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We classify and compare recursive and iterative definitions of total computable 
functions according to the complexity of the ordinal structures needed to verify 
termination. An old theorem of Tait is generalised to show that the cost of trans- 
forming recursive programs into while-loops is at most an exponential increase 
in the length of their termination orderings. ‘C 1992 Academic Press. Inc 

1. INTRoDUCTT~N 

We are concerned here with the classification and comparison of 
ordinary recursive functions, according to the “complexity” of their recur- 
sive or iterative definitions. Of course the theory of computation must take 
account of many different data-structures other than just the natural 
numbers N. However, it seems that this classical case already exhibits 
many (most?) of the fundamental characteristics of computability over 
more general data-structures, and furthermore there are still deep questions 
to be resolved even over N ! 

Recursion is the definition of a (number-theoretic) functionf as the least 
fixed point of a (monotone, continuous) operator @ thus: 

f(x) = @(f)(x). 

Typically, the “body” @(f)(x) will be given as a term built out of the 
variable (or variables) x by applying given functions and f itself. Possibly 
there will be nested occurrences off: 

If f is totally defined then evaluation off on any given number x=x0 
will call for the prior evaluation of f on certain other arguments x,, . . . 
determined by @. Each of these may call for further evaluations off on 
arguments x2, . . . . Thus the computation off by @ can be described in 
terms of a tree of finite sequences (x,,, x,, . . . . xk) where for each i < k, 
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f(xj+ i) is one of the calls made by @ in evaluating f(xi). Imagine the tree 
being developed downwards so that (x0) lies above (x,, xi) which lies 
above (x,, xi, x,), etc. Denote the tree T(a). 

Since we are assumingf(x,) to be defined, each branch (x,), (x,, x, ), 
(XII, Xl > x2 >3 ... must terminate at a point (x,, x,, x2, . . . . x,) wheref(x,) 
is evaluated outright by @, without any further calls on f being made. Thus 
the totality off corresponds to the well-foundedness of its computation tree 
T(Q). 

The weil-foundedness of T(Q) means that we can make definitions 
and proofs by induction upwards through its branches. In particular we 
can recast the original recursion in a way which makes explicit the 
inductive nature of its intended computation. For, given any point 
CJ = (x,, . . . . xk) E T(Q) and any z E N, let P,(a), the “z-predecessor” of 0, 
be obtained by tagging z on the end of 0 thus: 

P,(a) = (.&J, . . . . xk, 2). 

Now define a new function f: T(O) x N + N by induction over T(O), 

where fPlal: N + N is given by 

Then by induction up the tree T(Q) we have if cr E T(Q) and x is its final 
component then 

f(o, x) = the original f(x) 

and so for each x E N, putting a = (x), 

f((x),x)=the originalf(x). 

The point of all this is that the structure of the sub-tree of T(O) below (x) 
reflects the complexity of the induction needed to evaluate f(x). Thus (x) 
measures the “stage” in T( @) at which f(x) becomes defined. 

We can go further, and well-order T(Q) by the Kleene-Brouwer 
ordering, which places (x0, . . . . xk ) below ( y,, . . . . y,) if either (x0, . . . . xk ) 
extends ( y,, . . . . yr) or there is a j such that x0= y,, xi= y,, . . ..xj-i= 
y/-i and xj < yj. The structure and length of this well-ordering is then a 
measure of the “induction-complexity” needed to verifv that f is indeed totally 
defined. It can be used to classify and compare various kinds of recursion, 
and it is this classification, and its relationship with more usual notions of 
computational complexity, which we study here. 
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In particular we are interested in the comparative definitional powers of 
recursions as against while-loops. A condition B determines a class of 
while-programs: 

while B(x) do S(x) od. 

It also determines a tree of “secured sequences”: 

T(B)= {(x,, . . . . . ~):Vi<k.B(x,)}. 

If S computes a number-theoretic function s then evaluation of the while- 
loop, starting with .x=x0, is described by the following s-path down 
through T(B): 

(x0>, (x0, s(xo)), (x0, s(xo), s-lx,)), ... . 

Then to say that the loop terminates after k iterations is to say that the 
s-path ends with (x0, s(xo), sz(xO), . . . . sk(xO)) where B(sk(xo)) fails. 

Again we see that for any class C of programs S, computing number- 
theoretic functions s, the while-loop will always terminate if and only if its 
tree T(B) is well-founded with respect to all C-paths. As before, the com- 
plexity of the well-ordered part of T(B) provides a measure of complexity 
of the while-loop, and we can recast the loop as a tail-recursion over T(B) 
as follows: define h: T(B) x N + N by 

h(a, x) = if 0 is terminal then x else h(P,,,,(o), s(x)). (3) 

Then provided the while-loop terminates, we can prove as before, using 
induction up along the s-path in T(B), that h( (x), x) is its final value. 

What we have seen is that, in order to simulate the computation of a 
while-loop by a recursion as in (3), a new recursion variable G ranging over 
T(B) is introduced. This recursion can itself be rewritten as a while-loop 
controlled by T(B), 

while (r E T(B) do S(x); C-J := P,(o) od, (4) 

where the original condition B(x) has now been replaced by CJ E T(B). 
The introduction of trees T(B), T(G) as parameters provides a unifying 

format for while-loops and recursions. This new model is introduced not 
primarily as a practical tool, but as a convenient theoretical one which 
should enable the definitional powers of recursions and while-loops to be 
compared and classified, in such a way as to give some mathematical 
analysis of the costs of their respective executions. 

We shall take the forms (2) and (4) as our basic formulations of 
recursion and while, but with arbitrary well-ordered trees as parameters 
(replacing the fixed T(Q), r(B)). Thus we require a uniform way of 
presenting the type of well-ordered trees, and to this end, our first 
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definitions in Section 2 will supply the set Q’ of so-called structured tree 
ordinals 3, /I, . . . . o, . . . . 

Before stating the main results, we describe informally the main classes 
of programs involved; precise definitions are given in Sections 2 and 3. 

Given a set A & Q”, T-WHILE(A ) is the set of (functions defined by) 
programs built from sequencing, conditionals, and while-loops of the form 
(4), wherein the tree parameter cr lies in A. REC(A) is the set of (functions 
defined by) composition, conditionals, and recursions of the form (2), 
wherein the tree parameter CJ lies in A. H(A) is the set of (functions defined 
by) tail recursions of the form (3), wherein the tree parameter cr lies in A. 
These H(A) functions are essentially the so-called “Hardy functions” of 
subrecursive hierarchy theory (see for example Buchholz and Wainer, 
1987) and they allow us to connect the results here with various classes of 
recursive functions arising naturally out of proof theory. 

In the following, we assume that A satisfies suitable conditions such as 
“Turing machine representability” and closure under addition and multi- 
plication. We also use = between classes of programs to denote the fact 
that there are effective each-way compilations between them. These com- 
pilations can be read off from the proofs in Sections 4 and 5. 

THEOREM II. 

T-WHILE(A) = ELEM(H(A)) = SPACE(H(A)). 

THEOREM III. 

REC(o. A) = T-WHILE(wA). 

Theorem II is a generalization of an old theorem of Tait (1961) showing 
that arbitrary nested recursions over a given well-ordering can be compiled 
to unnested ones but at the cost of an exponential increase in the size of 
the well-ordering. In subrecursive terms, this corresponds closely to the 
simple fact that the “fast-growing” Grzegorczyk hierarchy {F,} is reducible 
to the Hardy hierarchy {H,}, again at the expense of an exponential 
increase: F, = H,,. Informally, then, the cost of transforming recursive into 
while-programs is, in the worst case, an exponential increase in induction 
complexity. Furthermore, the hidden complexity of recursions over w  . A is 
measured by H(coA), equivalently F(A). 

As an example, with A = N: 

REC(w N) = T-WHILE(wN) 

= PRIMITIVE RECURSIVE 

= PROVABLY RECURSIVE IN Z, -INDUCTION. 
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Thus the Ackermann function ( = HUcU) is not computable by any 
T-WHILE(o”) program, but is computable by a while-program from the 
parameter o”. 

2. PRELIMINARY DEFINITIONS AND RESULTS 

DEFINITION 2.1. The set Q of so-called “tree-ordinals” is defined induc- 
tively by the rules 

(1) OESZ 

(2) aER* tx+lEQ 

(3) A is a function from N to 52 * 1 E Q, 

where (Y + 1 := c1 u {a} and if 1 is a function from N to 52, we shall often 
henceforth write I, for the value J(x) and SUP,~~ (I”,) for ;1. 

The “set-theoretic” ordinal rank of c( E Q is rank(a), where 

rank(O) := 0, rank(cc + 1) := rank(a) + 1, 

and 

rank(sup(i,)) := U rank(i,). 
.XE N 

Conventions used throughout this paper: 

4 B, y, 6, ‘.. members of ~2 
A, B, C, . . . subsets of Q 
a, . . . . z natural numbers 
a z 7 *.., finite sequences of natural numbers 
d, 9?‘, V, q, sets of functions from N to N. 

DEFINITION 2.2. 4 is a binary relation on r;2 which is the transitive 
closure of 

(1) GI<cL+l 

(2) 42-csUPWx) for all n E N. 
xeN 

If A is a subset of Q then say A is downward-closed iff 
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DEFINITION 2.3. For x E N, <, is a binary relation on Sz which is the 
transitive closure of 

(1) cc<,a+l 

(2) L-L sup(L). 
I E N 

DEFINITIONS 2.4 (Addition, Multiplication, and Exponentiation in Q). 
Addition: 

(1) a+o:=a 

(2) a+(fl+1):=(01+/?)+1 

(3) a + sup(&) := sup(a + 2,). 
x t N IE N 

Multiplication: 

(1) a.o:=o 

(2) a.(B+l):=(Lx./?)+a 

(3) a. sup(E.,) := sup(a . A,). 
x t N x E N 

Exponentiation: 

(1) a0 := 1 

(2) a(P+‘) := (aP) .c( 

(3) @. sup(&) := sup (a&). 
IE N 

Note 2.5. Addition, multiplication, exponentiation, and the ordering 
< are preserved under the rank function. Also the associative and 
distributive laws holding for set-theoretic ordinals also hold in 0, e.g., 
y.(a+fl)=r.a+y./? for any a, /?, and ~EQ, but not (a+p).y= 
a.y+fi.y. 

DEFINITIONS 2.6 (The Predecessor Functions P, on 52). For a E 52 and 
XE N, P,.(a) and a[x] are defined by 

(1) P,(O) := 0 

0) (2) P,(a+ 1) :=a 

(3) P,(sup(L)) := P,(L) 

(ii) a[x] := (P”,“(a): n < G,(x)}, 

where G,(x) := the least k such that P:(a) = 0. (See Cichon, 1983). 
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Note 2.7. Alternatively, a[x] = {/3: jI + 1 $, a}. G,(x) is the cardinality 
of a[~]. G is called the “Slow-Growing Hierarchy.” 

DEFINITION 2.8 (Structuredness). W, the set of structured tree ordinals 
(ordinal structures), consists of the following subset of 52: c1 E Q” if CI E Sz and 
for all limits A< tl, E.,, # 0 and for all x, y E N 

(See Dennis-Jones and Wainer (1984), where the term “nice” is used 
instead of “structured.“) 

DEFINITION 2.9. 
co2, cow2 

Let w  = supx. N (1 + x). Then for example o, w  .2 + 2, 
are all structured. 

Facts 2.10. Suppose ~1, j3 E Q” and x < y E N. Then 

If c( E 52” then the set {p: /3 < a} is linearly ordered by < . 8” is downward- 
closed and closed under addition. Sz” is closed under multiplication and 
exponentiation in the following sense: for all j E Sz”, if 0 < c1 then a . /? E f2” 
and if 1 < c1 then up E Q’. 

Subrecursion, Complexity 

DEFINITIONS 2.11. (1) If % is a class of number-theoretic functions, we 
denote by ELEM(%?) the closure of V under the operations of explicit 
definitions and limited primitive recursion. 

(2) g3 is the set of (Kalmar) Elementary functions 
= ELEM( { 0, + , x , exp}). (See Rose, 1984). 

DEFINITIONS 2.12. We will be concerned with bounds on Turing 
Machine (TM) computations. We will use the following scheme for 
encoding sequences of natural numbers on TM tape. Let l , # be tape 
symbols. Then for each sequence x = (x1, . . . . x,), define the tape-word 
for x by 

[x] :=. . . . . # . . . . . # . . . # . . . . . #. 
- - 
x, + I x2 + 1 X”f 1 
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A number will be encoded as a sequence of length 1. If w  is a tape-word 
then IwI will denote its length. 

Let h: N + FV. We denote by SPACE(h) the set of all functions 
f: Nk + N’ which are Turing Machine computable in space bounded by h 
composed with an elementary function r, that is, f E SPACE(h) iff for all 
asNk, the computation of [f(a)] from [a] requires no more than 
h(r(lal)) tape squares (including the initial input [a] and the final output 
[f(a)] replacing [a]). If fe SPACE(h) we say also ‘tf is space-bounded 
by h.” If $7 is a set of number-theoretic functions then we define 
SPACE(V) := u,,% SPACE(f). Finally we denote by Sr(a) the space 
required to compute [f(a)] from [a]. (We could restrict r above to being 
linear without affecting the results, since we are concerned here with 
“large” rather than “small” complexity classes. Note that with r elementary 
we have SPACE(h) = TIME(h).) 

DEFINITION 2.13. Let f, g: N + N and x E fV. If for every z 2 X, 
f(z) < g(z) we write f<, g. Similarly define f -c.~ g etc. 

DEFINITIONS 2.14 (Subrecursive hierarchies). Let f: N + N and let CI be 
a variable ranging over a. The Hardy and Fast- and Slow-Growing 
Hierarchies are defined by: 

(1) The Hardy Hierarchy 

H,(f)(x) := 
ifcc=O then x 

else &,df)(f(xN 

(2) The Fast-Growing Hierarchy 

F,u-J(x) := ifa=O then f(x) 

else Fp,dW + l(x) 

(3) Extension of the Slow-Growing Hierarchy 

G,(f)(x) := ifcl=O then 0 

elsef(GPxc&f)(x)) 

(4) If K is one of H, F, or G and A c Q’ then K(A) denotes 
(K,(succ): MEA}. 

Where f is understood, it will be omitted, and unless indicated otherwise, 
f will be taken to be the successor function. 
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Note 2.15. (i) If a # 0 then define 

h,(f)(x) = 1 + (the least n such that Prnc,,Pfn-~(,, . .. P,-(.XJP,;(a) =O). 

Then for u # 0, H,(f)(x) =fhm(f)(X)(~). 

(ii) For each ~ESZ’, the assertion that H, (G,) is a total functional 
is equivalent to the assertion that the ordering { /?: j3 < IX} is well-founded, 
i.e., the existence of H, (G,) as total functionals witnesses the fact that the 
ordering on CI is well-founded. 

(iii) The Hardy Hierarchy has the following combinatorial property, 
due originally to Ketonen and Solovay (1981): 

Let f: N + N. Let an interval [n, m] E N be 

(1) O-large if [n, ml # @ 

(2) (a + 1)-large if there exists ke [n, m] with 

k>f(n) and [k, m] a-large 

(3) )*-large if [n, m] is &-large. 

Then H,(f)(n) is the least m such that [n, m] is cc-large. 

This leads us to the “a-bounding principle,” which is one of the 
fundamental ideas of this paper: 

The a-Bounding Principle. For a E Q”, the number-theoretic and com- 
binatorial properties associated with a should be bounded by H,, i.e., be 
“a-small.” Thus SPACE(H,) is the set of a-small computations. For a sub- 
set A of R” to be representable, we essentially require that for each UEA, 
the function (x, a) H (x, P,(a)) should be computable in a-small space. 

There is a third characterisation of the Hardy and Slow- and Fast- 
Growing Hierarchies which emerges when they are considered as 
hierarchies of functionals. First we define for a type two functional C and 
a E Q, the a th iterate C(‘) of C: 

DEFINITION 2.16. 

(1) C’“‘(f) :=f 

(2) P+ l’(f) := C(@)(f)) 

(3) C(s”P(‘x))(f) := the function y H C(‘y)(f)(y). 

LEMMA 2.17. Let f: N --+ N. Let the functional “Apply to f’ be defined 
by (Apply to f)(g) := g 0 f and let the functional “Apply f’ be defined by 
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(Applyf)(g) :=j-0 g for all g: N + N. Let It he the functional defined by 
It(g)(x) := g”‘(x). Then 

(i) H,(f) = (Apply to f )(‘) (identity) 

(ii) F,(f) = (It)“’ (f) 

(iii) G,(f) = (Apply f )‘I) (zero). 

Facts 2.18. Forf: N -+ P+J and cr~Q 

(i) K+p(f)=K(f)oq?(f) 

(ii) &B(f) = H,(K(f )) 

(iii) (HE)@’ (f) = H,@(f) 

(iv) H,,(f) = F,(f ). 

(For the relationship between G and F, see Wainer (1989).) 

DEFINITION 2.19. SI(N “) denote the set of strictly increasing (s.i. for 
short) functions from N to N. Suppose that C: SI(fVN) + SI(NN) is a 
type-2 functional such that 

( 1) For each x E N, C preserves 6, ; i.e., for all f, g E SI( N N), 
f Gx g * C(f) G.X C(g) 

(2) For all f ESI(lV”), f &C(f). 

Then we say C is positive increasing. Note that if f is strictly increasing and 
“positive” in the sense that f(x) > 0, then so is C(f). We abbreviate 
“strictly increasing and positive” as s.i.p. 

LEMMA 2.20. Let C: SI(N”) -+ SI(N “) be a positive increasing type-2 
functional and let a, /I E 0”. Then 

(i) C(“: SI(N”)+SI(fVI). 

(ii) C”) is positive increasing. 

(iii) B~,cc~C’a)(f)~,C’“‘(f). 

Proof: By induction on c( E Q”. 

a=0 

C(“)(f) = f so c ‘O) clearly satisfies (i) to (iii). 
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a=a’+l 

(i) C@)(f) = C(C(a’)(j”)) h. h . w  ic is s.i. by induction hypothesis (i) 
and positive if C preserves positive functions and f is positive. 

(ii) IfS<.Y g then 

P’(f) = C( P’)(f)) 

G, C(C(%)) 

= C’=‘(g). 

[by induction hypothesis (ii) and Property l)] 

For any s.i. f, 

f G3 c’s”(f)) 

Go C(C(a’)(f)) 

= C@)(f). 

[by induction hypothesis (ii)] 

[by Property 23 

(iii) If /I <, CI then j 4, a’. Thus 

P’(f) 4 ~ C@“(f) [by induction hypothesis (iii)] 

Go C(P)(f)) [by Property 21 

= P(f). 

I = sup(&) 

(i) Let y < z. Then 

C(“‘(f)( y) = C(Q(f)( y) 

< C(Q(f)(z) 

d P:‘(f)(z) [by i.h. (iii), since A,<, AZ] 

= P’(f)(z). 

(ii) LetfG, g and x<z. Then 

C’“)(f)(z) = Cyj-)(z) 

< c’“qg)(z) [by induction hypothesis (ii) for A,] 

= c’L’( g)(z). 

By induction hypothesis (ii), f(y) < Cci.~‘(f)(y), thus f <,, C(“)(f). 
(iii) If /?<,A then j?$,n,, so B<ZAZ for z>x also. Thus 

C’B)(f)(z) < C(“)(f)(z) by induction hypothesis (iii) for A,. m 
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LEMMA 2.21 (1, K Lemma). If J, K:SI(N”)-+SI(N”) are positive 
increasing, and also for some x E RJ, J(f) <, K(f) for all f~ SI( N ” ), then 
whenever a E Q’, J’“‘(f) <, K’“‘(f) for all f E SI( N N ). 

Proof: By simple induction over Q”. 1 

Note 2.22. The functionals It and “Apply tof’ are positive increasing. 
We may deduce the following: 

LEMMA 2.23 (Majorisation properties). Let a $, /I E 52” and let 
f: N + FV be s.i. (s.i.p.) with g<,f: Then: 

(i) H,(f) is s.i. (s.i.p. ifO< a); F,(f) is s.i. (s.i.p.) 

(ii) H,(f) 6, Ha(f); F,(f) 6, F&f) (ifx> 0) 

(iii) H,(g) G, H,(f); F,(g) C, F,(f) 

(iv) H,(f) 6, -F,(f). 

Proof: (i) and (ii) are immediate from Lemma 2.20. 
The second part of (iii) is immediate from Lemma 2.20 and the firs 

immediate from Lemma 2.20 and the J, K Lemma. 
(iv) is easily proved by induction on c(. 1 

g, 

,t is 

DEFINITION 2.24 (Representability of subsets of Q”). Let A be a subset 
of Q” which is downward-closed. A is Turing Machine (TM)-representable 
if the following conditions hold for every c1 E A: 

(1) There is a uniform way of representing every /I $ c1 on Turing 
Machine tape by a tape word [PI,. We denote the length of this word by 
I/I1 when c1 is understood. 

(2) There is an elementary function r, such that [P,(p)], is com- 
putable from [x] and [/I], within space bounded by H&r,)(\xj + I/3\). We 
will always assume that rz is s.i.p. We denote by space (Py(fi)) the space 
required to compute [P,(b)], from [/I], and [xl. 

DEFINITION 2.25. Let A E Q and p E 52 with 1 4 /I. 

(1) /I.A:=theclosureof {/?~~cx~A}u{1) under -t 

(2) fi” :=the closure of {/I”: aEA) u (0) under +. 

LEMMA 2.26. If A c Q” is downward-closed, then 

(1) w . A E 52” and is downward-closed. 

(2) coA c Q” and is downward-closed. 
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LEMMA 2.27 (Representability Lemma). Zf A z 52” is representable then 

(i ) w . A is representable. 

(ii) wA is representable. 

Proof of (ii). Suppose A is representable. By Lemma 2.26, mA is 
downward-closed. Let y E uA. Then if y = 0 both the conditions of represen- 
tability are clearly satisfied. If y # 0 then y = xi”= 1 O’J for c1 1, . . . . c(~ E A. We 
write rxk as a. Choose a coding scheme C-1, for 6 d y as follows: 

Let * be a new tape symbol. Then [0], is * and 

bl, is ** C~,ll, * ... * CMI~ 

The coding schemes [-I,, exist by virtue of the representability of A. 
If 0<6<y then 6=C~=,o’~+Cfl=,o~~ where k>Z>,O, ma0 and 
PI, . . . . B,,, < al+ , . Then 

CSI, is ** hL, * ... * [alla,* CPlld,+, * ... * CBmla,+,. 

Thus condition (1) is established for wA. To establish (2) we consider only 
the case of computing predecessors-at-x of y, the proof being almost 
identical for 6 i y. 

If y is non-limit then [y], =s * [0], and [P,(y)],=s for some string s, 
so condition (2) is obviously satisfied. So suppose y is a limit. Now 

(i) P,(a+8)=a+Pn(B) ifO<B 

(ii) P,(a.B)=a~P,(P)+P,(a) X0-X/3 

(iii) P,(a”) = 1 Gg(~Y’ aecD) . P,(a) if 0 <p and 1 <a; 
k=l 

therefore 
k-l 

P,(y)= 1 04+gP.~(1).-~+O~(“).X+ . . . +&3~).& 

j=l 

where n = G,(x), and therefore u’:“) .x = x. Hence 

* CP,(a)l, * ... * Cp,(a)l, 

* CC(a)l, * ... * [Pf(a)ll* ... * CO],* ... * CO],. 
x x 

We consider first the case where x B 5. This ensures n 2 5 as y q! N. From 
now on in the proof, we write H, for H,(r,), where space(P,(/3))< 
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Ha(r,)(lxl + IpI) for every p<a. From the expression for [P,(r)].,, it is 
clear that 

space(P’(a)). 

Since A is representable, 

vace(P.JPF’(a))) G HP,-l,,,(lxl + IP<ypl(a)l) [O<j<n]. 

Now lPJ;‘(a)l d space(P;;‘(a)), so from (*), 

sPace(P,(y)) 

G I?4 +-~~ff,(lxl + lYl)+x~Hp,(,~(lxl +H,(JxJ + Iyl)) 

+x %Jy~(a)(lXI + fb:-~(~)w + ..’ +H,dlxl +H,(lxl+ IA)).“)) 

G IYI +x. &:-1(,,(4. f&-2(1*)( . ‘. (4 . ff,&,(4. H,(lxl + IYI ))) . . . )). 

Now H, <1 FD for /? E W and, if we assume that AZ. 4z do Y,, we have 
1%~.4z<~ Fey,,, for 1 <j< n; thus 

wce(fTJy))~ IYI +x~F~-@‘~-+~~ ... F$&,(Y) 

[where y := 1x1 + lyl] 

d IYI +F;JZ,,,Jy) 

G IA +F;vd~) 

d F&,(Y) 

G F,(Y). 

But F,(y) = H,,( 1x1 + Iyl) < H,(lxl + Iyl) since y = CC::,’ 09) + 09. So 
we have established the result for x2 5. If we set r := Ay. 
[space(P,(y)) + r,(y)] we now have that for each XE N, 

space(P,(y)) G ff,(r)(lxl + IA). 1 
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The proof of (i) is similar but easier. 

LEMMA 2.28 (Exponent Lemma). Let f: N + N be sip. Then using 
Facts 2.18, 

(i) If 2 4,~ and 2 4 b for c(, fi E Sz”, then 

K+s(f)G K.B(f). 

(ii) If A E Q” is downward-closed and closed under +, and CIE orA, 
then 

H,(f)G, H,:(f) 

for some y E A with 2 =$ 1 my. 

(iii) If 1 E A E Q” and A is downward-closed and closed under +, then 
H(wA) satisfies the following closure condition for multiplication: For every 
~1, j3 E wA with 0 < CI, there is some y E wA such that, for any s.i.p. f: N -+ N, 

H,.@(f) do H,(f ). 

LEMMA 2.29 (Honesty Lemma). The content of this lemma is essentially 
that the functional H, is honest, i.e., that whenever CIE A C_ 8” and A is 
representable, then the space required to compute H,(f) is of the order 
H,(f ). The equation S,,,, = H,(f) cannot hold strictly, however, for we 
must take account of the computation of the predecessors of M as well as of 
the computation off, which will not in general be bounded by f itself. The 
actual result is as follows: 

Supposef:Nk+Nk withfESPACE(h). ThenforanyaENkandcrEA, 

where CI’ := (1 + IX) . CY and h’ := h 0 r for some elementary r (in general 
dependent on u and f ). 

Proof We first fix some y E A and then prove by induction on c1< y 
that 

S H,(/,(a)~H,(Hl+.(hor))(lul + Ial) 

for some elementary r. 
Let rl be the elementary s.i.p. function rv from condition (2) of the 

definition of representability. Let r2 be an elementary sip. function for 
which Sr(a) < h(r,(lal)). Now let r be elementary and s.i.p. such that 
rl Go r, rz <,, r. Clearly, space(P,(a)) < H,(r)(lal + 1x1) for all cr< y and 
XE N. Now let a = (a,, . . . . a&) E Nk. 

If a = 0 then S,=,,-,(a) < IO) + Ial = H,( H,(h 0 r))( 101 + Ial). 

64319912.2 
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Suppose c( > 0. Let q = P,,(U) and let Q be the space required to compute 
([VI,, [f(a)]) from ([CC],, [a]). Let space(P,(a)) denote the space 
required to compute ([VI.,,, [a]) from ([CC],,, [a]). Then 

wcW,(a)) G space(P,,(a)) + I (a,, . . . . ak>l 

Gff,(r)(bl+ lull)+ I(%, -,~,>I 

G ff,(r)W + Ial) [as H,(r) is s.i.] 

6ff,@or)(bl + Ial). 

Thus 

Q G max{spacdP,(a)L Id+ s,(a)} 

G max{space(~,(a))3 Id + MOI 1)) 

~max{wce(P,(a)), Ndlvrl+ Ial))) 

d h(r(space(P,(a)))) [as lrll + I4 6 space(P,(a))] 

d ((h~r)~H,(h~r))(lal + Ial) 

= ff, +.(h~r)(lal + Ial). 

By the induction hypothesis, 

s H,(f)(f(a))~H~(HI+~(h~r))(l’Il + Ial) 

d H,(ff, +,(hor))(Q) 

~H,(H,+.(h~r))(H,+.(hor)(lal + Ial)) 

[as l+rldQl+a] 

=H,(H,+.(hor))(lal + Ial). 

Now H12(Hl+.(hOr))=H,1+.).. (hor) and this completes the proof of the 
Honesty Lemma. 1 

3. TERMINATING RECURSIVE AND WHILE-PROGRAM SCHEMES- 

MAIN RESULTS 

DEFINITION 3.1. Let A E as be downward-closed and let % be a set of 
number-theoretic functions. We say that f: A x N k + N is definable from 42 
by A-recursion if f satisfies the scheme 

then v(x) 
else T(x, a, fP(8j), 
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where u E U and T(x, %‘, fpcpj) is a term built up by explicit definitions from 
the number-theoretic functions % and fpc8,, where 

fP&, t13 ...Y tk) :=f(P,(B), t,, . . . . fk). 

DEFINITION 3.2. If f: A x N’-+ N is definable from %! by A-recursion, 
then f is a total function, as the recursion is well-founded. A number- 
theoretic function g is definable by A-recursion if g = f (8) := lx . f(j?, x) for 
some p E A, where f: A x N’ + N is definable by A-recursion as in the 
preceding definition. 

DEFINITION 3.3 (Recursive Programs over Subsets of 52”). For ,A E SJ’, 
we denote by REC(A, @) the least class of number-theoretic functions 
containing B and closed under explicit definitions and A-recursion. We 
write REC(A) for REC(A, g3). 

DEFINITION 3.4 (WHILE-Programs over Subsets of Q’). Let A c 52”. 
The set TWPR of terminating WHILE-programs is a restricted subclass of 
WHILE-programs defined as follows: 

Terms are of two kinds. Terms of type N are built up from 0 and a set 
V of variables o intended to range over natural numbers, by applying succ 
(successor) and pred (predecessor). Terms of type Q” are built up from 0 
and a set U of variables u intended to range over @, by applying P,. 

The TWPR-programs S are generated by: 

6) “skip” E TWPR 

(ii) Assignments. If t is a term of type N then for DE V, 
‘u := t’ E TWPR. 

(iii) Conditionals. If t, and t, are terms of type N and 
So, S, E TWPR then 

“if t, = t, then So else S, fi” E TWPR. 

(iv) Sequencing. If So and S1 E TWPR then ‘So; Si’ E TWPR. 

(v) WHILE-loops. If S,, E TWPR and u E V and u E U then 

“while u #O do u := P,(u); S, od” E TWPR 

provided that the variable u does not occur in So. 

DEFINITION 3.5 (Semantics of Terminating WHILE-Programs). Each 
TWPR-program S defines a function [SJ: Q’/ x N ’ -+ OU x N ’ as follows 
(where [t](r) denotes the standard numerical value of t under assignment 
T): 
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(i) [skip](o, z) := (0, t). 

(ii) Assignments. 

[u := t](a, z) := (a, T[[t](z)/u]). 

(iii) Conditionals. If S is the program “if t, = t, then So else S, fi” 
then 

rrsnC6 z) := { ;;$y;:a,, 

(iv) Sequencing. 

if Ml(~) = MW; 
otherwise. 

~lwm~~) := ivInwon~~~~~~. 
(v) WHILE-loops. If S is the program 

“while u # 0 do u := P,(u); S, od” 

then, in accord with usual WHILE-program semantics, 

if (T(u)=O; 
otherwise. 

DEFINITION 3.6 (T-WHILE(A) for subsets A of Q’). Given A E Q” we 
say that a function h: N” + N” is definable from parameters ai, . . . . ak E A 
by a TWPR-program S with respect to input variables u = ui, . . . . uk and 
v=v,, . ..) u, and output variables w  = wi, . . . . w, if for all xi, . . . . x,, 

h(x 1, ...T Xm)= <~sll(O~ z)(Wj))j=I....,nr 

where o(u)=a, if u=ui and a(u)=0 otherwise; z(u)=xi if u=ui and 
r(u) = 0 otherwise. 

T-WHILE(A) is the class of all such (vector-valued) functions definable 
from parameters in A by terminating WHILE-programs as above. 
Normally, however, we will only be concerned with functions taking values 
in N, i.e., where n = 1. 

DEFINITION 3.7 (HARDY(A) for subsets A of as). Let A E 52”. The set 
HARDY(A) is defined to be the closure of g3 under (vectorised) explicit 
definitions, primitive recursion, and Hardy functionals {H&): a E A } 
given as follows: Let f: Nk -+ blk. Then for a fixed i between 1 and k and 
all a E Nk with ith component b, 

H,(f)(a) := if a = 0; 

pbcol,(fMfbN otherwise. 

With i = k = 1 we get the original Hardy functionals. 
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Again, we will normally be concerned with the non-vectorised version, 
but note that the vectorised versions of these two definitions are important, 
as we could not establish the connection between T-WHILE(A) and 
HARDY(A) without them. 

We are now in a position to state the main theorems of this paper. 

DEFINITION 3.8 (Closure conditions). If A z Q” satisfies 

(i) SEA 

(ii) A is downward-closed and closed under + 

(iii) A is representable 

then we say A satisfies the first closure condition. If in addition A satisfies 

(iv) for every 01, j? E A there exists y E A such that H, .B GO ZZ,, and 

(v) WEA. 

then we say A satisfies the second closure condition. 

Note 3.9. By the corollary to the Exponent Lemma, and the Represen- 
tability Lemma, if A satisfies the first closure condition, then aA satisfies 
the second closure condition. 

THEOREM I. Zf w  E A c_sZ”, then 

T-WHILE(A) = HARDY(A). 

THEOREM II. Zf A c 62” satisfies the second closure condition, then 

T-WHILE(A) G HARDY(A) = ELEM(H(A)) = SPACE(H(A)). 

THEOREM III. Zf A c LY satisfies the first closure condition, then 

REC(o . A) = T-WHILE(&). 

4. PROOF OF THEOREMS I AND II 

We first introduce some notation to be used only for the lemmas in this 
section. We denote by [(v, w, S)] the function defined from fixed 
parameters in A by the program S with respect to input numerical 
variables v and output variables w. Two easy lemmas give us the proof of 
Theorem I. 

LEMMA 4.1. WHILE(A) c HARDY(A). 
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Proof. Since HARDY(A) is closed under explicit definitions and vec- 
torization, it is enough to show that whenever SE: TWPR and all numerical 
variables of S occur in v then [(v, v, S)j E HARDY(A). This can readily 
be shown by induction on the structure of TWPR, as per Definition 3.4. 

(i) id: Nk + FVk = (Z7:, . . . . Z7:) E HARDY(A). 

(ii) [tJ = f oZ7;, where f is one of the functions 

(1) Ax.[x+m] 

(2) Ax. [XLrn] 

(3) Ax. [ml, 

each of which is in HARDY(A). Thus 

(iii) The function 

if gl(x) = g2(x); 
otherwise 

is definable using primitive recursion from fi , fi, g, , and g,, and thus if 
[(v, v, &,)I E HARDY(A), [(v, v, S,)j E HARDY(A), and S is the 
program “if tl = t2 then So else S, Ii,” then [(v, v, S)J E HARDY(A). 

(iv) Clear from the fact that HARDY(A) is closed under composi- 
tion. 

(v) Suppose S is the program “while u # 0 do u := P,,(u); So od” and 
suppose So computes the function f: Then if u is assigned the value c( E A, 
it is clear from the definition of [[Sq that an induction on c( gives 

B(v. v, s>n =H,(f), 

since for all a E N” and non-zero a, if b is the ith component of a, 

II05 v, S)l(a, a)= WY v, W(p,(a))~ KY v, WIIW) 

= [(v, v, S)](P,(a)), f(a)) 

= HPhJf(fl)) 
[by induction hypothesis] 

=H,(a). I 
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LEMMA 4.2. If w E A then HARDY(A) G WHILE(A). 

Proof: It is easy to construct function programs which compute the 
successor, constant, and projection functions. Vectorisation and explicit 
definitions can be handled by a suitable combination of sequencing and the 
use of auxiliary variables and initializing variables to zero. 

To deal with the Hardy functionals, suppose that f: Nk + Nk E 
HARDY (A) and v, w  are disjoint lists of variables such thatf = [(v, w, S)]l 
for some program S. Let x be the list of variables of S not occurring in v. 
Let w  := v, x := 0 stand for the programs “us, := u,; w2 := v2; . . . . w, := urn” 
and “x, :=O; . . . . x, . .= 0,” respectively. Let T be the program 

“w := v; while u # 0 do u := P,,(u); x := 0; S; v := w od.” 

Then U(v, Y Vii(a) = H,(f). 
Finally, provided w  E A, we can handle primitive recursion by using the 

construction “do y times S od,” which can be defined by the following loop 
where the 52 variable u is assigned value w: 

“if y = 0 
then skip 
else y := pred( y); 

while u # 0 do u := P,(u); S od; 
y := succ( y) 

lx” 

For if v’ := (y, u,, . . . . u,) and g := [(v, v, S)] then 

[(v’, v, do y times S od)] = AZ, x . [g”)(x)]; 

once we can iterate functions in this way we can do primitive recursion. i 

LEMMA 4.3. Provided A satisfies the second closure condition (see Defini- 
tion 3.8), SPACE(H(A)) c ELEM(H(A)) G HARDY(A) = WHILE(A). 

Proof: The first containment follows from the well-known result that if 
h E SPACE(f ), then h is elementary in J The second containment follows 
from the facts that g3 E HARDY (A) and HARDY (A) is closed under 
explicit definitions and primitive recursion (and thus under limited 
recursion). 1 

LEMMA 4.4. Provided A satisfies the second closure condition, 
WHILE(A) G SPACE(H(A)). 
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ProoJ: It is enough to show that for every SE TWPR and v containing 
the variables of S, 

I(v, v, S>l E SPACEW,) for some a E A. 

This we do by induction on TWPR, 

(i) [(v, v, skip)](a) = a, the computation of which is bounded by 
ffo(lal), OEA. 

(ii) The computation 

Cal + ClI<v, v, ui := t>Illb)l 

is clearly bounded by Ial + m for some finite m E A. 

(iii) Suppose S is the program 

“if t, = t, then So else S1 fi.” 

We may suppose inductively that the computations Cal -+ 
Cil<v, v, h>I(a)l and Cal -, Gil< v, v, Sl)j(a)] are bounded by H,,(la() 
and H,,(lal), respectively. Let fO := [t,J and f, := [tJ. [(v, v, S)](a) is 
computed by the sequence 

Cal + (Cal, [(a,, . . . . ai- 19 h(a), ai+ i > ...T 4 > I> 

-+ (Cal, [(a~, -, ui-- lJTo(ah+l~ . . . . aA 

[(a ,,...,~,-~,f~(a),...,a,~>l> 

i 
(Cal, CiW, v, WIN)> or 

+ (Cal, Chv, WN-dl>. 

BY case (ii), the computations [a] -+ ([a], [a,, . . . . uipI,fo(a), 
ui+ 19 ..*Y a,>]> and Cal-+<Cal, C(~,,...,ai~1,fi(a),a~+~,...,a,>l> are 
both bounded by H,(la() for some me N. Thus the computation 
[a] + [[(v, v, S)](a)] is bounded by 

2.H,(laO+H,,(lal)+H,,(~al) 

bfC(ff,,(ff,,(W 1)) 

< ~SL,W,,WZ(l4 )I)) 

=ffm.2+ao+~,+o.2(la0 [where m.2+clo+a,+w.2EAl. 

(iv) Suppose S is the program S,; S,. 
NOW c<~,~,s,;s,)n=~(~,~,s,)n~[r(~,~,s~)n, SO if I(vhWn~ 

SPACE(H,) for a,eA and [(v, v, S,)] E SPACE(H,,) for ~1~ E A then 
[(v, v, S)j E SPACE( H,, 0 H,) = SPACE( H,, + ,J, where cc I + m. E A. 
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(v) Suppose S is the program 

“while u # 0 do u := P,,(u); So od” 

computing [(v, v. S)] with u assigned the ordinal parameter /I E A. 
Assume inductively that f = [ ( v, v, S,)g E SPACE(H,) for some CI E A. We 
may assume i = 1. Then [(v, v, S)] = H&f). By the Honesty Lemma, for 
any aE Nk, 

SHpcr,(a) d HB4f’)(IBI + I4 h 

where 8 = (1 +/-I) ./I and f’= H,o r for some s.i.p. TE g3. Now by the 
closure properties of A, r is dominated by H,3 < H6 for some 6 E A. Thus 
T&H,+, and we have 

S Hg(,)(a)~H~I+P).B(H.+S)(IBI + b-4) 

<H,W,+d(IPI + Ial) [for y E A, by part (iv) of the 
second closure condition] 

=Hy.cr+6dIPI + Ial) 

GH,4IPI + Ial) [for y’ E A, again by part (iv)] 

=H,f+IbI(14). 

This completes the proof. 1 

Theorem I, Lemma 4.3, and Lemma 4.4 together give us the proof of 
Theorem II. 

5. PROOF OF THEOREM III 

LEMMA 5.1 (Space-bounding Lemma). Suppose A G 52” satisfies the 
first closure condition and /? E A. Suppose f (p) is defined from 42 by A-recur- 
sion, and for each u: N k + N E 42 there are m E N, v elementary and s.i.p., 
and o E A such that for each a E N k, 

Then 

S,(a) 6 ff,4v)(bl). 

S,-&a) G CHIz+&)I’ (IBI + I4 + 0 

for some ICE N, r elementary and s.i.p., and a E A. 

Proof First fix some y E A and a coding scheme C-1, for {/I: /?< y}. 
Thus for XE IV, 

vace(P,(P)) G H,&,Nlxl + IBI 1 
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for some s.i.p. rY E g3. We may assume that “2 is finite. Let 

&(a) 6 H,$u,)( I4 1 

for each a E Nk. Let I := max,, [,(m,) and c1:= C,, U eU and let r be defined 
by r(x):= ry (xl + C,, u u,(x). We assume that Ay -2~ & r. Clearly, r is 
s.i.p. and elementary and o! E A. It is easy to check that 

(i) H,$u,) <0 HMO”(r) for each UE U, ” 
(ii) H,+,(r)<, H,,,(r) for each UE U, and 

(iii) H,,,(r) <o H,,(r) for each u E ZJ. 

Thus for each a E N k and u E U. 

From this point in the proof onwards we adopt the convention that H, 

denotes the Hardy function Hp(r), r being henceforth fixed as above. 
Suppose f is defined by 

f(jl, x) :_jifb=O z,“;r:;;‘, f 
’ ’ P(P) 

), 

We define for each subterm t of T the length L(t) of t by 

L(x;) = L(constant) := I + 1 

Uu(t, 3 . ..1 tk)) := 1 + 5 L(t;) 

I=1 

(1) 

(2) 

Jw(P,(P), tl? ...Y t,)):=4+L(s)+ c l!d(t;). (3) 
,=l 

Our aim will be to show that for each a E Nk, 

‘(‘) &Ja) Q H,(.,.+B (Ial + IPI + UT)). (t) 

The proof of (t) proceeds by induction on /I < y. 
If /I=0 then 

Sfcs,(a) = S,(a) 

< HAlal) 

< H$$(lal + WI + UT)). 

Suppose /I # 0. We show by a sub-induction on the structure of T that for 
each a E Nk and subterm t of T, 

S,(a) < H~!:)dlal + IPI + Lh 
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where L is L(T) and we are ambiguously using t to mean either a subterm 
or the function that it denotes. (t) then follows by putting t = T. 
Let t be a subterm of T. There are 3 cases to consider: 

Case 1. t is xi. 
Then clearly S,,(a) d la\ Q H$Y8( Ial + I/?\ + L). 

Case 2. t is u(t,, . . . . tk) for subterms t,, . . . . tk. 
Let a E Nk and let t(a) := (t,(a), . . . . t,(a)). Let z := Ial + IpI + L. Now 

ItJaN d S,,(a) so 

IWI G i KS(a) 
i=l 

< i H;?&(z) [by induction hypothesis for tj (1 d i< k)]. 

Next note that if o! #O and 1~ .2yyb0 f then Hz(f)+ H;(f)<,, 
K’+“(f ). 

We now have 

S,(a) G max 
i 

i s,(a), &At(a)) 
i=l 1 

Gmax { i s,(a), HP+P (i St,(a))} [by (*)I 
i=l t=l 

[by (*)I 

[by note above] 

= H$),(lal + IPI + L). 

case 3. t is f(P,(b), t,, . . . . tk). 
Let a E Nk and let t(a) := ( tl(a), . . . . t,(a)). Let z := Ial + IflI + L and let 

q := P,(.,(p). Then 

S,(a) G max { S,(a) + 5 S,(a), &,(t(a )), wce(P,(8)) . 
i=l I 

By the induction hypothesis for r] < /?, 

Sfc,Jt(a)) G ff$+q(lt(a)l + lrll + L). 
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By the induction hypothesis for t; (1 Q i 6 k), 

IWl G i Ifi(a)l 
i=l 

By the induction hypothesis for S, 

Is(a)1 <S,(a) < H$?B(z). 

Thus 

lrll G vce(P,,,,(B)) 

< ffp(IWl + WI) 

< H,(H;zB(Z) + Hp+B(Z)) 

< H,x+a(H$$+ l(z)) 

= H$y2(Z). 

Note that space(P,(j?)) is also less than or equal to H$?$2(z). 
Hence 

It(a)1 + 1~1 + L< H$fftL”” (z) + H$%(z) + HL~+fl(z) 

< fp+~(S)fZf=, u~JyZ) 

=: Q, say. 

NOW s(a) G Q, so c( + q = P,(,)(a + 8) GB Pe(a + B) = a + P&V Thus 

HL=+n GQ HL=+Pp(p) on applying Lemma 2.20 to HL(-). Hence by the 
induction hypothesis for v, 

Srcs,(f(a)) < H~+~(Q) 

G H:.+poc,&?) 

= Hp+dQ) 
= HLE+~( H u+gLw+ EL, ufl))(z)), 

= H$:‘B( Ial + ISI + 15). 
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Since both S,(a) +Cf=, S,(a) and space(P,(@)) are both less than or 
equal to H$:)B( Ial + I/?[ + L), we have S,(a) < H$$( lal+ 181 + L), as 
required. 1 

DEFINITION 5.2. Let A c 12” and let h E REC(A ) be a sip. function from 
N to N. Define B(h): A x N -+ N by A-recursion as follows: 

B(h)(a, x) := 
if a=0 then h(x) 

else W)(P,(a), W)(P,(a), ~1). 

Note that B(h)(a, x) = H,,(h)(x) for all x E N. 

LEMMA 5.3. (B(h)-Bounding Lemma). For CIEW, h s.i.p., 

F,(h) bo B(h)(o -a, -). 

Proof Note that for h s.i., H,(h)<,H,,(h). Thus 

F,(h) = HoAh) 

= H’“‘(h) 0 

Go H:“?(h) [by the J, K Lemma] 

= H,,.,(h) 

=B(h)(o-a,-). 1 

LEMMA 5.4. Provided A satisfies the first closure condition, 

u SPACE(H(I”‘A)) = SPACE(H(&)). 
/EN\{O.l) 

Proof Let fe SPACE(H(&)). Then S,<, H,o r for some c( E& and 
some s.i.p. rEg3. Now 

H,<, H,; [for y E A (Exponent Lemma)] 

61 Hp, [ B( h)-bounding Lemma]. 

Thus for all x E N, S,-(x) < H,* ,(r(x) + l), so f o SPACE(H(2”-A)). Con- 
versely, let f E SPACE(H(I@‘A)) for some 12 2. Then S,-<, H,, o . . . o 
H,, 0 r, where ai = nj I”.Bg for bij E A (1~ i < k). (Elements of 1” .A are all 
of the form XI= r ai where ai has the form above.) 

If we can show that for some fixed y E N, 

V/IEA 3yfoA such that H,, 6 <, H,, (*I 
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then if we let yii E mA be such that H,, ,,,, 6,. H,,, and let 6, E wA be such that 

Hn,?J, ‘0 < H,,, we know that Hmt .Sv Hh, for 1 f i < k, so 

S,(x) G H,, 3 . 0 H&-(x) + y) 

= Hx,,,(r(-x) + Y). 

Now Lx[r(x) + y] E g3 and & 6, E c/, so ffz SPACE(H(c/)). 
To prove (*), let r(x)=l”+’ and let z E N be such that r Qz F3. (This is 

possible since F3 dominates all elementary functions). Let y = max(2, z). 
We show by induction on a E A that 

H (Co ,6,. H,,,z+,+r. (t) 

But H,3+zOr<<,. Hc,,3+o+w , so we may take y in (*) to be o~+~+w~Ew~. 

Proofof( it) is obvious if ct = 0. Suppose a = a’ + 1 and x >/ y. Then 

H,,, n(x) = H,,,, z .,,+,(x) 

= H,m.,, o . . . 0 H,, z,(x) 
,x+1 

< (H,3+,,or)“‘+’ (x) 

<((H,,+,)‘)“+‘(x) 

= Ham;!, 

< H;j’!f ‘(x) 

= H,,3+,(r(x)). 

[by the induction hypothesis] 

If d is a limit then for x 3 y, 

H,w ,.(x) = H,,, 4,(x) 

d H,3+..(r(x)) [by the induction hypothesis] 

d H,3+;.,,.,(r(x)) 

= H,,+;(r(x)). fl 

This concludes the proof of Lemma 5.4. 1 

Proof of Theorem III. Suppose A E@ satisfies the first closure 
condition. We first show that REC( w . A) E WHILE(&). The proof is by 
induction on REC(w . A). Now g3 G WHILE(wA) and, by Theorem I, 
WHILE(oA) is closed under explicit definitions. 
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For closure under recursion, suppose f is defined from % E REC(w . A) 
by A-recursion and PEA. Assume inductively that !&E WHILE(wA) = 
U ,EN,jO,lj SPACE(H(I”‘A)). Then for each UE%!, 

Ua) G H,4o)(lal) 

for m E N, CJ E o ’ A, and v elementary and s.i.p. 
Thus by the space-bounding lemma, 

Sfcs,(a) d H,~~+~+d~)(lPl + I4 + 0 

[for tx E w  . A, 2 < 1 E f%J and r E B3 s.i.p.1 

6 H,,a+fl+1, (ff~)(Ml + I4 + 4 

[for 6 E w. A, as g3 E SPACE(H(l”‘.A))] 

= H,cl+~+~+dl~l + lal + 1) 

[where cr+p+ 1+6~o.A] 

d ff,(IBI + I4 + 4 
[for some y E o”] 

=ffy+IBI+I(lal) 
[where y + 181 + 1~ o”]. 

So f(p) E SPACE(H(&)) = WHILE(&), and hence REC(o . A) G 
WHILE(&). 

To prove the reverse inclusion, we show first that, for any a E A, F, is 
elementary in B(succ)(w . y, -) for some y E A, and thus F, E REC(o . A). So 
let c1 E A. Then 

SFT(X) G H(, +w~,.w~(~)(l~al + 1x1) [for YE 6” (Honesty Lemma)] 

<H c~+o~J.o.MJl~al + I-4) [for 6Ec/] 

=H~.(~+W~).~~+,~~,(IXI) [Exponent Lemma] 

< H;4lxl) [for some y E A] 

< B(succ)(o . y, (xl ). 

Thus F, is elementary in B(succ)(o . y, -). 
Now iffE WHILE(&) then f is elementary in H, for some y E &. Now 

H, = F,, 0 . . . 0 F,, where ai, . . . . ake A. As F,,E REC(w .A) for each j, it 
follows that H, E REC(o . A), and so f E REC(o . A). This completes the 
proof of Theorem III. 1 
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6. EXAMPLES 

DEFINITIONS 6.1. We define, for n E N, the sets M, E Sz” and E, c 52” by 

(i) M, := N 

(ii) M,+l :=w.M, 

(iii) E, := N 

(iv) E,,, :=&. 

We set M:=UneNiM, and E:=iJneNE,. Clearly, if m<n then 
M,,,~M,rMandE,,,~E,EE.Al~oo.M=Mandw~=E.Wehavethe 
following examples: 

(1) REC(o . E,) = WHILE(E,+ i) = SPACE(E,+ 1) 

= PROVABLY RECURSIVE IN C, + ,-Ind 

for each II E N 

(2) REC(w . f+J) = WHILE(w’) 

= PRIMITIVE RECURSIVE 

(3) REC(o”) = WHILE(o ,‘) 

= u k-RECURSIVE 
keN 

(4) REC(M,+ ,) = (k + l)-RECURSIVE for each k E N 

(5) REC( E) = WHILE(E) = SPACE(E) 

= PROVABLY RECURSIVE IN PA. 

Here PA means Peano Arithmetic and C,-Ind means Peano Arithmetic but 
with the induction rule restricted to C, formulae. For further details of the 
proof-theoretical aspects, see Buchholz and Wainer (1987) and Wainer 
(1990). 
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