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Let R(n,k) denote the number of permutations of {1,2, . . . ,n} with
k alternating runs. In this paper we present an explicit formula for
the numbers R(n,k).
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1. Introduction

Let Sn be the symmetric group of all permutations of [n], where [n] = {1,2, . . . ,n}. Let π =
π(1)π(2) · · ·π(n) ∈ Sn . We say that π changes direction at position i if either π(i − 1) < π(i) >

π(i + 1), or π(i − 1) > π(i) < π(i + 1), where i ∈ {2,3, . . . ,n − 1}. We say that π has k alternating
runs if there are k−1 indices i such that π changes direction at these positions. Let R(n,k) denote the
number of permutations in Sn with k alternating runs. André [1] was the first to study the alternating
runs of permutations and he obtained the following recurrence

R(n,k) = kR(n − 1,k) + 2R(n − 1,k − 1) + (n − k)R(n − 1,k − 2) (1)

for n,k � 1, where R(1,0) = 1 and R(1,k) = 0 for k � 1.
Let Rn(x) = ∑n−1

k=1 R(n,k)xk . Then the recurrence (1) induces

Rn+2(x) = x(nx + 2)Rn+1(x) + x
(
1 − x2)R ′

n+1(x),
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with initial values R1(x) = 1. The first few terms of Rn(x)’s are given as follows:

R2(x) = 2x,

R3(x) = 2x + 4x2,

R4(x) = 2x + 12x2 + 10x3,

R5(x) = 2x + 28x2 + 58x3 + 32x4.

For a permutation π = π(1)π(2) · · ·π(n) ∈ Sn , we define a descent to be a position i such that
π(i) > π(i + 1). Denote by des(π) the number of descents of π . Let

An(x) =
∑
π∈Sn

xdes(π)+1 =
n∑

k=1

A(n,k)xk.

The polynomial An(x) is called an Eulerian polynomial, while A(n,k) is called an Eulerian number. The
polynomial Rn(x) is closely related to An(x):

Rn(x) =
(

1 + x

2

)n−1

(1 + w)n+1 An

(
1 − w

1 + w

)
, w =

√
1 − x

1 + x
, (2)

which was first established by David and Barton [10, p. 157–162] and then stated more concisely
by Knuth [13, p. 605]. In a series of papers [5–7], Carlitz studied the generating functions for the
numbers R(n,k). In particular, Carlitz [5] proved that

∞∑
n=0

(
1 − x2)−n/2 zn

n!
n∑

k=0

R(n + 1,k)xn−k = 1 − x

1 + x

(√
1 − x2 + sin z

x − cos z

)2

. (3)

In [2], Bóna and Ehrenborg proved that Rn(x) has the zero x = −1 with multiplicity �n/2� − 1.
Recently there has been much interest in obtaining explicit formula for the numbers R(n,k).

In [16], Stanley gave an exact formula for R(n,k):

R(n,k) =
k∑

i=0

1

2i−1
(−1)k−i zk−i

∑
r+2m�i

r≡i mod 2

(−2)m
(

i − m

(i + r)/2

)(
n

m

)
rn,

where z0 = 2 and zn = 4 for n � 1. In [3], Canfield and Wilf showed that

R(n,k) = 1

2k−2
kn − 1

2k−4
(k − 1)n + ψ2(n,k)(k − 2)n + · · · + ψk−1(n,k) for n � 2,

in which each ψi(n,k) is a polynomial in n whose degree in n is �i/2�.
In Section 3, we express the polynomials Rn(x) in terms of the derivative polynomials Pn(x) defined

by Hoffman [12]:

Pn(tan θ) = dn

dθn
tan θ.

2. Derivative polynomials

Let D denote the differential operator d/dθ . Set x = tan θ . Then D(xn) = nxn−1(1 + x2) for n � 1.
Thus Dn(x) is a polynomial in x. Let Pn(x) = Dn(x). Then P0(x) = x and Pn+1(x) = (1 + x2)P ′

n(x).
Clearly, deg Pn(x) = n + 1. The first few terms can be computed directly as follows:

P1(x) = 1 + x2,

P2(x) = 2x + 2x3,
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P3(x) = 2 + 8x2 + 6x4,

P4(x) = 16x + 40x3 + 24x5.

Let Pn(x) = ∑n+1
k=0 p(n,k)xk . It is easy to verify that

p(n,k) = (k + 1)p(n − 1,k + 1) + (k − 1)p(n − 1,k − 1).

Note that Pn(−x) = (−1)n+1 Pn(x). Thus we have the following expression:

Pn(x) =
�(n+1)/2�∑

k=0

p(n,n − 2k + 1)xn−2k+1. (4)

The study of properties of the polynomials Pn(x), initiated in [12], is presently very active
(see [9,14]). For example, let

tank(t) =
∞∑

n=k

T (n,k)
tn

n! .

The numbers T (n,k) are called the tangent numbers of order k (see [4, p. 428]). Cvijović [9, Theorem 1]
obtained the following formula:

Pn(x) = T (n,1) +
n+1∑
k=1

1

k
T (n + 1,k)xk.

In the following discussion, we will present an explicit expression for the numbers p(n,k). The
Stirling numbers of the second kind

{n
k

}
count the number of ways to partition an n-set into k blocks.

They can be calculated using the following explicit formula:

{
n

k

}
= 1

k!
k∑

r=1

(−1)k−r
(

k

r

)
rn.

The Eulerian polynomial An(x) admits several expansions in terms of different polynomial bases. One
representative example is the Frobenius formula:

An(x) =
n∑

i=1

i!
{

n

i

}
xi(1 − x)n−i (5)

(see [8, Theorem 14.4]). Setting x = (y − 1)/(y + 1) in (5) and then multiplying both sides by
(y + 1)n+1, we get

n∑
k=1

A(n,k)(y − 1)k(y + 1)n−k+1 = (y + 1)

n∑
i=1

i!
{

n

i

}
2n−i(y − 1)i .

Let

an(y) = (y + 1)

n∑
i=1

i!
{

n

i

}
2n−i(y − 1)i . (6)

The first few terms of an(y)’s are given as follows:

a1(y) = −1 + y2,

a2(y) = −2y + 2y3,

a3(y) = 2 − 8y2 + 6y4,

a4(y) = 16y − 40y3 + 24y5.
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Then from [11, Theorem 5], we have

an(y) =
�(n+1)/2�∑

k=0

(−1)k p(n,n − 2k + 1)yn−2k+1. (7)

Therefore, combining (6) and (7), we get the following result.

Proposition 1. For n � 1 and 0 � k � �(n + 1)/2�, we have

p(n,n − 2k + 1) = (−1)k
∑
i�1

i!
{

n

i

}
(−2)n−i

[(
i

n − 2k

)
−

(
i

n − 2k + 1

)]
.

3. Explicit formulas

In this section, we present an explicit formula for the numbers R(n,k).
Setting x = cos 2θ and replacing z by 2z in (3), we get

∞∑
n=0

(sin 2θ)−n2n zn

n!
n∑

k=0

R(n + 1,k)cosn−k 2θ = tan2 θ cot2(θ − z).

Thus by replacing z by −z, we obtain

∞∑
n=0

(sin 2θ)−n2n(−1)n zn

n!
n∑

k=0

R(n + 1,k)cosn−k 2θ = tan2 θ cot2(θ + z). (8)

By Taylor’s theorem, we have

cot2(θ + z) =
∞∑

n=0

Dn(cot2 θ
) zn

n! .

Let y = cot θ . Then D(y) = −1 − y2 and D(yn) = −nyn−1(1 + y2). Put Cn(y) = Dn(y). Then Cn+1(y) =
−(1 + y2)C ′

n(y) for n � 0. Clearly, Cn(y) = (−1)n Pn(y). Note that D2(y) = −D(y2). Then Dn(y2) =
(−1)n Pn+1(y). Therefore, we have

cot2(θ + z) =
∞∑

n=0

(−1)n Pn+1(cot θ)
zn

n! . (9)

We now present the main result of this paper.

Theorem 2. For n � 2, we have

Rn(x) =
(

x + 1

2

)n−1( x − 1

x + 1

) 1
2 (n+1)

Pn

(√
x + 1

x − 1

)
. (10)

Proof. Substituting (9) into (8), we get

∞∑
n=0

(sin 2θ)−n2n(−1)n zn

n!
n∑

k=0

R(n + 1,k)cosn−k 2θ = tan2 θ

∞∑
n=0

(−1)n zn

n!
n+2∑
k=0

p(n + 1,k) cotk θ.

Equating the coefficients of (−1)nzn/n!, we obtain

(sin 2θ)−n2n
n∑

R(n + 1,k)cosn−k 2θ = tan2 θ

n+2∑
p(n + 1,k) cotk θ. (11)
k=0 k=0
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Replacing n by n − 1 in (11), we have

n−1∑
k=0

R(n,k)cosn−k−1 2θ = (1 + cos 2θ)n−1

2n−1

(
1 − cos 2θ

1 + cos 2θ

) 1
2 (n+1) n+1∑

k=0

p(n,k)

(
1 + cos 2θ

1 − cos 2θ

) 1
2 k

.

Consequently, replacing cos 2θ by x, we get

n−1∑
k=0

R(n,k)xn−k−1 =
(

1 + x

2

)n−1(1 − x

1 + x

) 1
2 (n+1)

Pn

(√
1 + x

1 − x

)
. (12)

Replacing x by 1/x in (12) and then multiplying both sides by xn−1, we obtain the desired result. �
Combining (4) and (10), we get

Rn(x) = 1

2n−1

�(n+1)/2�∑
k=0

p(n,n − 2k + 1)(x + 1)n−k−1(x − 1)k. (13)

Note that n −�(n + 1)/2� = �n/2�. It follows from (13) that Rn(x) is divisible by (x + 1)�n/2�−1. Denote
by E(n,k, s) the coefficients of xs in (x + 1)n−k−1(x − 1)k . It is easy to verify that

E(n,k, s) =
min(k,s)∑

j=0

(−1)k− j
(

n − k − 1

s − j

)(
k

j

)
.

Consequently, by (13), we obtain the following result.

Corollary 3. For n � 2 and 1 � s � n − 1, we have

R(n, s) = 1

2n−1

�(n+1)/2�∑
k=0

p(n,n − 2k + 1)E(n,k, s).

It should be noted that the numbers R(n, s)/2 appear as A008970 in [15].
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