-cresol reduces the effective
systemic capacity to sulfonate acetaminophen, implying that the effects
of microbiome activity should be an integral part of pharmaceutical de-
velopment and of personalized healthcare (Clayton et al., 2009). Anoth-
er study has shown that pre-treatmentmetabotypes could be predictive
of sertraline response (acute treatment) in patients with major depres-
sive disorder (Kaddurah-Daouk et al., 2011). This is the principle of
“metabotype-based pharmacokinetics/pharmacodynamics”. Everett
(2015) provides a comprehensive overview.

Metabotype data coupled tometagenomicmeasurements (informa-
tion on gut microbiota) can enhance our knowledge about the complex
interactions between the host and its gut microbiota (Kaddurah-Daouk
et al., 2014) as well as their role in modulating host physiology, gut
microbiome-related disorders, and metabolism of xenobiotics (Li and
Jia, 2013). Even though a “core microbiome” has been proposed
among different individuals and family members (Qin et al., 2010;
Rajilić-Stojanović et al., 2007), the entire composition of the gut micro-
biota is highly variable in humans and associated with a variety of dis-
eases (obesity, inflammatory bowel disease, diabetes, nonalcoholic
fatty-liver disease, Crohn's disease, and colorectal cancer) (Li and Jia,
2013). Remarkably, O'keefe et al. (2015) demonstrated that changes
in the food content of fiber and fat affected profoundly the colonic mi-
crobiota as well as the metabonome of individuals from high- and
low-risk cancer populations (within 2 weeks) (O'keefe et al., 2015). Ad-
ditionally, metabolic networks have been analyzed to shed light on cor-
relations between metabolites (considering even gut microbiota) and
disease. Such an approach was employed for the first time during the
urinary metabolomics profiling of Italian autistic pediatric patients and
their healthy siblings (Noto et al., 2014). The analysis of such metabolic
networks, which are indicated as nodes and edges, is crucial for the
identification of the main routes connecting the entities of interest
within the metabolic pathways in question. For instance, MetaMapR
(http://dgrapov.github.io/MetaMapR/) generates richly connectedmet-
abolic networks via the integration of enzymatic transformations with
metabolite structural similarity, mass spectral similarity and empirical
associations. Overall, such approaches are defined as “metabotype-
based subtyping”.

Especially in neonatology and pediatrics, there is a great potential for
pharmacometabolomics studies to rationalize therapeutic use in infants
and children. Drug pharmacokinetics differs substantially from those in
adults and so far, a dosage approximation becomes necessary, as many
drugs are not specifically approved for pediatric use. Today, very few – if
any – pharmacometabolomics studies have been conducted in pediatric
patients. Relevant reviews on the matter have been recently published
(Mussap et al., 2013;Katsila and Patrinos, 2015).

Unfortunately, both “metabotype-based pharmacokinetics/pharma-
codynamics” and “metabotype-based subtyping” approaches are cur-
rently of little utility to the practicing clinician, as reproducibility
issues need to be overcome (Simó et al., 2011). Furthermore, it has
been shown that even small changes in physiology can have significant
impact on the metabotype (Johnson and Gonzalez, 2012). Only if
clinicians focus on larger stable metabolic signals, transient metabolic
associations that do not represent causation could be diminished.
Polypharmacy is rather challenging, too (Nicholson et al., 2012).

4. Pharmacometabolomics-aided Pharmacogenomics

The idea of the constructive coupling of omics technologies is not
new. Pharmacogenomics and pharmacometabolomics complement
each other and thus, reinforce the identification of clinically relevant
associations. Instead of traditional tag SNP genotyping, genotype impu-
tation could determine genomic variants of interest in pathways identi-
fied during pharmacometabolomics studies (Abo et al., 2012; Suhre
et al., 2011). This strategy accelerates and broadens the scope of the
analysis of pharmacogenomic candidate genes. Similarly, awider survey
becomes possible, reducing the need of genotyping prior to replication.
In this context, Ji et al. (2011) explored citalopram/escitalopram treat-
ment biomarkers, following ametabolomics analysis in plasma, accord-
ing to which (i) glycine was reported to be negatively associated with
treatment outcome leading to tag SNP genotyping for genes encoding
glycine synthesis and (ii) rs10975641 (GLDC) was defined as a response
biomarker in major depressive disorder patients.

When untargeted analysis is considered, pharmacometabolomics
also serves as a tool to shape hypothesis, as multiple analytes are
quantified simultaneously and pharmacometabolomic modeling ap-
pears not to be limited by prior understanding or hypotheses. Hence,
pharmacometabolomic modeling can be a powerful hypothesis-
generating scenario. Of course, an adequatemonitoring of the analytical
quality is always mandatory, if a cluster of metabolites associates to a
well-defined physiopathological condition. In the context of a
pharmacometabolomics-aided pharmacogenomics strategy, the break-
through of metabotype-based findings is patient or therapy profiling
that addresses genomic and environmental influences in a rather
pathway-targeted way, even if the mechanism in question (disease,
drug efficacy/toxicity) is not completely known. Konstantynowicz
et al. (2012) reported that children with autistic spectrum disorders
(ASD) demonstrated 3-fold greater plasma oxalate levels as well as
2.5-fold greater urinary oxalate concentrations compared with healthy
individuals. As the authors commented “whether hyperoxalemia and
hyperoxaluria may be involved in the pathogenesis of ASD in children
or this is the outcome of an impaired renal excretion or an extensive in-
testinal absorption, or both, or whether oxalate crosses the blood brain
barrier and disturbs CNS function in the autistic children remains un-
clear” (Konstantynowicz et al., 2012). Taking into account that the
SLC26 gene family encodes anion exchangers and channels transporting
a broad range of substrates, including oxalate (Alper and Sharma, 2013),
genetics is expected to play a role. In any case, a low oxalate diet has re-
sulted in the ease of ASD symptoms (improvements in expressive
speech, reduced obsessive behavior) (Konstantynowicz et al., 2012),
allowing disease handling on the basis of metabotypes. Pre-dose
metabotypes can be also predictive of a post-dose phenotype (drug
toxicity or efficacy), addressing environmental influences as well
as the role of gut microbiome. This is the exact information that
pharmacogenomics fails to achieve patient-tailored treatment. An
overview of the human pharmacometabolomics, metabolomics,
metabonomics, metagenomics and pharmacometabolomics-aided
pharmacogenomics studies reported in the literature to late 2015 is
depicted in Supplementary Table 1.

What we envisage is merging omics and information technologies
beyond data mining and analysis. Instead, we propose the synergy
between artificial and human intelligence to (i) acquire
pharmacometabolomic and pharmacogenomic data and thus, address
the interplay of genomic and environmental influences, (ii) facilitate
collaborative data analysis and (iii) guide sense- and decision-making
towards rapid and efficient data output. A “one-stop-shop” crowd-
sourced, cloud- or web-based platform (a standard aroundwhich a sys-
tem can be developed) where the informatics community and/or bio-
medicine scientists could explore and validate such an approach could
pave the way for better-informed and cost-effective studies. Omics
data demand strict filtering aswell as thorough analysis and interpreta-
tion. At the same time, biomedicine scientists need to efficiently and ef-
fectively collaborate andmake decisions. For this, large-scale volumes of
complex multi-faceted data need to be meaningfully assembled, mined
and analyzed. Tsiliki et al. (2014) presented an innovative web-based
collaboration support platform that adopts a hybrid approach on the
basis of the synergy between artificial and human intelligence.

http://dgrapov.github.io/MetaMapR/
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5. The Paradigm of Autoimmune Disease

Autoimmune disease results from the incapacity of the immune sys-
tem to discern endogenous substances from xenobiotics and affects 5%
of the population inWestern countries (Sinha et al., 1990). The etiology
of autoimmune disease is currently unclear, perplexing differential
diagnosis, patient stratification and decision-making in the clinic. Al-
though a genetic component has been described, disease occurrence
has been also associated with several environmental factors, gut micro-
biota, infections as well as gender bias (Shoenfeld and Isenberg, 1989).
Overall, disease management options are limited and ultimately fail to
protect patients from disease symptoms due to its chronic nature.

Considering the role of the environment and gut microbiome in
the pathobiology of the disease (Li and Jia, 2013; Wilson, 2009), a
“pharmacometabolomics-aided pharmacogenomics” strategy could be
of great benefit, as pharmacogenomics alone fails to address environ-
mental influences. Taking into account host–microbiome interactions
as well as the implications of gut microbiota for nutrition, data-
intensive and cognitively complex settings and processes that limit
human ability are anticipated. Can we delineate inter-individual vari-
ability towards differential diagnosis? Can we highlight the disease
mechanisms in question to assist disease management? We consider
immune disease as a model that presents multiple challenges, which
could only be met by a multidisciplinary strategy built on the synergy
of artificial and human intelligence. Some potential case scenarios are
presented below.

Celiac disease is a complex chronic immune-mediated disorder of
the small intestine. Gluten has been identified as the environmental
trigger of the disease (Di Sabatino and Corazza, 2009). Today, the pres-
ence ofHLA-DQ2 andHLA-DQ8 coupled to a positive biopsy and serolog-
ical antibodies upon a gluten-containing diet is used for diagnosis.
However, theHLA-DQ2 and HLA-DQ8 genes are necessary, but not suffi-
cient for the development of celiac disease. To date, a few studies report
differential metabotypes between healthy individuals and celiac pa-
tients. In 2009, a metabolic signature of celiac disease was defined, ac-
cording to which differential serum levels of glucose and ketonic
bodies suggested alterations of energymetabolism, whereas alterations
of gut microbiota were also evident following urine data analysis
(Bertini et al., 2009). In agreementwith our view that the gutmicroflora
of the small bowel is altered in celiac patients or presents peculiar
species with their own microbial metabolome, Di Cagno et al. (2011)
extensively explored the duodenal and fecal microbiota of celiac
children, performing a molecular, phenotype as well as metabolome
characterization.

Rheumatoid arthritis is another chronic inflammatory disorder
that typically affects the lining of joints, causing a painful swelling
that can eventually result in bone erosion and joint deformity
(Longo et al., 2015). Anti-tumor necrosis factor (anti-TNF) therapies
are highly effective in rheumatoid arthritis. Yet, many patients ex-
hibit only a partial or no therapeutic response. Kapoor et al. (2013)
investigated the possibility a pre-dose patient's metabotype could
predict responses to anti-TNF agents. Findings were rather informa-
tive. Another metabolomic analysis identified serum biomarkers to
evaluate methotrexate treatment in patients with early rheumatoid
arthritis (Wang et al., 2012).

Autoimmune hepatitis is one of the most common chronic liver dis-
eases caused by the activation of host's immune system against its own
hepatocytes (Hadzic and Hierro, 2014). Notably, wrong diagnosis is a
key issue as there are no accurate biomarkers to discriminate autoim-
mune hepatitis from other diseases that have similar symptoms, such
as drug induced liver disease. Moreover, a recent study revealed that
nonalcoholic steatohepatitis shares the same autoimmune antibodies
with autoimmune hepatitis (Czaja, 2013). In 2014, Wang et al. success-
fully identified nine metabolites that serve as disease biomarkers for its
diagnosis and distinguish between similar or overlapping liver diseases
(accuracy of 93%) (Wang et al., 2014).
Systemic lupus erythematosus is a chronic inflammatory disease
characterized bymulti-system involvement and diverse clinical presen-
tation. Interestingly, the metabolic disturbances that underlie the dis-
ease are currently unknown. In a thorough study, Wu et al. (2012)
compared the metabotypes of patients against their healthy counter-
parts to show that diseasemetabolome exhibited profound lipid perox-
idation, reflective of oxidative damage.

In all cases, although extremely limited, (pharmaco)metabolomics,
(pharmaco)metabonomics and (pharmaco)genomics have been ap-
plied, suggesting that the omics and information technologies coupling
that we propose is feasible.

6. A “Pharmacometabolomics-aided Pharmacogenomics”Workflow

A “pharmacometabolomics-aided pharmacogenomics” workflow
includes sample acquisition and preparation, analysis (NMR or mass
spectrometry technologies), data processing and data analysis (targeted
and non-targeted) (Mussap et al., 2013). For those familiar with
(pharmaco)metabolomics approaches, such an outline is not new.
What we propose at this point is the use of information technologies
for in-depth data mining, analysis, and argumentation.

Tools such as the human metabolome database (http://www.hmdb.
ca) and/or MetaboAnalyst (www.metaboanalyst.ca) are fundamental
for initial data processing and interpretation. An integrative genes/metab-
olites analysis of confirmedmetabolite identifierswill be facilitated by ap-
plying MAGENTA (http://www.broadinstitute.org/mpg/magenta/) to all
curated biological pathways, such as: KEGG (http://www.genome.jp/
kegg/), GO (http://www.geneontology.org), Reactome (http://www.
reactome.org), Panther (http://www.pantherdb.org), Biocarta (http://
www.biocarta.com) and Ingenuity (http://www.ingenuity.com/) data-
bases, allowing statistical filtering and gene set enrichment. If kinome is
of interest, ReKINect that has been recently reported and validated
could be employed (Creixell et al., 2015). Data visualization and analysis
will be further supported by applications and web services, such as
BioGRID (Stark et al., 2006), BDNB (Birkland and Yona, 2006), BioMart
(Guberman et al., 2011), Oncomine (Rhodes et al., 2004), GenePattern
(http://www.broadinstitute.org/cancer/software/genepattern/), PyMOL
(https://www.pymol.org/), MetaMapR (http://dgrapov.github.io/
MetaMapR/), the UCSC Genome Browser (Rosenbloom et al., 2013;
Karolchik et al., 2009) or even networks (caBIG, http://cabig.cancer.gov;
BIRN, http://www.nbirn.net) and projects (Genotype-Tissue Expression
Project) (Lonsdale et al., 2013) that enable sharing of data and resources.

As the next step and on the basis of candidate pathways of interest,
untyped SNP genotypes may be imputed with the software package
MaCH 1.0 (Li et al., 2010; Biernacka et al., 2009; Nothnagel et al.,
2009) to merge candidate pathway data with pharmacogenomics,
cost-effectively and possibly, with broader gene coverage than that of
routine tag SNP genotyping. Quality control measures will be also
employed (MaCH “Rsq”) to define the correlation between imputed
and true genotypes (Li et al., 2010). Data validation and replication
will occur by routine genotyping (PCR, Sanger sequencing). In silico
tools, such as those provided by RD-Connect (http://rd-connect.eu/),
CRAVAT (Douville et al., 2013), SIFT (Sim et al., 2012) and PROVEAN
(Choi and Chan, 2015) at the gene level will further assist on data
interpretation.

Various statistical approaches will be employed at several steps
throughout the proposed workflow (the R project for statistical com-
puting, https://www.r-project.org/), including those that are mostly
used for (pharmaco)metabolomics and pharmacogenomics studies —
principal component analysis (PCA) and partial least square discrimi-
nant analysis (PLS-DA). PCA, a statistical method for element reduction
through an orthogonal transformation, is an unsupervised method that
can be used to identify specific structures in a dataset (clusters, anoma-
lies or trends that exist between the observations). For this, PCA is
employed to identify patients who respond to treatment from those
who do not. On the contrary, PLS-DA is a supervised method. This

http://www.hmdb.ca
http://www.hmdb.ca
http://www.metaboanalyst.ca
http://www.broadinstitute.org
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.geneontology.org
http://www.reactome.org
http://www.reactome.org
http://www.pantherdb.org
http://www.biocarta.com
http://www.biocarta.com
http://www.ingenuity.com
http://www.broadinstitute.org/cancer/software/genepattern/
https://www.pymol.org
http://dgrapov.github.io/MetaMapR/
http://dgrapov.github.io/MetaMapR/
http://cabig.cancer.gov
http://www.nbirn.net
http://rdonnect.eu
https://www.r-roject.org
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supervised analysis will define the important variables— the main me-
tabolites responsible for the separation among the groups in question.

Datamining, analysis, collaboration and decision-making in such di-
verse data-intensive and cognitively complex settings will be per-
formed via the Dicode approach, supporting artificial and human
intelligence. The envisioned architecture combines batch (a series of
non-interactive tasks is executed all at one time) and stream (continu-
ous computation that occurs as data isflowing through the system)pro-
cessing (Karacapilidis, 2014), ensuring rapid and efficient outcomes.
7. Conclusions

The paradigm of autoimmune disease illustrates the great need to
delineate disease mechanisms towards tailor-made therapeutics and
differential diagnosis. Considering the interplay among genomic and
environmental influences (diet, lifestyle, polypharmacy, toxins, gut
microbiome) as well as host–gut microbiota interactions, a data-
intensive and cognitively complex setting arises that limit human abili-
ty. We feel that a “pharmacometabolomics-aided pharmacogenomics”
strategy coupled to information technologies that are built on the syner-
gy of artificial and human intelligencewill be of great benefit, as autoim-
mune disease pathobiology remains unclear, perplexing differential
diagnosis, patient stratification and decision-making in the clinic. We
propose that better-informed, rapid and cost-effective omics studies
need the implementation of holistic and multidisciplinary approaches.
8. Outstanding Questions

Herein, we consider immune disease as a model that presents mul-
tiple challenges, which could only be met rapidly and cost-effectively
via a multidisciplinary strategy — a “pharmacometabolomics-aided
pharmacogenomics” approach coupled to information technologies
that is built on the synergy of artificial and human intelligence. It is
now the time to implement new working practices to turn information
growth into knowledge growth and hence, better informed decisions.
Can we delineate inter-individual variability towards differential
diagnosis? Can we highlight the disease mechanisms in question to as-
sist diseasemanagement?What are the host–microbiome interactions?
Do post-dose drug metabolism and safety relate to pre-dose
metabotypes and how?
9. Search strategy and Selection Criteria

Data for this reviewwere identified by searches of PubMed and refer-
ences from relevant articles using the search terms “pharmacogenomics”,
“pharmacometabolomics”, “pharmacometabonomics”, “collaborative in-
formatics”, and “precision medicine”. Only articles published in English
between 2006 and 2015 were included (except for those introducing
pharmacometabonomics, metabonomics and autoimmune disease for
the first time).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2016.02.001.
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