An explicit formula for the number of permutations with a given number of alternating runs ${ }^{\star}$

Shi-Mei Ma
School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066004, China

A R T I C L E I N F O

Article history:

Received 18 November 2011
Available online 26 May 2012

Keywords:

Alternating runs
Permutations
Derivative polynomials
Eulerian polynomials

Abstract

Let $R(n, k)$ denote the number of permutations of $\{1,2, \ldots, n\}$ with k alternating runs. In this paper we present an explicit formula for the numbers $R(n, k)$.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{S}_{n} be the symmetric group of all permutations of $[n$], where $[n]=\{1,2, \ldots, n\}$. Let $\pi=$ $\pi(1) \pi(2) \cdots \pi(n) \in \mathcal{S}_{n}$. We say that π changes direction at position i if either $\pi(i-1)<\pi(i)>$ $\pi(i+1)$, or $\pi(i-1)>\pi(i)<\pi(i+1)$, where $i \in\{2,3, \ldots, n-1\}$. We say that π has k alternating runs if there are $k-1$ indices i such that π changes direction at these positions. Let $R(n, k)$ denote the number of permutations in \mathcal{S}_{n} with k alternating runs. André [1] was the first to study the alternating runs of permutations and he obtained the following recurrence

$$
\begin{equation*}
R(n, k)=k R(n-1, k)+2 R(n-1, k-1)+(n-k) R(n-1, k-2) \tag{1}
\end{equation*}
$$

for $n, k \geqslant 1$, where $R(1,0)=1$ and $R(1, k)=0$ for $k \geqslant 1$.
Let $R_{n}(x)=\sum_{k=1}^{n-1} R(n, k) x^{k}$. Then the recurrence (1) induces

$$
R_{n+2}(x)=x(n x+2) R_{n+1}(x)+x\left(1-x^{2}\right) R_{n+1}^{\prime}(x)
$$

[^0]with initial values $R_{1}(x)=1$. The first few terms of $R_{n}(x)$'s are given as follows:
\[

$$
\begin{aligned}
& R_{2}(x)=2 x, \\
& R_{3}(x)=2 x+4 x^{2}, \\
& R_{4}(x)=2 x+12 x^{2}+10 x^{3}, \\
& R_{5}(x)=2 x+28 x^{2}+58 x^{3}+32 x^{4} .
\end{aligned}
$$
\]

For a permutation $\pi=\pi(1) \pi(2) \cdots \pi(n) \in \mathcal{S}_{n}$, we define a descent to be a position i such that $\pi(i)>\pi(i+1)$. Denote by $\operatorname{des}(\pi)$ the number of descents of π. Let

$$
A_{n}(x)=\sum_{\pi \in \mathcal{S}_{n}} x^{\operatorname{des}(\pi)+1}=\sum_{k=1}^{n} A(n, k) x^{k} .
$$

The polynomial $A_{n}(x)$ is called an Eulerian polynomial, while $A(n, k)$ is called an Eulerian number. The polynomial $R_{n}(x)$ is closely related to $A_{n}(x)$:

$$
\begin{equation*}
R_{n}(x)=\left(\frac{1+x}{2}\right)^{n-1}(1+w)^{n+1} A_{n}\left(\frac{1-w}{1+w}\right), \quad w=\sqrt{\frac{1-x}{1+x}}, \tag{2}
\end{equation*}
$$

which was first established by David and Barton [10, p. 157-162] and then stated more concisely by Knuth [13, p. 605]. In a series of papers [5-7], Carlitz studied the generating functions for the numbers $R(n, k)$. In particular, Carlitz [5] proved that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{k=0}^{n} R(n+1, k) x^{n-k}=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2} . \tag{3}
\end{equation*}
$$

In [2], Bóna and Ehrenborg proved that $R_{n}(x)$ has the zero $x=-1$ with multiplicity $\lfloor n / 2\rfloor-1$.
Recently there has been much interest in obtaining explicit formula for the numbers $R(n, k)$. In [16], Stanley gave an exact formula for $R(n, k)$:

$$
R(n, k)=\sum_{i=0}^{k} \frac{1}{2^{i-1}}(-1)^{k-i} z_{k-i} \sum_{\substack{r+2 m \leqslant i \\ r \equiv i \bmod 2}}(-2)^{m}\binom{i-m}{(i+r) / 2}\binom{n}{m} r^{n},
$$

where $z_{0}=2$ and $z_{n}=4$ for $n \geqslant 1$. In [3], Canfield and Wilf showed that

$$
R(n, k)=\frac{1}{2^{k-2}} k^{n}-\frac{1}{2^{k-4}}(k-1)^{n}+\psi_{2}(n, k)(k-2)^{n}+\cdots+\psi_{k-1}(n, k) \quad \text { for } n \geqslant 2,
$$

in which each $\psi_{i}(n, k)$ is a polynomial in n whose degree in n is $\lfloor i / 2\rfloor$.
In Section 3, we express the polynomials $R_{n}(x)$ in terms of the derivative polynomials $P_{n}(x)$ defined by Hoffman [12]:

$$
P_{n}(\tan \theta)=\frac{d^{n}}{d \theta^{n}} \tan \theta .
$$

2. Derivative polynomials

Let D denote the differential operator $d / d \theta$. Set $x=\tan \theta$. Then $D\left(x^{n}\right)=n x^{n-1}\left(1+x^{2}\right)$ for $n \geqslant 1$. Thus $D^{n}(x)$ is a polynomial in x. Let $P_{n}(x)=D^{n}(x)$. Then $P_{0}(x)=x$ and $P_{n+1}(x)=\left(1+x^{2}\right) P_{n}^{\prime}(x)$. Clearly, $\operatorname{deg} P_{n}(x)=n+1$. The first few terms can be computed directly as follows:

$$
\begin{aligned}
& P_{1}(x)=1+x^{2}, \\
& P_{2}(x)=2 x+2 x^{3},
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}(x)=2+8 x^{2}+6 x^{4}, \\
& P_{4}(x)=16 x+40 x^{3}+24 x^{5} .
\end{aligned}
$$

Let $P_{n}(x)=\sum_{k=0}^{n+1} p(n, k) x^{k}$. It is easy to verify that

$$
p(n, k)=(k+1) p(n-1, k+1)+(k-1) p(n-1, k-1) .
$$

Note that $P_{n}(-x)=(-1)^{n+1} P_{n}(x)$. Thus we have the following expression:

$$
\begin{equation*}
P_{n}(x)=\sum_{k=0}^{\lfloor(n+1) / 2\rfloor} p(n, n-2 k+1) x^{n-2 k+1} . \tag{4}
\end{equation*}
$$

The study of properties of the polynomials $P_{n}(x)$, initiated in [12], is presently very active (see $[9,14]$). For example, let

$$
\tan ^{k}(t)=\sum_{n=k}^{\infty} T(n, k) \frac{t^{n}}{n!} .
$$

The numbers $T(n, k)$ are called the tangent numbers of order k (see [4, p. 428]). Cvijović [9, Theorem 1] obtained the following formula:

$$
P_{n}(x)=T(n, 1)+\sum_{k=1}^{n+1} \frac{1}{k} T(n+1, k) x^{k} .
$$

In the following discussion, we will present an explicit expression for the numbers $p(n, k)$. The Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$ count the number of ways to partition an n-set into k blocks. They can be calculated using the following explicit formula:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{r=1}^{k}(-1)^{k-r}\binom{k}{r} r^{n} .
$$

The Eulerian polynomial $A_{n}(x)$ admits several expansions in terms of different polynomial bases. One representative example is the Frobenius formula:

$$
A_{n}(x)=\sum_{i=1}^{n} i!\left\{\begin{array}{l}
n \tag{5}\\
i
\end{array}\right\} x^{i}(1-x)^{n-i}
$$

(see [8, Theorem 14.4]). Setting $x=(y-1) /(y+1)$ in (5) and then multiplying both sides by $(y+1)^{n+1}$, we get

$$
\sum_{k=1}^{n} A(n, k)(y-1)^{k}(y+1)^{n-k+1}=(y+1) \sum_{i=1}^{n} i!\left\{\begin{array}{l}
n \\
i
\end{array}\right\} 2^{n-i}(y-1)^{i} .
$$

Let

$$
a_{n}(y)=(y+1) \sum_{i=1}^{n} i!\left[\begin{array}{c}
n \tag{6}\\
i
\end{array}\right\} 2^{n-i}(y-1)^{i} .
$$

The first few terms of $a_{n}(y)$'s are given as follows:

$$
\begin{aligned}
& a_{1}(y)=-1+y^{2}, \\
& a_{2}(y)=-2 y+2 y^{3}, \\
& a_{3}(y)=2-8 y^{2}+6 y^{4}, \\
& a_{4}(y)=16 y-40 y^{3}+24 y^{5} .
\end{aligned}
$$

Then from [11, Theorem 5], we have

$$
\begin{equation*}
a_{n}(y)=\sum_{k=0}^{\lfloor(n+1) / 2\rfloor}(-1)^{k} p(n, n-2 k+1) y^{n-2 k+1} . \tag{7}
\end{equation*}
$$

Therefore, combining (6) and (7), we get the following result.
Proposition 1. For $n \geqslant 1$ and $0 \leqslant k \leqslant\lfloor(n+1) / 2\rfloor$, we have

$$
p(n, n-2 k+1)=(-1)^{k} \sum_{i \geqslant 1} i!\left\{\begin{array}{l}
n \\
i
\end{array}\right\}(-2)^{n-i}\left[\binom{i}{n-2 k}-\binom{i}{n-2 k+1}\right] .
$$

3. Explicit formulas

In this section, we present an explicit formula for the numbers $R(n, k)$.
Setting $x=\cos 2 \theta$ and replacing z by $2 z$ in (3), we get

$$
\sum_{n=0}^{\infty}(\sin 2 \theta)^{-n} 2^{n} \frac{z^{n}}{n!} \sum_{k=0}^{n} R(n+1, k) \cos ^{n-k} 2 \theta=\tan ^{2} \theta \cot ^{2}(\theta-z)
$$

Thus by replacing z by $-z$, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty}(\sin 2 \theta)^{-n} 2^{n}(-1)^{n^{n}} \frac{z^{n}}{n!} \sum_{k=0}^{n} R(n+1, k) \cos ^{n-k} 2 \theta=\tan ^{2} \theta \cot ^{2}(\theta+z) \tag{8}
\end{equation*}
$$

By Taylor's theorem, we have

$$
\cot ^{2}(\theta+z)=\sum_{n=0}^{\infty} D^{n}\left(\cot ^{2} \theta\right) \frac{z^{n}}{n!}
$$

Let $y=\cot \theta$. Then $D(y)=-1-y^{2}$ and $D\left(y^{n}\right)=-n y^{n-1}\left(1+y^{2}\right)$. Put $C_{n}(y)=D^{n}(y)$. Then $C_{n+1}(y)=$ $-\left(1+y^{2}\right) C_{n}^{\prime}(y)$ for $n \geqslant 0$. Clearly, $C_{n}(y)=(-1)^{n} P_{n}(y)$. Note that $D^{2}(y)=-D\left(y^{2}\right)$. Then $D^{n}\left(y^{2}\right)=$ $(-1)^{n} P_{n+1}(y)$. Therefore, we have

$$
\begin{equation*}
\cot ^{2}(\theta+z)=\sum_{n=0}^{\infty}(-1)^{n} P_{n+1}(\cot \theta) \frac{z^{n}}{n!} \tag{9}
\end{equation*}
$$

We now present the main result of this paper.
Theorem 2. For $n \geqslant 2$, we have

$$
\begin{equation*}
R_{n}(x)=\left(\frac{x+1}{2}\right)^{n-1}\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}(n+1)} P_{n}\left(\sqrt{\frac{x+1}{x-1}}\right) . \tag{10}
\end{equation*}
$$

Proof. Substituting (9) into (8), we get

$$
\sum_{n=0}^{\infty}(\sin 2 \theta)^{-n} 2^{n}(-1)^{n} \frac{z^{n}}{n!} \sum_{k=0}^{n} R(n+1, k) \cos ^{n-k} 2 \theta=\tan ^{2} \theta \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!} \sum_{k=0}^{n+2} p(n+1, k) \cot ^{k} \theta
$$

Equating the coefficients of $(-1)^{n} z^{n} / n!$, we obtain

$$
\begin{equation*}
(\sin 2 \theta)^{-n} 2^{n} \sum_{k=0}^{n} R(n+1, k) \cos ^{n-k} 2 \theta=\tan ^{2} \theta \sum_{k=0}^{n+2} p(n+1, k) \cot ^{k} \theta . \tag{11}
\end{equation*}
$$

Replacing n by $n-1$ in (11), we have

$$
\sum_{k=0}^{n-1} R(n, k) \cos ^{n-k-1} 2 \theta=\frac{(1+\cos 2 \theta)^{n-1}}{2^{n-1}}\left(\frac{1-\cos 2 \theta}{1+\cos 2 \theta}\right)^{\frac{1}{2}(n+1)} \sum_{k=0}^{n+1} p(n, k)\left(\frac{1+\cos 2 \theta}{1-\cos 2 \theta}\right)^{\frac{1}{2} k}
$$

Consequently, replacing $\cos 2 \theta$ by x, we get

$$
\begin{equation*}
\sum_{k=0}^{n-1} R(n, k) x^{n-k-1}=\left(\frac{1+x}{2}\right)^{n-1}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}(n+1)} P_{n}\left(\sqrt{\frac{1+x}{1-x}}\right) \tag{12}
\end{equation*}
$$

Replacing x by $1 / x$ in (12) and then multiplying both sides by x^{n-1}, we obtain the desired result.
Combining (4) and (10), we get

$$
\begin{equation*}
R_{n}(x)=\frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor(n+1) / 2\rfloor} p(n, n-2 k+1)(x+1)^{n-k-1}(x-1)^{k} \tag{13}
\end{equation*}
$$

Note that $n-\lfloor(n+1) / 2\rfloor=\lfloor n / 2\rfloor$. It follows from (13) that $R_{n}(x)$ is divisible by $(x+1)^{\lfloor n / 2\rfloor-1}$. Denote by $E(n, k, s)$ the coefficients of x^{s} in $(x+1)^{n-k-1}(x-1)^{k}$. It is easy to verify that

$$
E(n, k, s)=\sum_{j=0}^{\min (k, s)}(-1)^{k-j}\binom{n-k-1}{s-j}\binom{k}{j} .
$$

Consequently, by (13), we obtain the following result.
Corollary 3. For $n \geqslant 2$ and $1 \leqslant s \leqslant n-1$, we have

$$
R(n, s)=\frac{1}{2^{n-1}} \sum_{k=0}^{\lfloor(n+1) / 2\rfloor} p(n, n-2 k+1) E(n, k, s) .
$$

It should be noted that the numbers $R(n, s) / 2$ appear as A008970 in [15].

Acknowledgments

The author thanks the anonymous referees for their careful reading and valuable suggestions.

References

[1] D. André, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. École Norm. Sup. 3 (1) (1884) 121-135.
[2] M. Bóna, R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with k runs, J. Combin. Theory Ser. A 90 (2000) 293-303.
[3] E.R. Canfield, H. Wilf, Counting permutations by their alternating runs, J. Combin. Theory Ser. A 115 (2008) 213-225.
[4] L. Carlitz, R. Scoville, Tangent numbers and operators, Duke Math. J. 39 (1972) 413-429.
[5] L. Carlitz, Enumeration of permutations by sequences, Fibonacci Quart. 16 (3) (1978) 259-268.
[6] L. Carlitz, The number of permutations with a given number of sequences, Fibonacci Quart. 18 (4) (1980) 347-352.
[7] L. Carlitz, Enumeration of permutations by sequences, II, Fibonacci Quart. 19 (5) (1981) 398-406.
[8] C.A. Charalambides, Enumerative Combinatorics, Chapman Hall, CRC, 2002.
[9] D. Cvijović, Derivative polynomials and closed-form higher derivative formulae, Appl. Math. Comput. 215 (2009) 30023006.
[10] F.N. David, D.E. Barton, Combinatorial Chance, Charles Griffin and Company, Ltd., London, UK, 1962.
[11] G.R. Franssens, Functions with derivatives given by polynomials in the function itself or a related function, Anal. Math. 33 (2007) 17-36.
[12] M.E. Hoffman, Derivative polynomials for tangent and secant, Amer. Math. Monthly 102 (1995) 23-30.
[13] D.E. Knuth, The Art of Computer Programming, vol. 3, Fundamental Algorithms, Addison-Wesley, Reading, MA, 1973.
[14] S.-M. Ma, Derivative polynomials and enumeration of permutations by number of interior and left peaks, Discrete Math. 312 (2) (2012) 405-412.
[15] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org.
[16] R.P. Stanley, Longest alternating subsequences of permutations, Michigan Math. J. 57 (2008) 675-687.

[^0]: is This work is supported by NSFC (11126217) and the Fundamental Research Funds for the Central Universities (N100323013). E-mail address: shimeima@yahoo.com.cn.

