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a b s t r a c t

Spinal cord injury is one of the main causes of disability in the young population. Based on the under-
lying pathological changes, many modalities of treatments have been trialed. However, the most
promising so far, has been the replacement of lost cellular elements, using stem cells and non-stem cells
transplantation. The route of cellular administration and engraftment into the site of injury is an
important determining factor for functional outcome, and should be chosen to be safe and efficacious in
human patients. Herein, we will review the underlying changes following spinal cord injury, and the
possible routes of cellular transplantation.
© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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complete loss of motor and sensory function after hewas shot in his
right shoulder with the bullet reaching the superior border of the
fourth thoracic vertebra. Following laminectomy, the injured spinal
cord was completely transected and replaced with a cadaveric
spinal cord that had been fixed in 10% formalin for twelve days, and
cleaned and sterilized with running and distilled water and 70%
alcohol. No improvement in the patient's condition was noted, and
the patient died almost 4 months after the surgery. Autopsy
showed exceptional preservation of the transplanted graft,
although with restricted regeneration and limited tissue reaction.
The preservationwas attributed to the preoperative use of formalin,
and no explanations or related conclusion on the microscopic
findings could be made.

2. Spinal cord injury

The world wide annual incidence of spinal cord injury (SCI) is
15e40 cases per million. The incidence is approximately 12,000
cases in the United States. Of these, 4000 die before reaching the
hospital and 1000 during hospitalization, mostly due to pneumonia
and septicemia [2]. Most of these injuries occur in otherwise
healthy and young patients, and are mainly due to fracture and/or
dislocation of the vertebral column [3]. Based on gross findings, SCI
can be classified into four groups: (1) solid cord injury, the least
common type, associated with normal appearance of the spinal
cord after injury; (2) contusion/cavitation, the most common type,
associated with areas of hemorrhage, and expanding necrosis and
cavitation, but with no disruption of the surface of the spinal cord;
(3) laceration, where there is a clear-cut disruption of the surface
anatomy; and (4) massive compression, where the cord is macer-
ated or pulpified to varying degrees. However, despite the differ-
ences in anatomic disruption of the spinal cord, these findings carry
no significant differences in the consequent histological changes.
This disparity is dependent on the different phases of SCI
(see below), leading to progressively deteriorating neuronal func-
tion [4].

2.1. Pathological changes

Pathological changes following SCI can be divided into two,
partially overlapping, phases: primary and secondary [3]. With
more thorough analysis, four main phases also have been
described: immediate hyperacute, acute, intermediate, and late
phases [4]. In the following text, we will discuss these phases with
focus on their effects on the neural cells, oligodendrocytes (OL), and
oligodendrocytes progenitor cells (OPC), which are the main
determinant of regeneration and cellular replacement therapy.

The immediate hyperacute phase is caused by the primary insult
of injury, and usually takes place within the first 1e2 h of injury.
During this phase, the initial insult, whether it is a contusion,
compression, shearing, or stretching of the spinal cord, will lead to
disruption of the neural and endothelial tissue. This is associated
with hemorrhagic necrosis that is mainly localized in the gray
matter and the center of the cord. The localization is due to the high
vascularity of the gray matter and the epicentric movement of the
injured tissues, which, in turn, places the most damage on the
centrally located cells, and the least on the subpial ones. Moreover,
at the site of injury, myelinated axons exhibit more pathological
injury than unmyelinated ones. This is because the longitudinal
force (especially in spinal cord contusion) stretching the fibers is
concentrated at the nodes of Ranvier. In many cases, however, no
abnormalities are seen following the initial trauma, andmost of the
consequent changes depend on more insidious, though devas-
tating, secondary injury [3,4].

Following the first 3 h of injury, the secondary phase begins. This
phase can be further divided into acute phase (hours to 3 days),
intermediate (days toweeks), and late phase (weeks tomonths) [4].
However, as most of the processes that occur during the secondary
injury are interconnecting, we do not prefer the use of this
subdivision.

During the secondary injury, expansion of the hemorrhagic sites
appears early, and is related to cellular death, which is precipitated,
by acute necrosis and subacute apoptosis. Inflammatory response is
an important determinant in this process. It starts during the first
day of injury, and is initiated by the release of the chemical medi-
ators that attract the early inflammatory cells (i.e. neutrophils) to
the site of injury. Neutrophils release inflammatory mediators and
free radicals that will exacerbate and accelerate the secondary
phase of injury [4]. Necrosis starts as a wave that spreads in cen-
tripetal and rostro-caudal directions from the site of primary injury.
This necrosis occurs via various mechanisms, including, infarction,
excitotoxicity, and reperfusion injury [3,5].

Infarction, which begins during the primary injury phase, occurs
early due to disruption of the vascular bed, which, in turn, in-
terrupts the blood perfusion to the neural tissue, and leads to
release of toxic digestive proteolytic enzymes. Thereafter, inflam-
matory changes associated with vasospasm, thrombosis, and
neurogenic shock play important role during the secondary phase.
The resulted hypoperfusion is associated with inhibition of both
oxidative phosphorylation and glycolytic pathways, and leads to
loss of energy production and consequent necrosis. Reperfusion of
the site of injury during this stage will exacerbate cellular death.
This is due to reactive oxygen species (ROS) formation from the
ischemic endothelial cells. This, added to the ROS produced by the
inflammatory cells, will cause direct damage and necrosis to the
reperfused cells. Excitotoxicity is initiated by the accumulation of
the glutamate within the extracellular spaces at the sites of injury.
This accumulation is mainly due to defected absorption, excessive
release from the damages cells, and exocytosis of the glutamate
synaptic vesicles. Glutamate will then lead to over activation of the
neural depolarization by activation of the glutamate receptors.
Such persistent depolarization will create ionic and osmotic
imbalance across the plasma membrane that will cause water
influx and consequent lyses. It also leads to excessive calcium influx
into the cell and the activation of the auto-destructive calcium-
dependent enzymes [3]. Moreover, the release of glutamate and
adenosine triphosphate (ATP) at the site of injury will activate the
glutamate and P2X7 receptors, respectively, on the OL and OPC.
These receptors attract the OL and OPC to the site of injury and
cause further cellular loss in similar mechanism as described above
[6].

Apoptosis begins as early as 6 h following injury, and spreads in
a wave similar to that in necrosis. During the early phase, almost
any cell type can be involved. Later on, the OL and myelinated cells
are predominantly involved [3]. This programmed cell death occurs
due to the secretion of inflammatory mediators and the extrava-
sation of toxic substances following the injury [6]. Some authors,
however, deny the presence of apoptosis during SCI in humans [4].
The above-mentioned processes, although extending through the
following phases, comprise the main components of the acute
phase of the secondary injury.

Over the ensuing days and weeks, more inflammatory cells will
invade the site of injury in order to clear the debris and initiate the
process of healing via neural fibrosis or gliosis. This starts with
accumulation of the myelin and OL debris followed by activation
and migration of microglia and macrophages which phagocyte
these debris. At this early stage, the phagocytosis may enhance the
regenerative process. Moreover, microglia may contribute, via the
secretion of various cytokines including IL-1b, Il-6, and TNFa, to
facilitate neural protection and regeneration. However, overtime,
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progressive maturation of the glial scar, followed by migration and
proliferation of the astrocytes, inhibits the regeneration and
remyelination of the neuronal cells [3,4].

At the same time, in an attempt to maintain the viability of the
remnant tissue and slow the progression of tissue loss, increased
number of blood vessels can be noticed at the site of injury. This is
mostly due to combination of tissue loss and preservation of the
vascular structure, and the secretion of angiogenic factors in
response to the inflammatory process [4].

Axonal disruption starts as early as fewminutes following SCI, as
described above. The periaxonal swelling leads to rupture and
peeling of the surrounding myelin, which can be observed in the
extracellular space 24 h after SCI. This process is accompanied by
Wallerian degeneration (WD)which continues to progress for 1e22
years following the injury, and forms the major component of the
late secondary injury. WD is mainly characterized by degeneration
and disruption of the axonal function, and it usually extends in
cranial and caudal directions from the initial site of injury. More-
over, in the long term,WD of the axons induces sustained apoptosis
of the OL, which are supported by the trophic factors released from
these axons. A few weeks after injury, these factors combined, if
uninterrupted, will lead to widespread demyelination of the axons.
However, this is usually prevented by concomitant remyelination,
which may start few weeks after the insult [3,4,6,7].

Although remyelination is not perfect, it is sufficient to preserve
function of spared intact axons, and maintain their integrity and
function. The acute phase remyelination is mediated by the
proliferating myelogenic progenitor cells that present at the mar-
gins of injury, and is identified by the expression of nerve/glial
antigen 2 (NG2) or platelet derived growth factor receptor (PDGFR).
Mature form of the OPC has less capacity to remyelinate, and needs
prolonged exposure to growth factors to convert into proliferating
cells. The specification of OL from the progenitor cells is induced by
the sonic hedgehog (SHH) and opposed by the bonemorphogenetic
factor (BMP). Both SHH and BMP are up regulated at the site of
injury. The presence of the astrocytes, often produced by the
proliferating OPC, is essential. They play a role in maintaining the
survival, proliferation and differentiation of the OPC and OL by
secreting different types of growth factors during the early phase of
spinal cord injury. However, with time, secretion of these factors
will be decreased, which will lead to a progressive decline in the OL
and OPC ability to remyelinate and maintain the axonal function.
Moreover, despite the essential early role of the astrocytes, at the
second to four weeks of injury, they begin to form a dense astro-
cytic scar surrounding the demyelinating axons. They may also
express other molecules (e.g. Jagged1) that inhibit maturation and
differentiation of the OL and OPC. Another type of scar, a mesen-
chymal scar, will also form by infiltrating fibroblasts and collagen
fibers, stimulated by the injured glia limitans of the subpial space.
These scars will prevent the OL and OPC from reaching the site of
injury, limit the ability of injured nerve cells to regenerate, and
form a therapeutic obstacle. Other late changes may include
Schwannosis, in which the injured spinal tissues are replaced by
Table 1
Comparison between different routes of cellular engraftment.

Route Advantage

Intramedullary - Most effective
- Direct access to the site of injury

Intrathecal - Less invasive
- Effective

Intraventricular
Intravascular - Least invasive
Schwann cells. Cysts and syrinx formation may also be seen
[4,6e8].

For these reasons, early treatment of spinal cord injury is crucial
to enhance the locomotor function, and this window that extends
from the acute inflammation to onset of the scar formation repre-
sents the ‘therapeutic window’.
3. Functional deterioration

The functional deterioration after SCI can be classified according
to the American Spinal Injury Association (ASIA) into complete
(ASIA “A”), where there is no sensory or motor function below the
level of injury; incomplete (ASIA “B,” “C,” or “D”), where sensory
functions, with or without varying degree of motor functions, are
lost below the level of injury; and ASIA “E”, where the patient is
functionally normal [9]. It is fundamental to note that it does not
automatically infer that functionally complete injuries are
anatomically complete, which is uncommon, and it can be
explained by tissue sparing. Thus, even small preservation
(~10e15%) and/or regeneration of the lost fibers may be enough to
restore meaningful function, and this can be applied most effec-
tively on individuals with functionally incomplete and some with
complete injury [10]. Thus, beside the degree of injury and func-
tional loss, it is vital to identify the degree of anatomically pre-
served fibers, and the site and extent of injury.
4. Cellular replacement and stem cells

Based on the above-mentioned pathological changes following
injury, many methods of treatment have been applied to slow and
reverse the progressive derangements. These include pharmaco-
logical and non-pharmacological methods [11e13]. Nevertheless,
most of these treatment modalities have faced serious limitations,
including the restricted capacity for regeneration and repair of
damaged spinal nerve cells and tracts, and the limitation in neural
plasticity. These also include the permanent neuronal loss and gap
formation that complicate the SCI, and the extrinsic inhibition that
adds on the intrinsic restricted regeneration [14].

To overcome these obstacles, replacement of the lost elements
of the SCI, has gained most attention for clinical research, and has
become themost promisingmethod of treatment. The transplanted
cells should enable regenerating axons to cross barriers, function-
ally replace lost cells, and/or create an environment supportive of
neural repair [15]. These efforts are mostly directed towards white
matter injury, which carry the biggest burden of the functional
disability. However, regeneration of the gray matter has also an
important role in restoring proprioception and muscle coordina-
tion [10]. Cellular and paracellular transplantation for SCI include
stem cell and non-stem cell transplants. Non-stem cell transplants
include olfactory ensheathing cells, Schwann cells, peripheral
nerves, and genetically modified fibroblasts.
Disadvantage

- Most invasive
- Surgery-related complications
- Multiple injections are often needed
- Limited efficacy during chronic phase of injury
- Limited efficacy during chronic phase of injury

- More invasive than intrathecal, with equal efficacy
- Least effective
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5. Methods of cellular engraftment

One of the most important factors in stem cell therapy is the
route of cellular administration. In previous studies, different
routes for cellular transplantation into the injured spinal cord have
been trialed. However, the fact that most of the recipients were and
still are animals with limited trials on humans, makes it difficult to
compare the safety and effectiveness of these methods, and more
studies on this field are still required. (Table 1).

5.1. Intramedullary route

Direct intramedullary engraftment represents a classical mode
of cellular transplantation in animal models of SCI. This invasive
method involves direct access to the site of injury via laminectomy
followed by multiple injections of the transplant into the injury
epicenter and/or into the parenchyma adjacent to the injury. This
route has been applied on animals using different types of human
stem cells, including neural stem cells of various origins [16e21],
oligodendrocytes [22], motor neurons [23], and bone marrow stem
cells [24]. The major disadvantage of this method is its invasiveness
and the associated risk of causing further harm and trauma to the
injured tissue during surgery, risking additional functional deteri-
oration. This method may also compromise the vulnerability of
cells, which are transplanted into the hostile environment of the
injured spinal cord due to released inflammatory and cytotoxic
chemokines [25]. Moreover, multiple injections at different points
of time are needed, which is always associated with risk of com-
plications due to anesthesia or the neurosurgical procedure [26].
During surgery, dura mater is often compromised rendering the
patient more susceptible to postoperative CSF leak, in addition to
other postoperative complications such as deep venous thrombosis
and pulmonary complications [27]. All these factorsmake this route
far from optimal for clinical application on human patients. How-
ever, there are some clinical trials, which have used this method on
humans in different stages of SCI. The outcomes of these studies
were very promising and considered superior by the authors as
compared to other routes including intrathecal route, and with no
remarkable complications [28,29]. This is especially true in cases of
subacute and chronic SCI, and might be related to the limited
migration and time window of recovery associated with the
intrathecal engraftment. In light of the above-mentioned draw-
backs, although still unproven over long term in human clinical
trials, less invasive methods were investigated.

5.2. Intrathecal route

Intrathecal cellular transplantation via lumbar puncture (LP)
was first introduced by De la Calle et al. [30] in 2002. Hence after,
this technique was adopted as a minimally invasive method to
deliver stem cell transplant into injured spinal cord by Bakshi et al.
[31]. These authors, in this and later studies [25,32] used different
types of cells including bone marrow stem cells and neural pre-
cursor cells. They reported cellular accumulation in large numbers
at the site of injury, mainly at the interface of injury and meninges,
following transplantation. Except for a few cells in the lining of
brain ventricles, no other transplanted cells were noticed in intact
neural tissues. This selective homing mechanism is mediated by
chemotactic signals expressed at the injury site. These signals
include SDF-1a and its CXCR4 receptor that are presented on the
transplanted cells. Other factors may include platelet-derived
growth factor (PDGF), transforming growth factor alpha (TGFa),
insulin growth factor (IGF), and hepatocyte growth factor (HGF).
This homing process appears to be more active and effective during
early stage of injury, evident by more cellular accumulation
occurring at this stage. Although more toxic substances and hostile
environment are present at this time, the amount of secreted
chemokines involved in attracting cells to the injury is increased in
the initial phase. Moreover, the healing process associated with
glial scar formationwill limit the cellular migration and integration
at later points of time. Thus, according to the authors, the window
of opportunity for intrathecal delivery, is limited to the acute and
partly the subacute phase of SCI, and not optimal at the chronic
level, unless glial scar debridement was initiated first [26].

This window of opportunity was proven in clinical trials on
human patients where intrathecal engraftment showed minimal
functional improvement in patients with subacute and early
chronic SCI (<6 months), but failed to show any improvement in
patients with late chronic SCI (>6 months) [33e36].

When comparing this mode of cellular transplantation with the
direct intramedullary injection on animal models with acute and
subacute phases of SCI, functional improvement were more
remarkable using the latter, and that was even more noticeable in
chronic phase injury. Both methods, however, were neuro-
protective, resulting in reduction of injury size and greater tissue
sparing, in addition to better functional outcomes compared with
controls [37].

Although this represents a less effective method so far, it limits
patient risk, side effects, and cost and can be used to deliver mul-
tiple doses of cells. In regard to its limitation in advanced phases of
SCI, it is believed that optimization of the LP procedure in the future
by further optimization of cell dosage, timing of delivery, and
number of deliveries may improve grafting efficiency and thereby
functional recovery to levels comparable to direct injection [26].

5.3. Intraventricular route

Stem cells engraftment for SCI through the ventricular system of
the brain was once a favored method of cellular replacement [38].
However, with the development of more effective and minimally
invasive modes of delivery, it has been almost abandoned. This
method includes direct injection of the transplant cells into a
ventricular cavity, followed by cellular migration and integration at
the site of injury in the same homing mechanism as the intrathecal
route. Although these two routes have comparable functional
outcomes, the latter is much less invasive and more reliable for
clinical applications [39,40].

5.4. Intravascular route

The systemic delivery of the transplanted cells via intravascular
route (intra-arterial or intravenous) represents the least invasive,
though the least efficacious, method of engraftment. The multi-
segmental arterial supply to the spinal cord limits the use of intra-
arterial delivery, as it requires highly selective and technically
challenging cannulation of the spinal arteries [17]. On the other
hand, intravenous delivery is a safer and easier method to apply.
Experimental trials on animal models with SCI using intravenous
route have shown promising results [41] with evidences of cellular
migration to the site of injury mediated by HGF and stromal cell-
derived factor-1 (SDF-1), which peaks at day 7 of injury [42].
Nevertheless, the undisrupted bloodebrain barrier (BBB) still pre-
sents a limiting factor in the effectiveness of this route. Additional
limiting factors include the first-pass effects and trapping of these
cells in extraneural tissues such as lung and liver, along with the
prolonged exposure to the immune cells during circulation [27,31].
Although the number of cells accumulating at the site of injury
increases with time and associated with mild functional improve-
ment, most studies have reported markedly decreased engraftment
efficiencies as compared to other routes of delivery, keeping in
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mind that as time passes more irreversible neural degeneration is
expected [27,31,43,44]. Using this route in human patients has
proven some degrees of functional recovery that was mainly
consistent in patients with acute and subacute phase injury, and
much less effective in chronic phase. That gives this route the same
window of opportunity as the intrathecal one [45,46].

6. Clinical trials on humans

Clinical trials on patients with SCI using stem cells are very
limited due to the lack of sufficient evidences on effectiveness.
Several factors were shown to affect the success of treatment,
including time of intervention, source of stem cells, and route of
administration. As discussed above, the earlier the intervention
during acute phase of injury, the better the outcome. Yoon et al. [47]
used intramedullary rout for administration of autologous bone
marrow cell in patients with acute (up to 2 weeks), subacute (2e8
weeks), and chronic (more than 8 weeks) SCI. Over 10 months of
follow-up, noticeable locomotor improvement was noted in the
acute and subacute patients to variable degrees, but none in the
chronic patients. No permanent or serious complications were
reported.

Two sources of stem cells have been mainly used for treatment
of patients with SCI, including autologous bone marrow stem cells,
and mesenchymal stem cells derived from either bone marrow or
umbilical cord [48]. Treatment using whole autologous bone
marrow stem cells rather than only mesenchymal stem cells has
shown more promising results [28,29,33,35,47e49]. Nevertheless,
studies with bone marrow stem cells where often performed dur-
ing acute phase of injury, compared to chronic phase in studies
using mesenchymal stem cells. Moreover, some studies with bone
marrow stem cells have added subcutaneous injections of gran-
ulocyte macrophage-colony stimulating factor, which was found to
have direct effect on the transplanted BMC by enhancing their
survival in the spinal cord and activating them to excrete neuro-
trophic cytokines [29,47].

Although intramedullary route was reported superior for stem
cell delivery in animal studies (see above), no significant difference
in outcomes and complications was noted by Geffner et al. [43]
comparing intramedullary, intrathecal, and intravascular routes in
patients with SCI. Both intramedullary and intrathecal adminis-
tration have also been combined for better results in chronic SCI
[49]. Therefore, further human trials are needed for more conclu-
sive results.

7. Conclusion

Cellular transplantation has become the most promising treat-
mentmodality for SCI. Overtime, several animal-based studies have
been conducted to assess the efficacy and safety of this treatment
before it could be widely used in humans. One of the important
determining factors in cellular transplantation is the route of
cellular administration. Three main routes have been used in most
studies, which are, in order of efficacy, the intramedullary, intra-
thecal, and intravascular routes.
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