Bot IT₂: a new scorpion toxin to study receptor site on insect sodium channels

Sandrine Cestèle^{a,*}, Lamia Borchani^b, Mohamed El Ayeb^b, Hervé Rochat^a

^aLaboratoire de Biochimie, Ingénierie des Protéines, UMR6560, Université de la Méditerrannée, CNRS, I.F.R. Jean Roche, Faculté de Médecine Nord, Bd Pierre Dramard, 13916 Marseille Cedex 20, France ^bInstitut Pasteur de Tunis, 13, place Pasteur, BP 74, 1002 Tunis Belvédère, Tunisia

Received 10 December 1996; revised version received 3 February 1997

Abstract The insect-specific Bothus occitanus tunetanus IT_2 toxin is distinguishable from other scorpion toxins by its amino acid sequence and effects on sodium conductance. The present study reveals that Bot IT_2 possesses in cockroach neuronal membranes a single class of high affinity ($K_d = 0.3 \pm 0.1$ nM) and low capacity ($B_{max} = 2.4 \pm 0.5$ pmol/mg) binding sites. Competitive binding experiments with several known sodium channel neurotoxins reveal that the Bot IT_2 binding site is in close proximity to the other toxins.

© 1997 Federation of European Biochemical Societies.

Key words: Insect sodium channel; Scorpion toxin

1. Introduction

Scorpion venoms contain toxins which interact with the voltage-dependent sodium channels that are responsible for the increase in sodium permeability during the initial phase of the action potential in most excitable cells [1]. Scorpion neurotoxins modify the function of sodium channels in mammals or other vertebrates [2] as well as molluscs [3] and insects [4,5]. Insect selective scorpion neurotoxins have revealed four different receptor sites on insect sodium channels. Among them, two groups, namely the excitatory and depressant toxins, are only active on insects as demonstrated by toxicity, electro-physiology and binding assays [6]. The excitatory toxins cause rapid excitatory paralysis and induce repetitive firing in insect nerves. The depressant toxins cause a slow depressory flaccid paralysis due to the depolarization of nerve membranes and blockage of sodium conductance in axons [4,6,7]. Some α -scorpion toxins demonstrate high activity in insects and low activity in mammals [8]. These toxins recognize the receptor site 3 on insect sodium channels which is also shared by sea anemone toxin ATX II [9,10]. These toxins induce prolongation of the action potential due to the slowing of inactivation [5]. Receptor binding site 4 on insect sodium

Pharmacology, Box 357280, F-428, Health Sciences Center,

University of Washington, Seattle, WA 98195, USA.

Fax: (1) (206) 523-6940. E-mail: sandrine@u.washington.edu

channels is recognized by the β -scorpion toxin Ts VII, isolated from the venom of *Tityus serrulatus*, which is highly toxic for both insects and mammals [11]. β -scorpion toxins affect sodium activation and cause channels to remain open or reopen at the resting potential, resulting in repetitive trains of action potentials [12,13].

Recently, a new scorpion toxin Bot IT_2 was isolated from the venom of *Buthus occitanus* which has high activity in insects and less activity in mammals [14]. Bot IT_2 is distinguishable from other scorpion toxins by (a) its new action on the activation kinetics of the insect sodium channels [15] and (b) its primary structure [14]. The present study examines the interaction of Bot IT_2 with insect neuronal membranes and its relationships with known receptor sites on insect sodium channels.

2. Materials and methods

2.1. Materials

The insect selective neurotoxins AaH IT, Bot IT_2 , Bot IT_1 , Bot IT_4 were purified according to [16] and [14,17], respectively. The β -toxin Ts VII and the α -toxin AaH II were purified according to [18,19], respectively. ATX II was purchased from Sigma (USA).

2.2. Radioiodination and purification of the derivatives

Bot IT₂ was radioiodinated as follows: 1 nmol Bot IT₂, 1 mCi of carrier free Na¹²⁵I, 5 µg lactoperoxidase and 20 µl H₂O₂ diluted 1/ 50000 were incubated for 2×2 min in 20 mM phosphate buffer, pH 7.4 in a final volume of 85 µl. The solution was then injected into an HPLC RP8 column. Elution was performed at 20°C with a linear gradient from 5 to 35% B in A in 10 min (A=0.1% TFA, B=acetonitrile, 0.1% TFA), followed by another linear gradient from 35 to 75% B in A for 70 min. The flow rate was 1 ml/min. The monoiodotoxin was eluted as the first peak of radioactive protein. The purification procedure gave the same results as described in [20], which describes the first peak as monoiodotoxin and the second as diiodotoxin. The top fraction of the monoiodinated peak was used in binding studies. The concentration of radiolabeled toxin was estimated according to the specific activity of ¹²⁵I and was 2000 Ci/mmol of monoiodotoxin.

2.3. Neuronal membrane preparation

Insect synaptosomes (P_2L preparation) were prepared from the VNS of adult cockroach (*Periplaneta americana*) according to established methods [21]. All buffers contained a cocktail of proteinase inhibitors composed of phenylmethylsulfonyl fluoride (50 µg/ml), pepstatin A (1 mM), iodoacetamide (1 mM) and 1 mM 1,10-phenanthroline. Membrane protein concentrations were determined using a Bio-Rad Protein assay, with BSA as standard.

2.4. Binding assays

Equilibrium saturation assays were performed using a series of concentrations of the unlabeled toxin in the presence of fixed concentration of the radioactive toxin. To obtain saturation curves, the specific radioactivity and amount of bound toxin were calculated for each toxin concentration. The binding medium was (in mM): choline Cl (140), CaCl₂ (1.8), KCl (5.4), MgSO₄ (0.8), HEPES (25), pH 7.4;

^{*}Corresponding author (present address): Department of

Abbreviations: AaH IT and AaH II, an excitatory insect selective toxin and an alpha mammal toxin, respectively, from the venom of the scorpion Androctonus australis Hector; ATX II, toxin II from the sea anemone Anemonia sulcata; Ba IT₂ and Bot IT₄, depressant toxins from the venom of the scorpion Buthacus arenicola and Buthus occitanus tunetanus, respectively; Bot IT₁ and Lqh α IT, alpha insect selective toxins from the venom of the scorpion Buthus occitanus tunetanus and Leiurus quinquestriatus quinquestriatus, respectively; Ts VII, a beta toxin from the venom of the scorpion Tityus serrulatus

Fig. 1. Binding of Bot IT₂ to cockroach neuronal membranes. Cockroach neuronal membranes (2.5–3 µg protein) were incubated in the presence of 84–89 pM ¹²⁵I-Bot IT₂ and increasing concentration of Bot IT₂. Non-specific binding, determined in the presence of 1 µM Bot IT₂, was subtracted from all data points. Data are shown as percent inhibition of specific Bot IT₂ binding. Binding was analysed using the computer program LIGAND. The IC₅₀ for Bot IT₂ is 0.7±0.3 nM (mean±S.E.M. of three experiments). (Inset) Scatchard transformation of the displacement curve indicating Bot IT₂ affinity of 0.3 nM.

glucose (10) and BSA (2 mg/ml). The reaction mixture (0.3 ml) was incubated for 60 min at 22°C and then diluted with 2 ml of ice-cold binding medium and filtered over GF/C filters (Whatman, UK) under vacuum. The filters were then washed twice in binding medium. Nonspecific binding was determined in the presence of 1 μ M unlabeled toxin and was 10-20% of total binding. Equilibrium saturation or competition experiments were analyzed using the iterative computer program LIGAND (Elsevier Biosoft, UK). Each experiment was performed at least three times.

3. Results

3.1. Pharmacological characterization of Bot IT_2

Using the monoiodo derivative of Bot IT₂ and *P. americana* neuronal membranes, we have studied the specific binding of Bot IT₂ on insect sodium channels. Scatchard transformation of the displacement curve of Bot IT₂ (Fig. 1) reveals that Bot IT₂ binds to a single class of binding sites of high affinity ($K_d = 0.3 \pm 0.1$ nM) and low capacity ($B_{max} = 2.4 \pm 0.5$ pmol/mg). This affinity is comparable to those observed for other insect scorpion toxins in the same preparation [11,21].

3.2. Inhibition of Bot IT_2 binding by sodium channel toxins

In order to classify the receptor site of Bot IT_2 , we examined the inhibition of its specific binding by several known sodium channel neurotoxins.

The data presented in Fig. 2 reveal that the specific binding of ¹²⁵I-Bot IT₂ to cockroach neuronal membranes is completely inhibited by three distinct neurotoxins. (A) The excitatory insect selective toxin AaH IT, shown to bind to a single class of binding sites of high affinity in cockroach neuronal membranes [13]. Moreover, we have shown that the binding of the radiolabeled AaH IT is completely inhibited by Bot IT₂ [14]. (B) The depressant insect selective toxin Bot IT₄; Bot IT₄ possesses the same primary structure as Ba IT₂, previously shown to possess the pharmacological properties of a depressant toxin [20]. (C) The β -toxin Ts VII, shown to compete with other β -toxins on binding to receptor site 4 in vertebrate

Fig. 2. Competition for ¹²⁵I-Bot IT₂ binding by sodium channel neurotoxins. Neuronal membranes of *Periplaneta americana* (2.4–3 µg protein) were incubated in the presence of 73–84 pM ¹²⁵I-Bot IT₂ and increasing concentration of (A) the excitatory toxin AaH IT (IC₅₀ = 0.6 ± 0.2 nM), (B) the depressant toxin Bot IT₄ (IC₅₀ = 0.25 ± 0.08 nM) and (C) the β-toxin Ts VII (IC₅₀ = 0.3 ± 0.1 nM).

Fig. 3. Competition for ¹²⁵I-Bot IT₂ binding by α -toxins. Neuronal membranes of *Periplaneta americana* (2.4–3 µg protein) were incubated in the presence of 73–84 pM ¹²⁵I-Bot IT₂ and 1 µM ATX II or Bot IT₁ or AaH II. The data are presented as percentage of inhibition of ¹²⁵I-Bot IT₂ specific binding. The percent inhibition of Bot IT₂ specific binding is 84.1±5.4% for ATX II, 68.9±3.1% for Bot IT₁ and 103±5.6% for AaH II (mean±S.E.M. of three experiments). (Inset) Competition for ¹²⁵I-LqhaIT binding by Bot IT₁ and Bot IT₂. Cockroach neuronal membranes (2.1 µg protein) were incubated for 60 min in the presence of 80–95 pM ¹²⁵I-LqhaIT and increasing concentrations of Bot IT₁ or 1 µM Bot IT₂. Data are shown as percent inhibition of specific ¹²⁵I-LqhaIT binding. The IC₅₀ for Bot IT₁ is 0.6±0.04 nM and percent inhibition of specific LqhaIT binding is 73.6±1.8% for Bot IT₂.

sodium channels [22] as well as with the insect-selective toxins on binding to insect sodium channels [13,23].

On the other hand, sea anemone toxin ATX II [9], and α scorpion toxin Bot IT₁, shown to inhibit completely the binding of α -scorpion toxin to receptor site 3 in the insect sodium channel (Fig. 3, inset), partially inhibit at high concentration (1 μ M) ¹²⁵I-Bot IT₂ binding to insect neuronal membranes (Fig. 3). At high concentration (1 μ M) Bot IT₂ also partially inhibits the binding of the radiolabeled α -scorpion toxin Lqh α IT (Fig. 3, inset). Moreover, the α -scorpion toxin AaH II that binds to receptor site 3 in vertebrate sodium channels [24,25] as well as in insect sodium channels [10] does not affect ¹²⁵I-Bot IT₂ binding (Fig. 3).

4. Discussion

When comparing the binding properties of Bot IT_2 in cockroach neuronal membranes to those of the other insect selective scorpion toxins in the same preparation it may be concluded that: (1) Bot IT_2 shows the typical pharmacological properties of an excitatory toxin as suggested by the inhibition of its specific binding by excitatory [11] and depressant [21] insect toxins, the β -toxin Ts VII [11] and by the partial inhibition of its binding by high concentration of ATX II (Fig. 3). This means that the different insect selective scorpion toxins and sea-anemone toxin ATX II share the same receptor site on insect sodium channel.

(2) Bot IT₂, however, differs from the excitatory toxin by the reciprocal partial competition with α -scorpion insect selective neurotoxin which is also characteristic of a depressant toxin (Cestèle et al., unpublished results). These results emphasize the notion that ATX II and α -scorpion toxin do not share exactly the same receptor site on sodium channels [10,26]. Moreover, these two groups of toxins allow discrimination of the binding properties of Bot IT₂ and excitatory toxins. According to these observations, it may be concluded that Bot IT₂ binds to a receptor site localized in close proximity to but not identical to one of the excitatory toxins in spite of the competitive interaction between these two toxins.

BOT IT2	DGYIKGYKGCKIT-CVINDDYCDTECKAE-GGTYGYC-WKW3LACWC-EDL-PEDKRWKPE-T-NTC
Bot IT4	D**IRRRD*C*VS-*LFGNEG-*DKE**AY-GGSY***-WIWGLA*W*-E-*GPDD*TWKSE-T-NT*G
T.s. VII	-KE**LMDHE*C*LS-*FIRPSGY*GRE*GI*-KGSS-***AWPA*Y*Y-G*-P-NWV*VWDRA-T-NK**
A.a.H.IT1	KKN**AVDSS*-*APE*LLS-NY*NNQ*T-*VHYADK***CLLS*Y*F-G*-NDD-K*VLEISD-TRKSY*DTTIIN

	Bot IT ₂	Bot IT4	Ts VII	AaH IT
Bot IT ₂	100 %	67%	42 %	31 %

Fig. 4. Comparison of Bot IT_2 , Bot IT_4 , AaH IT and Ts VII amino acid sequences. The table represents the percentage of aligned positions with identical residues.

On the other hand, the pharmacological properties of Bot IT_2 are surprising when comparing its primary structure to those of the other toxins used in this study. Bot IT_2 shares the highest amino acid sequence similarity with the depressant toxin Bot IT_4 (67%, Fig. 4) which is known to possess two binding sites on sodium channels [20] and to display a typical depressant electrophysiological activity [17]. However, Bot IT_2 and Bot IT_4 possess similar binding characteristics (see above); it may be suggested that the Bot IT_2 receptor site overlaps the high-affinity binding site of depressant toxin. Moreover, Bot IT_2 represents an interesting tool to discriminate the amino acid residues of the depressant toxin implicated in the high and low affinity binding sites. Future binding experiments and structural studies of these two toxins will clarify this point.

There is no evident correlation between the amino sequence similarities (Fig. 4) and the interaction with sodium channel of the scorpion insect selective neurotoxins used. However, it may be pointed out that the two amino acid residues (Lys-28 and Lys-51) of AaH IT, previously shown to be important for the toxicity and binding activity of this toxin [29], are conserved in the other toxins used. This can explain why, in spite of their sequence divergence, these toxins acts on a common receptor site in insect sodium channels and emphasize the notion that binding competition between the various toxins is due to the site being composed of or requiring several segments of the sodium channel. A partial overlap, even at one of the several attachment points of the various toxins to the receptor, may be sufficient to inhibit binding of another toxin. The common features of the tertiary structure of these toxins may allow them to interact with the same or overlapping receptor site on sodium channel.

Since Bot IT_2 reveals particular electrophysiological and binding properties and particular features in its primary amino acid sequence, this toxin represents a new interesting tool to study the structure-function relationships of scorpion toxins with insect sodium channels. Future studies of Bot IT_2 on the molecular and structural level will be important to understand its interaction with insect sodium channels.

Acknowledgements: We thank Dr. M. Gueriwitz (Tel Aviv, Israel) for the generous gift of LqhaIT toxin and Nancy Lindford (Seattle, USA) and Dr. K. Mabrouk (Marseille, France) for carefully reading the manuscript. This study was supported by a fellowship from the 'Ministère de la Recherche et de la Technologie' for S.C. and by Grant 10908/10911 from CMCU and grant 0916 from PICS-CNRS for L.B.

References

- [1] Hille, B. (1992) in: Excitable Membranes, Sinauer, Sunderland, MA.
- [2] Duval, A., Malecot, C., O. and Rochat, H. (1989) Eur. J. Physiol. 415, 361–371.
- [3] Pichon, Y. and Pelhate, M. (1984) J. Physiol. (Paris) 79, 318-326.
- [4] Pelhate, M. and Zlotkin, E. (1982) J. Exp. Biol. 97, 67-77.
- [5] Eitan, M., Fowler, E., Hermann, R., Duval, A., Pelhate, M. and Zlotkin, E. (1990) Biochemistry 29, 5941–5947.
- [6] Zlotkin, E. (1991) Phytoparasitica 19, 177-182.
- [7] Zlotkin, E., Kadouri, D., Gordon, D., Pelhate, M., Martin, M.F. and Rochat, H. (1985) Arch. Biochem. Biophys. 240, 877–887.
- [8] Kopeyan, C., Mansuelle, P., Martin-Euclaire, M.F., Rochat, H. and Miranda, F. (1993) Nat. Toxins 1, 308–312.
- [9] Gordon, D. and Zlotkin, E. (1993) FEBS Lett. 315, 125-128.
- [10] Gordon, D., Martin-Eauclaire, M.F., Cestèle, S., Kopeyan, C., Carlier, E., Ben Khalifa, R., Pelhate, M. and Rochat, H. (1996) J. Biol. Chem. 271, 14, 8034–8045.
- [11] De Lima, M.E., Martin, M.F., Diniz, C.R. and Rochat, H. (1986) Biochem. Biophys. Res. Commun. 139, 296–302.
- [12] Cahalan, M.D. (1975) J. Physiol. (Lond.) 244, 511-534.
- [13] De Lima, M.E., Martin-Euclaire, M.F., Hue, B., Lorert, E., Diniz, C.R. and Rochat, H. (1989) Insect. Biochem. 19, 413–422.
- [14] Borchani, L., Mansuelle, P., Stankiewicz, M., Grolleau, F., Cestèle, S., Karaoui, H., Laphed, B., Rochat, H., Pelhate, M. and El Ayeb, M. (1996) Eur. J. Biochem. (in press)
- [15] Stankiewicz, M., Grolleau, F., Lapied, B., Borchani, L., El Ayeb, M. and Pelhate, M. (1996) J. Insect. Physiol. 42, 397–405.
- [16] Zlotkin, E., Miranda, F., Kopeyan, C. and Lissitzky, S. (1971) Toxicon 9, 9–13.
- [17] Borchani, L., Stankiewicz, M., Kopeyan, C., Mansuelle, P., Kharrat, R., Cestèle, S., Karaoui, H., Rochat, H., Pelhate, M. and El Ayeb, M. (1996b) Toxicon (in press).
- [18] Martin, M.F., Bechis, G., El Ayeb, M., Sampieri, F., Brando, T., Diniz, C.R. and Rochat, H. (1985) Toxicon 23, 594.
- [19] Miranda, F., Kopeyan, C., Rochat, H., Rochat, C. and Lissitzki, S. (1970) Eur. J. Biochem. 16, 514–523.
- [21] Moskowitz, H., Herrman, R., Zlotkin, E. and Gordon, D. (1994) Insect Biochem. Mol. Biol. 24, 13–19.
- [20] Cestèle, S., Kopeyan, C., Oughideni, R., Mansuelle, P., Granier, G. and Rochat, H. (1996) Eur. J. Biochem. (in press).
- [22] Couraud, F., Jover, E., Dubois, J.M. and Rochat, H. (1982) Toxicon 20, 9–16.
- [23] Gordon, D., Moskowitz, H., Warmer, C., Catterall, W.A. and Zlotkin, E. (1992) Biochemistry 31, 7622–7628.
- [24] Couraud, F., Rochat, H. and Lissitzki, S. (1978) Biochem. Biophys. Res. Commun. 83, 1525–1530.
- [25] Jover, E., Martin-Moutot, N., Couraud, F. and Rochat, H. (1978) Biochem. Biophys. Res. Commun. 85, 377–382.
- [26] Rogers, J.C., Qu, Y., Tanada, T.N., Sheuer, T. and Catterall, W.A. (1996) J. Biol. Chem. 271, 1590–15962.
- [27] Lester, D., Lazarovici, P., Pelhate, M. and Zlotkin, E. (1982) Biochim. Biophys. Acta 701, 370–381.
- [28] Wang, G.K. and Strichartz, G. (1983) Mol. Pharmacol. 23, 519– 533.
- [29] Loret, E.P., Mansuelle, P., Rochat, H. and Granier, C. (1990) Biochemistry 29, 1492–1501.