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Hair follicles (HFs) enjoy a relative immune privilege (IP) that is characterized by downregulation of major
histocompatibility complex (MHC) class I and local expression of potent immunosuppressants. Normally,
natural killer (NK) cells attack cells with absent/low MHC class I expression. However, because few perifollicular
NK cells are found around healthy human anagen HFs, we asked how HFs escape from NK cell attack. This study
suggests that this happens via an active NK cell suppression. Alopecia areata (AA), an organ-specific
autoimmune disease thought to result from a collapse of HF-IP, in contrast, shows striking defects in NK cell
inhibition/containment. We show that the NK cell inhibitor macrophage migration inhibitory factor is strongly
expressed by the HF epithelium, and very few CD56þ /NKG2Dþ NK cells are observed in and around normal
anagen HFs compared to AA with prominent aggregations of CD56þ /NKG2Dþ NK around AA-HFs. By flow
cytometry, many fewer NK function-activating receptors (NKG2D, NKG2C) and significantly more killer cell
Ig-like receptors-2D2/2D3 were found to be expressed on peripheral blood CD56þ NK cells of healthy controls
than on those of AA patients. In addition, only weak immunoreactivity for MHC class I chain-related A gene was
observed in normal anagen HFs compared to AA. To our knowledge, this defect is previously unreported and
must be taken into account in AA pathogenesis and its management.
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INTRODUCTION
Immunoprivileged sites are observed in a few, well-defined
tissue compartments in the mammalian body. These sites
include the anterior chamber of the eye, the testis, the central
nervous system behind the blood–brain barrier, and the
hamster cheek pouch (Head and Billingham, 1985; Nieder-
korn, 2002; Paus et al., 2003; Mellor and Munn, 2006;
Simpson, 2006). Immunoprivileged tissues need to suppress a
cytotoxic immune attack on cells and antigens harbored
inside these sites. This is achieved by a range of different
mechanisms, among which the downregulation of major
histocompatibility complex (MHC) class I antigens and the

local expression of potent immunosuppressants are chief
strategies (Fijak and Meinhardt, 2006; Marie et al., 2006;
Niederkorn, 2006; Simpson, 2006; Wahl et al., 2006;
Yu et al., 2006).

Hair follicles (HFs) in the growth stage of the hair cycle
(anagen) also are a recognized site of immune privilege (IP)
(Billingham and Silvers, 1971; Westgate et al., 1991; Paus
et al., 1994, 1998; Rückert et al., 1998), and collapse of this
IP is thought to initiate the loss of hair as seen in patients with
the autoimmune disease alopecia areata (AA) (Paus et al.,
2003, 2005; Gilhar and Kalish, 2006). Like its classical
counterparts, HF-IP is characterized by downregulation of
MHC class I expression, dysfunction of Langerhans cells, and
strong local expression of immunosuppressants (for example,
a-MSH, TGF-b) (Harrist et al., 1983; Paus et al., 2003, 2005;
Marie et al., 2006; Yu et al., 2006) and may serve mainly to
sequester anagen- and/or melanogenesis-associated autoanti-
gens from immune recognition by autoreactive CD8þ T cells
(Paus et al., 2003, 2005; Gilhar and Kalish, 2006).

The absence or low expression of MHC class I expression
in immunologically privileged HF compartments constitutes
a basic problem in self/nonself discrimination and self-
tolerance (Boehm, 2006), since, normally, natural killer
(NK) cells are primed to recognize and eliminate such cells
(Janeway, 2005; Andoniou et al., 2006; Borrego et al., 2006;
Bryceson et al., 2006; Gasser and Raulet, 2006; Johansson
and Hoglund, 2006; Khakoo and Carrington, 2006; Yokoyama
and Kim, 2006; Vivier, 2006). The fact that very few
perifollicular NK cells are found around healthy human
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anagen HFs (Christoph et al., 2000) suggests that HFs indeed
inhibit or contain NK functions within tightly controlled limits
of activity. Therefore, we studied such mechanisms on NK
cells and IP that have until now been completely unknown in
the context of HF-IP.

NK cells express inhibitory receptors, such as killer cell
Ig-like receptors (KIRs) and heterodimer CD94/NKG2A (Long,
1999; Janeway, 2005), and if target cells express MHC class I
molecules, NK cell activation can be prevented through
interaction with KIRs by phosphorylation of the immunor-
eceptor tyrosine inhibitory motif followed by binding to
phosphatases, including SHP-1 and SHP-2 (Src homology
region 2-containing protein tyrosine phosphatase) (Long,
1999; Vivier et al., 2002). On the other hand, target cells
lacking MHC class I expression (for example, cells that suffer
viral infection or significant transformation) do not inhibit NK
cells triggered by a signal from an activating receptor, such as
NKG2D and CD94/NKG2C (Bauer et al., 1999; Wu et al.,
1999; Janeway, 2005).

NKG2D is expressed not only in NK cells but also in CD8þ

T cells and recognizes the MHC class I chain-related A (MICA)
molecule on target cells, which stimulates these immune cells
to attack the target cells (Bauer et al., 1999; Carosella et al.,
1999; Wu et al., 1999; Menier et al., 2002; Middleton et al.,
2002; Pende et al., 2002). MICA is a heat-shock- or oxidative-
stress-induced antigen (Groh et al., 1996; Yamamoto et al.,
2001) belonging to the MIC gene family. MICs have been
shown to be broadly expressed on human tumors of epithelial
origin and intestinal epithelial cells (Bahram, 2000).

CD94/NKG2A heterodimers, Ig-like transcript-2 receptors,
and KIRs are the three major types of MHC class I-specific
inhibitory or activating receptors expressed on NK cells
(Borrego et al., 2005). KIRs belong to the Ig superfamily and
have two or three Ig domains (denoted 2D or 3D) (Trowsdale
et al., 2001). They can be further subdivided into inhibitory
and stimulatory receptors. The inhibitory forms are longer (L)
and have intracellular immunoreceptor tyrosine inhibitory
motifs in the cytoplasmic domain (Vivier and Daeron, 1997;
Vivier, 2006) (KIR-3DL2, KIR-3DL1, KIR-2DL1–3; Colonna
et al., 1993; Moretta et al., 1993; Gumperz et al., 1995;
Döhring et al., 1996; Pende et al., 1996). The stimulatory
receptors (KIR-2DS1 through KIR-2DS5 and KIR-3DS1) lack
immunoreceptor tyrosine inhibitory motifs (S: short) but
have the charged residue in the membrane comparable to
the noninhibitory forms of CD94/NKG2 (Griffiths, 2006). The
antibody used in this study recognizes the inhibitory KIRs,
KIR-2DL2/2DL3.

In addition to NK cell receptors and their ligands, other
secreted factors should be considered. In the anterior
chamber of the eye, macrophage migration inhibitory factor
(MIF) suppresses NK cell activity and contributes to IP (Apte
et al., 1998). MIF is a pleiotropic cytokine that is also present
in the aqueous humor and potently inhibits NK cell-mediated
cytolysis in vitro (Gilhar and Kalish, 2006). However, any
contribution of MIF to HF-IP and the connection between NK
cell activity and HF-IP remain to be investigated.

Previous research on AA pathogenesis has focused on the
role of CD8þ T cells in IP collapse, likely with help received

from CD4þ T cells and an unclear contribution of dendritic
cells (Gilhar and Kalish, 2006), but has largely ignored the
possible contribution of NK cells to the pathogenesis of AA. To
study this has become even more important, since the NK cell
activating receptor NKG2D has recently been suspected as
being involved in the pathogenesis of other prototypic
autoimmune diseases, such as rheumatoid arthritis and auto-
immune type I diabetes (Groh et al., 2003; Jie and Sarvetnick,
2004; Caillat-Zucman, 2006), and since bidirectional interac-
tions between NK cells and autoreactive T cells have become a
recent focus of interest in autoimmunity research (Linsen et al.,
2005; Liu et al., 2006; Shi and Van Kaer, 2006).

One would expect that MHC class I-negative or MHC
class I ‘‘low’’ anagen HFs are under constant attack by NK
cells, which is clearly not the case (Christoph et al., 2000).
This begs the question of how IP-anagen HFs manage to
escape NK attack and whether a defect in these mechanisms
may be linked to HF autoimmunity (Paus et al., 2005; Gilhar
and Kalish, 2006).

To answer this question, we investigated the mean
intensity (MI) of NKG2A, C, and D on peripheral blood NK
or CD8þ T cells and MIF expression from healthy controls,
patients with atopic dermatitis, and AA patients.

This report provides new data, which allow one to
synthesize a rational scenario for how normal anagen HFs
may escape an NK cell attack and for what may go wrong in
this respect when patients develop AA.

RESULTS
CD56þ , CD4þ , and CD8þ cells are rarely seen in and around
normal hair follicles, while the opposite is true for AA hair
follicles
By routine histology, lymphocytes are only infrequently seen
around the normal human anagen HFs obtained from healthy
controls. As previously reported, using different immuno-
staining protocols and analyzing more individual patients
than before (Christoph et al., 2000), CD56þ cells (NK cells),
CD4þ T cells, and CD8þ T cells were rarely seen around
scalp anagen HFs in healthy controls (Figure 1a and b). In
particular, CD56þ cells were seen very rarely (Figure 1c). In
contrast, CD4þ or CD8þ T cells were clustered at a high
density around the anagen hair bulb in AA lesions (Figure 1d
and e). In addition, many perifollicular CD56þ cells were
observed in AA lesions. However, the total number of these
cells was much lower than that of perifollicular CD4þ or
CD8þ cells (Figure 1f).

As assessed by quantitative immunohistochemistry, in all
examined skin samples, the number of perifollicular CD4þ ,
CD8þ , or CD56þ cell infiltrates was highly significantly
increased in lesional AA skin compared to both anagen and
catagen HFs in healthy control skin (Figure 1g–i). There were
no significant differences in CD4þ , CD8þ , or CD56þ cell
numbers between normal anagen and normal catagen HFs
(Figure 1g–i). This shows that the increase in the number of
CD56þ , CD4þ , or CD8þ cells was not just a reflection of hair
cycle-dependent changes in skin immune parameters (Paus
et al., 1998, 1999), but likely represented an AA-associated
phenomenon.
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In AA, NKG2Dþ cells infiltrate HFs that express strongly
increased MICA immunoreactivity

In this study, we found that normal human skin and its
appendages show essentially no specific MICA immuno-
reactivity (IR), with the notable exception of some MICA IR in
the anagen hair matrix of healthy control HFs (Figure 2a). In
contrast, lesional AA skin was found to display massive and
widespread MICA IR, with a maximum seen in the proximal
outer root sheath (ORS), the dermal papilla (DP), and the
connective tissue sheath of AA HFs (Figure 2b). Analysis of
the mean IR intensity (MI) revealed that the ORS MI for MICA
was significantly lower in the ORS of normal human scalp
HFs (27.82±3.33) than in lesional AA HFs (115.0±2.2),
while the observed difference in MICA MI failed to reach the
level of significance in the hair matrix (normal human scalp
skin (NHS): 71.4±8.28, AA: 87.6±0.38) (Figure 2c).

NKG2Dþ NK cells and CD8þ T cells also were found to
aggregate in and around (atrophic) HFs in AA lesions (Figure
2d and e). These results suggest that upregulation of the
NKG2D ligand MICA on AA greatly enhances the suscept-
ibility of these HFs to an attack by NKG2Dþ cells, which
may then promote anagen termination and AA progression.
They also suggest that at least the proximal hair matrix of
normal scalp HFs has a constitutively higher risk of activating
the NKG2D NK cell receptor via MICA expression.

MIF is strongly expressed by anagen scalp HFs and
downregulated in AA-HFs

Since MIF is considered to play an important IP maintenance
role in the anterior eye chamber—for example, by suppres-
sion of NK cell activity (Apte et al., 1998; Taylor, 2003;
Caspi, 2006)—we next studied MIF expression in anagen HFs
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Figure 1. Perifollicular NK cells and T lymphocytes are scarce in normal skin, but accumulate around HFs in lesional skin of AA patients. In healthy

controls, CD8þ T cells, CD4þ T cells, and CD56þ cells (NK cells) are rarely seen around anagen HFs (a–c, respectively; APAAP immunohistology).

(d–f) However, these cells prominently infiltrate in and around HFs in AA lesions. (i) The number of infiltrating CD56þ cells in and around AA lesions

(17.3±1.03) is significantly higher than around normal anagen (2±0.3) or catagen (2.3±0.19) HFs (Po0.01). The same is true for (g) CD4þ or

(h) CD8þ T cells.
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by immunohistology. This revealed strong, widespread MIF
IR throughout most of the epithelium of normal anagen scalp
HFs, particularly in the area of the proximal inner root sheath
and ORS (Figure 3a and b). Instead, the epithelium of lesional

skin AA HFs displayed greatly reduced or absent MIF IR
(Figure 3c). This suggests that HFs in established AA exhibit a
decreased capacity for suppressing undesired NK cell
functions.

NKG2D expression on NK and CD8þ T cells is abnormally high
in AA

Next, we compared NKG2D expression on CD56þ NK cells
and CD8þ T cells in peripheral blood mononuclear cells
(PBMCs) from AA patients and healthy controls. Flow
cytometry analysis revealed that the MI of NKG2D expression
on CD56þ NK (213.5±23.63) (Figure 4a and b) and CD8þ

cells (183.5±9.15) (Figure 4c and d) was significantly higher
in AA patients than in normal controls (90.06±19.06 on NK
cells, 97.50±9.72 on CD8þ T cells) (*Po0.05, **Po0.01)
(Figure 4a–c). Instead, no significant differences from healthy
controls in NKG2D MI were seen in atopic dermatitis patients
(90.92±30.13 on NK cells, 69.61±9.15 on CD8þ T cells)
(Figure 4a–c). Therefore, this abnormally high expression
of NKG2D is unlikely to represent a general phenomenon of
chronic skin inflammation.

IFN-c strongly upregulates NKG2D expression on CD56þ NK
cells

The NK cell is a major source of IFN-g, which plays an
important role in host defense mechanisms against tumors
and viruses. IFN-g also activates NK cells (Novelli et al.,
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Figure 3. MIF is strongly expressed on the proximal inner root sheath and

matrix cells of anagen HFs. HF cells are compared with epidermal cells in

healthy control skin (a by avidin–biotin complex and b by EnVision).

(a) Avidin–biotin complex immunohistochemistry revealed strong IR of MIF in

the proximal inner root sheath and matrix keratinocytes of anagen HFs in

healthy control skin. (b) In contrast, MIR IR was greatly reduced in lesional AA

HFs (not shown) and even a considerably more sensitive immunostaining

technique (EnVision) revealed only weak MICA-associated IR in lesional

AA-HFs (c).
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1991; Bryceson et al., 2006). On the other hand, IFN-g is now
appreciated as a key cytokine in AA pathogenesis, in
particular in mediating the underlying IP collapse of anagen
HFs (Rückert et al., 1998; Paus et al., 2003; Ito et al., 2004;
Freyschmidt-Paul et al., 2006; Gilhar and Kalish, 2006).
CD56þ cells treated with 10 IU ml�1 IFN-g that were
obtained from healthy controls showed no significant
differences in their NKG2D expression, compared to
phosphate-buffered saline-treated CD56þ cells (Figure 5a).
However, 100 and 1�103 IU ml�1 IFN-g significantly
increased NKG2D MI (Figure 5b). This result from the FACS
analysis is also supported by real-time PCR (Figure 5c). This
IFN-g-induced upregulation of NKG2D on normal NK cells
corresponded to the much higher constitutive level of
NKG2D expression on NK cells from AA patients. This
greatly elevated baseline level of NKG2D expression in AA
patients was further upregulated by 1�103 IU ml�1 IFN-g
(Figure 5b).

NK cells of AA patients also show higher expression of other
NK-activating receptors

In addition to NKG2D expression on NK cells, the MI of other
NKG2 family members, such as NKG2A (Long, 1999) and

NKG2C (Lanier et al., 1998), was studied by flow cytometry.
While there was no significant difference in the MI of the
inhibitory receptor NKG2A between AA patients (97.21±
7.27) and controls (90.84±14.7), the expression level of the
NK-activating receptor NKG2C (Lanier et al., 1998) in AA
patients (81.89±5.6) was significantly higher than that of
controls (39.22±14.7) (Po0.05) or atopic dermatitis
(42.46±2.76) (Po0.05) (Figure 6). This suggests that NK cells
in AA patients are considerably more susceptible to activating
stimuli than those of healthy controls or of patients with
pathogenetically distinct, common inflammatory diseases.

KIR-2D2/2D3 expression on CD56þ cells is reduced in AA
patients

Finally, we analyzed the expression of the NK cell inhibitory
receptor, KIR-2D2/2D3. By flow cytometry, the ratio of KIR-
2D2/2D3�CD56þ /KIR-2D2/2D3þCD56þ was significantly
higher in PBMC preparations of AA patients (3.85±0.18)
compared to normal controls (2.58±0.12) and atopic
dermatitis patients (2.43±0.27) (Po0.05) (Figure 7). This
suggests that NK cells in AA patients have a decreased
sensitivity toward NK cells’ inhibitory stimuli, while, under
physiological circumstances, the risk of NK activation by
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Figure 4. In AA patients, the NK cell-activating receptor NKG2D is significantly upregulated on CD56þ NK cells and CD8þ T cells. By flow cytometry,
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anagen HFs is relatively low, due to a low constitutive
expression level of the NK-activating receptors, NKG2C and
NKG2D, and a high basic expression level of NK-inhibitory
KIR-2D2/2D3.

DISCUSSION
To our knowledge, the association between NK cells and the
collapse of HF-IP has not previously been reported, and it
calls attention to the general role of NK cells in organ-specific
autoimmune disorders characterized by IP collapse, for

which AA offers an excellent disease model (Paus et al.,
2003; Gilhar and Kalish, 2006). We report evidence
suggesting that a finely tuned balance in the mechanism
normally collaborates to suppress intracutaneous NK cell
activities, and this balance is disturbed in AA. This study
provides important new pointers to a role for NK cells in AA
pathogenesis, thus following earlier, indirect immunogenetic
hints of such an involvement (that is, association of the
nonclassic MHC gene MICA with AA (Barahmani et al.,
2006; Martinez-Mir et al., 2007).

In our attempts to understand better why the immuno-
privileged, MHC class I-negative HF epithelium is not
constantly subjected to NK cell attack (Karre, 1997), we
confirm—first in multiple samples of normal human scalp
skin—that indeed there is no sign of an NK attack on normal
anagen VI HFs (Christoph et al., 2000). Second, we show that
stimulation-sensitive (that is, NKG2Dþ ) CD56þ NK cells
prominently aggregate around AA HFs. This is in line with the
previous study by Imai et al. (1994), who found that patients
with severe multifocal AA, AA totalis, or AA universalis had
significantly more CD57�CD16þ NK cells in the PBMCs
compared to normal controls. This suggests that, under
physiological conditions, the immunoprivileged HF escapes
from NK cell attack, and this cannot be prevented any longer
when HF-IP collapses.

Third, we show that human anagen HFs in situ largely lack
MICA expression, just like other healthy tissues (Groh et al.,
1998, 1999; Deng and Mariuzza, 2006). As an exception to
this rule, the proximal hair matrix is constitutively MICAþ ,
even in healthy human scalp skin, which designates this HF
area as a ‘‘high-risk zone’’ for an attack by cells that express a
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corresponding receptor (for example, NKG2Dþ NK cells).
This corresponds well to the fact that it is exactly this HF
region that is the most frequently attacked in patients with AA
(Todes-Taylor et al., 1984; Messenger and Simpson, 1997;
Bodemer et al., 2000; McDonagh and Messenger, 2001).

In striking contrast to normal HFs, AA skin abounds in
strong, widespread, extra- and intrafollicular MICA IR. This is
at least suggestive of the concept that excessive NK cell
stimulation may play a role in AA pathogenesis.

Fourth, we show that not only CD4þ and CD8þ T cells but
also CD56þ NK cells massively accumulate around AA HFs.
Both infiltrating CD56þ NK cells and CD8þ T cells show
prominent expression of the NK cell-activating receptor, NKG2D.
This suggests that a (as yet unknown) stimulus associated with AA
pathogenesis induces MICA expression on HFs, thus facilitating

or even inviting an attack of infiltrating NKG2Dþ cells on
MICAþ HFs, accelerating disease progression.

Fifth, our data demonstrating that AA patients show an
increased NKG2D expression on both peripheral blood
CD56þ NK cells and CD8þ T cells compared to normal
controls and patients with another chronic inflammatory skin
disease, atopic dermatitis, suggest that AA patients have a
systemic (and possibly constitutive) heightened sensitivity of
NK cells and CD8þ T cells toward MICA stimulation.
Although our corresponding quantitative data were obtained
from peripheral blood human CD56þ NK and CD8þ T cells
and may thus not necessarily reflect the intracutaneous
NKG2D expression patterns on these cells, they suggest that
anagen HFs, under physiological conditions, may escape
from NK cell attack, for example, due to a low constitutive
expression level of NKG2D. In addition, normal scalp HFs
may also provide a poor stimulatory milieu for NK cells by
low constitutive MICA expression. This subtle balance
appears to be constitutively disturbed in patients at risk of
developing AA or may reflect a stage of disease progression in
established AA pathogenesis.

Our observations are in line with previously reported
associations between NKG2D, MICA, and autoimmune
diseases: For example, MICA is aberrantly expressed on
rheumatoid arthritis synoviocytes, which are attacked by
NKG2DþCD4þCD28� T cells (Groh et al., 2003), and the
blockade of NKG2D signaling appears to protect from
insulin-dependent diabetes mellitus in mice (Ogasawara
et al., 2003). Interestingly, MICA polymorphisms are
significantly associated with defined clinical varieties of AA
(Menier et al., 2002; Barahmani et al., 2006; Martinez-Mir
et al., 2007), and this corresponds well with our immuno-
histological findings.

Taken together, this suggests that normal human anagen
HFs maintain their IP and escape the induction of auto-
immune diseases at least in part by reducing the chance of
stimulation of NKG2D-mediated NK cell activation. Instead,
AA patients show opposite phenomena and may have a
constitutively increased sensitivity of NK cells and CD8þ

cytotoxic T cells to be stimulated via NKG2D (that is, the two
immunocyte populations that are most relevant in terms of
HF-IP, since they can destroy either MHC class I-negative HF
cells or cells that present MHC class I-presented HF
autoantigens (Paus et al., 2005)).

Sixth, our finding that AA patients have a significantly
higher percentage of NK cells that do not express NK cell-
inhibitory KIR-2D2/2D3 compared to controls suggests that
this further contributes to rendering the NK cells of AA
patients constitutively hypersusceptible to activation. Interes-
tingly, a number of autoimmune disorders, such as rheuma-
toid arthritis and scleroderma, have recently been associated
with specific KIR genes (Yen et al., 2001; Momot et al., 2004;
Williams et al., 2005).

Seventh, our finding that IFN-g upregulates and induces
not only ectopic MHC class I expression (Ito et al., 2004) but
also NKG2D expression on NK cells (Freyschmidt-Paul et al.,
2005b) is in line with the observation that the expression
of NKG2D by macrophages can be induced by IFN-g and
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IFN-a/b (Jamieson et al., 2002) and underscores the role of
IFN-g as a key cytokine in AA pathogenesis (Hoffmann et al.,
1994; Rückert et al., 1998; Paus et al., 2003; Ito et al., 2004;
Freyschmidt-Paul et al., 2006; Gilhar and Kalish, 2006).

Eighth, we found that normal anagen HFs also strongly
express the potent NK cell inhibitor MIF, while AA HFs show
dramatically decreased MIF expression. Since MIF plays a
key role in suppressing NK-mediated cytolysis in other
immunoprivileged sites—such as the anterior eye chamber,
where MIF inhibits the NK-mediated lysis of corneal
endothelial cells via preventing the release of perforin
granules by NK cells—the strong follicular expression of
MIF resembles that of the corneal epithelium (Apte et al.,
1998; Taylor, 2003; Caspi, 2006). Constitutive or induced
downregulation of MIF, therefore, represents another poten-
tially important, previously unknown mechanism by which
human HFs become more prone to suffer an NK cell attack.

The new data provided by this study already invite the
hypothesis that IFN-g-induced collapse of HF-IP simulta-
neously facilitates an attack of NKG2Dþ NK cells on MICAþ

HFs. Our data also suggest that normal anagen HFs escape
from NK cell attack by downregulating MICA and upregulat-
ing MIF, along with a low level of constitutive expression of
NKG2D on NK cells and a high number of KIR-2D2/2D3þ

NK cells. Thus, although the exact role of NK cells in AA
pathogenesis remains to be clarified, these experiments
strongly suggest a key role for NK cells in autoimmune
diseases associated with IP collapse. Therefore, our study
provides interesting new pointers for related autoimmune
diseases such as autoimmune hepatitis, uveitis, orchitis, and
fetal rejection, which highlight the importance of keeping NK
cells in check in order to maintain IP.

MATERIALS AND METHODS
Human tissues and cells

Human frontotemporal scalp skin specimens were obtained with

patients’ informed consent during routine face-lift surgery from five

female patients aged 18–60 years (mean age 43 years) and used as

control tissue. Lesional scalp skin from AA patients (n¼ 8) was also

biopsied. Cryosections (8 mm thick) were fixed in acetone at �201C

for immunohistochemistry and stored at �201C until use. PBMCs

were taken from healthy controls (n¼ 10), atopic dermatitis (AD)

patients (n¼ 10), and AA patients (n¼ 15). Because AD is

recognized as a Th2 disease (Hamid et al., 1994; Kakinuma et al.,

2002), in contrast to the predominance of Th1-type immune

response in AA (Freyschmidt-Paul et al., 2005a, b, 2006), AD

patients were chosen as a control group.

Informed consent was obtained from all participants, and study

approval was granted by the ethical committee of the Hamamatsu

University School of Medicine. The study was conducted according

to the Declaration of Helsinki Principles.

Quantitative immunohistomorphometry

Cryosections were routinely stained by hematoxylin and eosin. The

hair cycle stage of each HF was assessed and classified by

morphological criteria (Whiting and Howsden, 1996; Sinclair et al.,

1999; Müller-Röver et al., 2001). CD4, CD8, CD56, MIF, MICA, and

NKG2D expression was studied on normal human scalp skin

(including anagen and catagen HFs) and AA lesions. The CD4þ ,

CD8þ , and CD56þ cells distributed in the HFs and around a distance

of the diameter of a hair bulb from HFs were counted and statistically

analyzed (three parts/HF, three HFs/specimen, three samples/group).

NKG2D was double-immunostained with either CD8 or CD56.

First, NKG2D was detected by the highly sensitive tyramide

signal amplification technique (Perkin Elmer, Boston, MA) (Roth

et al., 1999) as described previously (Ito et al., 2004). Briefly, after

normal human scalp skin and AA lesions were washed in TNT buffer

(0.1 M Tris, pH 7.5; 0.15 M NaCl; 0.1% Tween 20), these specimens

were immunostained using monoclonal anti-human NKG2D anti-

body (BD Bioscience PharMingen, San Jose, CA) as the primary

antibody diluted 1:300 in TNB blocking buffer (TNTþ 0.5%

blocking buffer) for 60 minutes at room temperature. This was

followed by incubation with the biotinylated anti-mouse IgG

antibody (Dako, Glostrup, Denmark) (1:200 in TNB, 30 minutes,

room temperature). Next, streptavidin horseradish peroxidase was

applied (1:50 in TNB, 30 minutes, room temperature). Finally, the

reaction was amplified by FITC-tyramide amplification reagent at

room temperature for 3 minutes (1:50 in amplification diluents

provided with the kit). Then, phycoerythrin-conjugated anti-human

CD8 (BD Bioscience, San Jose, CA) or CD56 (BD Bioscience)

antibody was applied on the specimens.

IR of MIF (Steinhoff et al., 1999) (R&D Systems, Minneapolis,

MN) and MICA (Santa Cruz, CA) (Xu et al., 2006) was also studied

on normal anagen human scalp skin and AA lesional skin using

avidin–biotin complex and EnVision methods, as these molecules

were difficult to detect by routine immunofluorescence techniques.

CD4 was detected by immunofluorescence. FITC-conjugated

anti-human CD4 antibody (1:50 in phosphate-buffered saline)

(BD Bioscience) was incubated on cryosections of human scalp

skin for 60 minutes. The signals were visualized under a fluorescence

microscope (Olympus, Tokyo, Japan) with a CCD (charge-coupled

device) camera (Olympus), and mean intensity was measured using

‘‘Image J’’ software, which can be downloaded from http://

rsbweb.nih.gov/ij.

Flow-cytometric analysis

The MI for cell surface expression of NKG2A, NKG2C, NKG2D, and

KIR-2D2/2D3 on PBMCs was studied by flow-cytometric analysis

(FACSCalibur, Becton Dickinson, Franklin Lakes, NJ) from PBMCs of

healthy controls (n¼ 13), atopic dermatitis patients (n¼ 18), and AA

patients (n¼ 37). Briefly, purified mouse anti-human NKG2D

antibody (BD Bioscience PharMingen) was incubated with PBMCs

for 30 minutes. After the cells were washed in phosphate-buffered

saline for 5 minutes three times, they were incubated with

biotinylated anti-mouse IgG antibody (Dako) for 30 minutes and

then were incubated with streptavidin fluorescein conjugate

(Biosource, Carlsbad, CA). Monoclonal phycoerythrin-conjugated

anti-human CD56 antibody (MY31, mouse IgG1) and PerCP-

conjugated monoclonal anti-human CD8 antibody (SK1, mouse

IgG1) were applied to the cells. PBMCs were triple stained with

phycoerythrin (PE)-conjugated anti-human NKG2A antibody

(Immunotech, Marseille, France) or PE-conjugated anti-human NKG2C

antibody (R&D Systems), together with FITC-conjugated anti-human

CD56 antibody (NCAM 16.2, mouse IgG2b) and PerCP-conjugated

monoclonal anti-human CD8 antibody (SK1, mouse IgG1) (Becton

Dickinson) for 30 minutes. PBMCs were also incubated with the
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FITC-conjugated KIR-2D2/2D3-specific reagents KIR-NKAT2 (DX27,

mouse IgG2a) and PerCP-conjugated monoclonal anti-human CD4

antibody (SK3, mouse IgG1) (Becton Dickinson) for 30 minutes.

PBMCs cultured with IFN-c
IFN-g is a potent catagen inducer and upregulates MHC class I

expression on ORS and hair matrix keratinocytes in situ (Ito et al.,

2005) and likely plays a key role in triggering AA (Ito et al., 2004;

Paus et al., 2005; Gilhar and Kalish, 2006). Therefore, we wished to

explore the effects of IFN-g on the expression of NKG2D on NK

cells. PBMCs were cultured with 10, 100, and 1000 IU ml�1 of IFN-g
for 12 hours at 371C. NKG2D expression was then studied on NK

cells by FACSCalibur.

NK cell isolation

To isolate NK cells from human PBMCs, the MACS NK Cell Isolation

Kit (Militenyi Biotec, Bergisch Gladbach, Germany) was applied in

this study. Briefly, PBMCs were isolated by density gradient

centrifugation over Ficoll-Paque PLUS (GE Healthcare Bio-Science

AB, Uppsala, Sweden) in LeucoSep (Greiner Bio-One GmbH,

Frickenhausen, Germany). Isolated PBMCs were incubated with

Hapten-Antibody Cocktail (cocktail of hapten-conjugated anti-CD3,

-CD14, -CD19, -CD36, and -IgE antibodies) for 10 minutes at 81C in

MACS buffer, pH 7.2, degassed phosphate-buffered saline supple-

mented with 0.5% BSA and 2 mM EDTA. After the cells were

washed, anti-hapten microbeads were added and incubated for

15 minutes at 81C. After another wash, the suspension of PBMCs was

applied onto an LSþ /VSþ column in the magnetic field following

the manufacturer’s instructions. The unlabeled cells were collected

as purified NK cells confirmed by FACS analysis.

Quantitative real-time PCR

Total RNA from negatively isolated NK cells was extracted using an

RNeasy mini-kit (Qiagen, Hilden, Germany). Then, first-strand

cDNA was generated from 1mg of RNA with 10� PCR buffer

(Roche, Indianapolis, IN), 25 mM MgCl2 (Roche), 10 mM deoxyribo-

nucleotide triphosphate mix (Qiagen), random hexamers (Roche),

RNase inhibitor (Roche), and MuLV reverse transcriptase (Roche) on

a GeneAmp PCR System 9700 for 10 minutes at 251C, 60 minutes at

421C, and 5 minutes at 991C and stored at 41C (Applied Biosystems,

Foster City, CA). Quantitative real-time PCR was performed

following the manufacturer’s instructions on an ABI Prism 7000

using TaqMan PCR primers (Hs01095635 m1, NM 007360) with

generated cDNA and TaqMan Universal PCR Master Mix (all from

Applied Biosystems).
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(1998) Generation and cyclic remodeling of the hair follicle immune
system in mice. J Invest Dermatol 111:7–18

Pende D, Biassoni R, Cantoni C, Verdiani S, Falco M, di Donato C et al.
(1996) The natural killer cell receptor specific for HLA-A allotypes:
a novel member of the p58/p70 family of inhibitory receptors that is
characterized by three immunoglobulin-like domains and is expressed as
a 140-kD disulphide-linked dimer. J Exp Med 184:505–18

Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R et al. (2002)
Major histocompatibility complex class I-related chain A and UL16-
binding protein expression on tumor cell lines of different histotypes:
analysis of tumor susceptibility to NKG2D-dependent natural killer cell
cytotoxicity. Cancer Res 62:6178–86

Roth KA, Adler K, Bobrow MN (1999) Enhanced tyramide signal amplification
immunohistochemical detection. J Histochem Cytochem 47:1644–5

Rückert R, Hofmann U, van der Veen C, Bulfone-Paus S, Paus R (1998) MHC
class I expression in murine skin: developmentally controlled and
strikingly restricted intraepithelial expression during hair follicle
morphogenesis and cycling, and response to cytokine treatment in vivo.
J Invest Dermatol 111:25–30

www.jidonline.org 1205

T Ito et al.
Hair Follicle Immune Privilege and NK Cells

http://www.jidonline.org


Shi FD, Van Kaer L (2006) Reciprocal regulation between natural killer cells
and autoreactive T cells. Nat Rev Immunol 6:751–60

Simpson E (2006) A historical perspective on immunological privilege.
Immunol Rev 213:12–22

Sinclair RD, Banfield CC, Dawber RPR (1999) Hair structure and function. In:
Handbook of Disease of the Hair and Scalp. Oxford: Blackwell Science

Ltd, 3–23

Steinhoff M, Meinhardt A, Steinhoff A, Gemsa D, Bucala R, Bacher M (1999)
Evidence for a role of macrophage migration inhibitory factor in psoriatic

skin disease. Br J Dermatol 141:1061–6

Taylor A (2003) A review of the influence of aqueous humor on immunity.
Ocul Immunol Inflamm 11:231–41

Todes-Taylor N, Turner R, Wood GS, Stratte PT, Morhenn VB (1984) T cell
subpopulations in alopecia areata. J Am Acad Dermatol 11:216–23

Trowsdale J, Barten R, Haude A, Stewart CA, Beck S, Wilson MJ (2001) The
genomic context of natural killer receptor extended gene families.

Immunol Rev 181:20–38

Vivier E (2006) What is natural in natural killer cells? Immunol Lett 107:1–7

Vivier E, Daeron M (1997) Immunoreceptor tyrosine-based inhibition motifs.
Immunol Today 18:286–91

Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D:
towards a new paradigm in immune recognition? Curr Opin Immunol

14:306–11

Wahl SM, Wen J, Moutsopoulos N (2006) TGF-beta: a mobile purveyor of
immune privilege. Immunol Rev 213:213–27

Westgate GE, Craggs RI, Gibson WT (1991) Immune privilege in hair growth.
J Invest Dermatol 97:417–20

Whiting DA, Howsden FL (1996) Normal hair. In: Color Atlas of Differential
Diagnosis of Hair Loss. Fairfield, NJ: Canfield Publishing, 4–7

Williams AP, Bateman AR, Khakoo SI (2005) Hanging in the balance: KIR and
their role in disease. Mol Interv 5:226–40

Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL et al. (1999) An
activating immunoreceptor complex formed by NKG2D and DAP10.
Science 285:730–2

Xu X, Rao G, Gaffud MJ, Ding HG, Maki G, Klingemann HG et al. (2006)
Clinicopathological significance of major histocompatibility complex
class I-related chain A and B expression in thyroid cancer. J Clin
Endocrinol Metab 91:2704–12

Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H (2001) Oxidative
stress increases MICA and MICB gene expression in the human colon
carcinoma cell line (CaCo-2). Biochim Biophys Acta 1526:10–2

Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM
et al. (2001) Major histocompatibility complex class I-recognizing
receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193:
1159–67

Yokoyama WM, Kim S (2006) Licensing of natural killer cells by self-major
histocompatibility complex class I. Immunol Rev 214:143–54

Yu J, Wei M, Becknell B, Trotta R, Liu S, Boyd Z et al. (2006) Pro- and
antiinflammatory cytokine signaling: reciprocal antagonism regulates
interferon-gamma production by human natural killer cells. Immunity
24:575–9

1206 Journal of Investigative Dermatology (2008), Volume 128

T Ito et al.
Hair Follicle Immune Privilege and NK Cells


	Maintenance of Hair Follicle Immune Privilege Is Linked to Prevention of Nk Cell Attack ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
	Introduction �������������������������������������������������������
	Results ����������������������������������������
	Discussion �������������������������������������������������
	Materials and Methods ����������������������������������������������������������������������������������
	Conflict of Interest �������������������������������������������������������������������������������
	Acknowledgments ����������������������������������������������������������������
	Supplementary Material �������������������������������������������������������������������������������������
	References �������������������������������������������������




