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Abstract 

With the development of computer technology, there is a tremendous increase in the growth of data. Scientists are overwhelmed 
with this increasing amount of data processing needs which is getting arisen from every science field. A big problem has been 
encountered in various fields for making the full use of these large scale data which support decision making. Data mining is the 
technique that can discovers new patterns from large data sets. For many years it has been studied in all kinds of application area 
and thus many data mining methods have been developed and applied to practice. But there was a tremendous increase in the 
amount of data, their computation and analyses in recent years. In such situation most classical data mining methods became out 
of reach in practice to handle such big data. Efficient parallel/concurrent algorithms and implementation techniques are the key to 
meeting the scalability and performance requirements entailed in such large scale data mining analyses. Number of parallel 
algorithms has been implemented by making the use of different parallelization techniques which can be listed as: threads, MPI, 
MapReduce, and mash-up or workflow technologies that yields different performance and usability characteristics. MPI model is 
found to be efficient in computing the rigorous problems, especially in simulation. But it is not easy to be used in real. 
MapReduce is developed from the data analysis model of the information retrieval field and is a cloud technology. Till now, 
several MapReduce architectures has been developed for handling the big data. The most famous is the Google. The other one 
having such features is Hadoop which is the most popular open source MapReduce software adopted by many huge IT 
companies, such as Yahoo, Facebook, eBay and so on. In this paper, we focus specifically on Hadoop and its implementation of 
MapReduce for analytical processing. 
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1. Introduction 

Organizations with large amounts of multi-structured data find it difficult to use traditional relational DBMS 
technology for processing and analyzing such data. This type of problem is especially faced by Web-based 
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companies such as Google, Yahoo, Facebook, and LinkedIn which require to process huge voluminous data in a 
speedily and in cost-effective manner. A large number of such organizations have developed their own non-
relational systems to overcome this issue. Google, for example, developed MapReduce and the Google File System. 
It also built a DBMS system known as BigTable. It becomes possible to search millions of pages and return the 
results in milliseconds or less with the help of the algorithms that drive both of these major-league search services 
originated with Google's MapReduce framework [1]. It is a very challenging problem of today to analyze the big 
data. Big data is big deal to work upon and so it is a big job to perform analytics on big data. Technologies for 
analyzing big data are evolving rapidly and there is significant interest in new analytic approaches such as 
MapReduce, Hadoop and Hive, and MapReduce extensions to existing relational DBMSs [2].  
 

The use of MapReduce framework has been widely came into focus to handle such massive data effectively.  
For the last few years, MapReduce has appeared as the most popular computing paradigm for parallel, batch-style 
and analysis of large amount of data [3].  
MapReduce gained its popularity when used successfully by Google. In real, it is a scalable  
and fault-tolerant data processing tool which provides the ability to process huge voluminous data in parallel with 
many low-end computing nodes [4]. By virtue of its simplicity, scalability, and fault-tolerance, MapReduce is 
becoming ubiquitous, gaining significant momentum from both industry and academic world. We can achieve high 
performance by breaking the processing into small units of work that can be run in parallel across several nodes in 
the cluster [5]. In the MapReduce framework, a distributed file system (DFS) initially partitions data in multiple 
machines and data is represented as (key, value) pairs. The MapReduce framework executes the main function on a 
single master machine where we may preprocess the input data before map functions are called or postprocess the 
output of reduce functions. A pair of map and reduce functions may be executed once or numerous times as it 
depends on the characteristics of an application [6]. Hadoop is a popular open-source implementation of MapReduce 
for the analysis of large datasets. It uses a distributed user-level filesystem to manage storage resources across the 
cluster [7]. Though, the system yields undesired speedup with less significant datasets, but produces a reasonable 
speed with a larger collection of data that complements the number of computing nodes and reduces the execution 
time by 30% as compared to normal data mining and other processing techniques [8].  
Section 2 gives the overall demonstration of the evolution of map, reduce and Hadoop. Sections 3 give the detail 
description Big Data and programming model of MapReduce. Section 4 formulates the Hadoop architecture. 
Sections 5 provide the practical approach of MapReduce and Hadoop technology which is a powerful combination 
of map and reduce function with the advent of Hadoop.  

2. Related Work 

Big Data refers to various forms of large information sets that require special computational platforms in order to 
be analyzed.  A lot of work is required for analyzing the big data. But, to analyze such big data is a very challenging 
problem today. The MapReduce framework has recently attracted a lot of attention for such application that works 
on extensive data. MapReduce is a programming model and an associated implementation for processing and 
generating large datasets that is responsive to a broad variety of real-world tasks [9]. The MapReduce paradigm 
acquires the feature of parallel programming that provides simplicity. At the same time along with these 
characteristics, it offers load balancing and fault tolerance capacity [10]. The Google File System (GFS) that 
typically underlies a MapReduce system provides an efficient and reliable distributed data storage which is needed 
for applications that works on large databases [11]. MapReduce is enthused by the map and reduces primitives 
present in functional languages [12]. Some currently available implementations are: shared-memory multi-core 
system [13], asymmetric multi-core processors, graphic processors, and cluster of networked machines [14]. The 
Google’s MapReduce technique makes possible to develop the large-scale distributed applications in a simpler 
manner and with reduced cost. The main characteristic of MapReduce model is that it is capable of processing large 
data sets parallelly which are distributed across multiple nodes [15]. The novel Map-Reduce software is a 
proprietary system of Google, and therefore, not available for open use. Although the distributed computing is 
largely simplified with the notions of Map and Reduce primitives, the underlying infrastructure is non-trivial in 
order to achieve the desired performance [16]. A key infrastructure in Google’s MapReduce is the underlying 
distributed file system to ensure data locality and availability [9]. Combining the MapReduce programming 
technique and an efficient distributed file system, one can easily achieve the goal of distributed computing with data 
parallelism over thousands of computing nodes; processing data on terabyte and petabyte scales with improved 
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system performance, optimization and reliability. It was observed that the MapReduce tool is much efficient in data 
optimization and very reliable since it reduces the time of data access or loading by more than 50% [16]. It was the 
Google which first popularized the MapReduce technique. [17]. The recently introduced MapReduce technique has 
gained a lot of attention from the scientific community for its applicability in large parallel data analyses [18]. 
Hadoop is an open source implementation of the MapReduce programming model which relies on its own Hadoop 
Distributed File System (HDFS). It does not depend on Google File System (GFS). HDFS replicates data blocks in a 
reliable manner, places them on different nodes and then later computation is performed by Hadoop on these nodes. 
HDFS is similar to other filesystems, but is designed to be highly fault tolerant. This distributed file system (DFS) 
does not require any high-end hardware and can run on commodity computers and software. It is also scalable, 
which is one of the primary design goals for the implementation. As it is found that HDFS is independent of any 
specific hardware or software platform, thus, it is easily portable across heterogeneous systems [19]. The grand 
achievement made by MapReduce has stimulated the construction of Hadoop, which is a popular open-source 
implementation. Hadoop  is an open source framework that implements the MapReduce[20]. It is a parallel 
programming model which is composed of a MapReduce engine and a user-level filesystem that manages storage 
resources across the cluster [9]. For portability across a variety of platforms — Linux, FreeBSD, Mac OS/X, Solaris, 
and Windows — both components are written in Java and only require commodity hardware.  

 

3. THE IMPORTANCE OF BIG DATA 

Organizations need to build an investigative computing platform to realize the full value of big data. This enables 
business users to make use, structure and analyze big data to extract useful business information that is not easily 
discoverable in its actual original arrangement. The significance of Big Data can be characterized as[21]: 

1) Big data is a valuable term despite the hype  
2) It is gaining more popularity and interest from both business users and IT industry. 
3) From an analytics perspective it still represents analytic workloads and data management solutions that 

could not previously be supported because of cost considerations and/or technology limitations. 
4) The solutions provided enable smarter and faster decision making, and allow organizations to achieve 

faster time to value from their investments in analytical processing technology and products.  
5) Analytics on multi-structured data enable smarter decisions. Up till now, these types of data have been 

difficult to process using traditional analytical processing technologies.  
6) Rapid decisions are enabled because big data solutions support the rapid analysis of high volumes of 

detailed data.  
7) Faster time to value is possible because organizations can now process and analyze data that is outside 

of the enterprise data warehouse.  
The programmers use the programming model MapReduce to retrieve precious information from such big data. The 
main features and problems associated in handing different types of large data sets are summarized in the table 
below. It gives précises information how Big Data technologies can help solve them [22]. 
 
 Table 1: Summarizes the main features, challenges and technology responses connected to handing different types of large data sets 
 

Attribute   Features Challenges and Skill responses 

Volume   Amount of generated data has increased 
tremendously the past years. However, this is the 
less challenging aspect in practice.  

Internet has created tremendous increment in the global data 
production. A response to this situation has been through the 
generalization of the cloud based solutions.  
The noSQL database approach is a response to store and query huge 
volumes of data heavily distributed.  

Velocity  Production of data is growing with high speed 
and such produced data must be collected in 
shorter time frames.  

Millions of connected devices (smartphones) are getting added daily 
which results in the increase of not only the volume but also 
velocity.  
To get a competitive edge, global companies considered the Real-
time data processing platforms as a requirement. 
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Variety  There came the explosion of data formats that 
range from structured information to free text 
with the multiplication of data sources.  

The current way to collect and analyse non-structured or semi-
structured data is just opposite from the manner the traditional 
relational data model and query languages does. This reality has 
resulted in the evolution of new kinds of data stores that gives the 
ability to support flexible data models. 

Value  Until recently, there was more focus on 
recording the large volumes of data but not 
bothered how to conquer them. 

Big Data technologies are deeping their roots in creating, capturing 
and exploiting large volumes of data. In principle, the challenge 
comes while transforming underdone data into information that 
contains value and can be used in decision making or other business 
requirements.  

 
 
3.1 MapReduce: A Programming Model 

 
MapReduce is designed to be used by programmers, rather than business users. It is a programming model, not 
a programming language. It has gained popularity for its easiness, efficiency and ability to control “Big Data” in 
a timely manner. The steps involved in working of MapReduce can be shown in as: 

 

 
Fig. 1: Steps in MapReduce to process the database 

 
The applications which include indexing and search, graph analysis, text analysis, machine learning, data 
transformation and many more, are not easy to implement by making the use of standard SQL which are employed 
by relational DBMSs. In such areas the procedural nature of MapReduce makes it easily understood by skilled 
programmers. It also has the advantage that developers do not have to be concerned with implementing parallel 
computing – this is handled transparently by the system. Although MapReduce is designed for programmers, non-
programmers can exploit the value of prebuilt MapReduce applications and function libraries [3]. The architecture 
of MapReduce can be depicted as: 

 
Fig. 2: MapReduce with combiners, partitioners 

 
Table 2: Description of mappers, reducers, partitioners and combiners 
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Mappers  Required to generate an arbitrary number of intermediate pairs. 
Reducers  Applied to all intermediate values associated with the same intermediate key. 
Partitioners  Its main job is to divide the intermediate key space, and then to assign the 

intermediate key-value pairs to reducers.  
Combiners  Combiners are an (optional) optimization.  

 Before performing the phase of shuffle and sort, it allows the local aggregation of data.  
 Essentially, combiners are used to save bandwidth, e.g.: word count program. 

 
 
MapReduce programs are usually written in Java. They can also be coded in other languages such as C++, Python, 
Ruby, R, etc. These programs may process data stored in different file and database systems. At Google, for 
example, MapReduce was implemented on top of the Google File System (GFS). 
 
4. Problem Formulation 
 
Hadoop: Yahoo! became the primary contributor in 2006 

 
Fig. 3: Primary contribution of Hadoop 

 
Apache Hadoop consists of several components. The ones that of are of interest from a database and analytical 
processing perspective are [23]: 

Hadoop Distributed File System (HDFS), MapReduce, Pig, Hive, HBase, Sqoop 
HDFS can be a source or target file system for MapReduce programs. It is best suited to a small number of very 
large files. Use of data replication make possible to achieve data availability in HDFS. But it results into the rise in 
storage required to cope the data. The Hadoop MapReduce framework helps in distributing the map program 
processing so that the required HDFS data is local to the program. To process all of the output files created by the 
mapping process, the Reduce program performs more movement and access to internode data. At the time of 
execution, both  the map and reduce programs write the accomplished data to the local file system so as to reduce or 
even avoid the overhead of HDFS replication.  HDFS supports multiple readers and one writer (MROW). The index 
mechanism is not available in HDFS, hence, it is best suited to read-only applications that need to scan and read the 
complete contents of a file. In HDFS, the actual location of the data is transparent to applications and external 
software. 

HDFS architecture 
The architecture of HDFS includes the master and the slave nodes, where the master is called a NameNode and the 
slaves are called DataNodes. HDFS contains only a single NameNode (master) and have many DataNodes (slaves) 
across the cluster, usually one per node. HDFS assigns a namespace (similar to a package in Java) to store the users 
data. A file might be split into one or more data blocks, and these data blocks are kept in a set of DataNodes. The 
NameNode will have the necessary metadata information on how the blocks are mapped to each other and which 
blocks are being stored in which of the NameNodes. The request made by the client to read and write the filesystem 
get processed directly by the DataNodes, whereas namespace operations like the opening, closing, and renaming of 
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directories are performed by NameNodes.  The responsibilities of NameNode for DataNodes are to issue 
instructions regarding certain activities, such as, data block creation, replication, and deletion [20]. HDFS (Hadoop 
distributed file system) architecture is shown as [23]: 
 

 
Fig. 4: A simple model of a multi-node Hadoop cluster 

 
A typical deployment of HDFS has a dedicated machine that runs only the NameNode. Each of the other machines 
in the cluster typically runs one instance of the DataNode software, though the architecture does allow you to run 
multiple DataNodes on the same machine. The NameNode is concerned with metadata repository and control, but 
otherwise never handles user data. The NameNode uses a special kind of log, named EditLog, for the persistence of 
metadata. 

Deploying Hadoop 
Though Hadoop is a pure Java implementation, we can use it in two different ways. We can either take advantage of 
a streaming API provided with it or use Hadoop pipes. The latter option allows building Hadoop apps with C++. 
Here, we will focus on the former. Hadoop's main design goal is to provide storage and communication on lots of 
homogeneous commodity machines. The implementers selected Linux as their initial platform for development and 
testing; hence, if interested to work with Hadoop on Windows, it is required to install separate software to mimic the 
shell environment. 

Hadoop can run in three different ways, depending on how the processes are distributed [24]: 

 Standalone mode: This is the default mode provided with Hadoop. Everything is run as a single Java 
process. 

 Pseudo-distributed mode: Here, Hadoop is configured to run on a single machine, with different Hadoop 
daemons run as different Java processes. 

 Fully distributed or cluster mode: Here, one machine in the cluster is typically labelled as the NameNode 
and another machine is designated as the JobTracker. Only one NameNode is placed in each cluster, which 
manages the namespace, filesystem metadata, and access control. An optional SecondaryNameNode can 
also be placed for periodic handshaking with NameNode for fault tolerance. The rest of the machines 
within the cluster act as both DataNodes and TaskTrackers. The DataNode holds the system data; each data 
node manages its own locally scoped storage, or its local hard disk. The TaskTrackers carry out map and 
reduce operations. 

5. Experiment 
Writing a Hadoop MapReduce application 

The best way to understand and get familiar with the working of Hadoop is to walk through the process of writing a 
Hadoop MapReduce application. We will be working with a simple MapReduce application that can reverse many 
strings. The example given below goes through a number of steps which first of all divides the data into different 
nodes, performs operation to reverse the data, associates the result strings, and then yield the results. This 
application provides an opportunity to examine all of the main concepts of Hadoop. First, we take a look at the 
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package declaration and imports in the steps below. The reverstringclass is in 
the com.javaworld.mapreduce package. It can be shown in set of two imports as given below: 

 

First set of Imports Second set of Imports 
package com.javaworld.mapreduce;  
import java.io.IOException; 
import java.util.ArrayList; 
import java.util.Iterator; 
import java.util.List; 
import java.util.StringTokenizer; 
import java.io.*; 
import java.net.*; 
import java.util.regex.MatchResult; 
 

import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.conf.Configured; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.mapredu.JobClient; 
import org.apache.hadoop.mapredu.JobConf; 
import org.apache.hadoop.mapredu.MapredBase; 
import org.apache.hadoop.mapredu.Mapper; 
import org.apache.hadoop.mapredu.OutputCollector; 
import org.apache.hadoop.mapredu.Reducer; 
import org.apache.hadoop.mapredu.Reporter; 
import org.apache.hadoop.util.Tool; 
import org.apache.hadoop.util.ToolRunner; 
 

The first set of imports is for the standard Java classes, and the second set is for the MapReduce implementation. 
The reverstringclass begins by extending org.apache.hadoop.conf.Configured and implementing the 
interface org.apache.hadoop.until.Tool, 

Map and reduce 
Now you can jump into the actual MapReduce implementation. The two inner classes are: Map: Includes 
functionality for processing input key- value pairs to generate output key-value pairs. 

 
6. Our Contribution 
Recently, in some experiments it has been discovered that applications using Hadoop performed poorly compared to 
similar programs using parallel databases.  Our main objective is to optimize HDFS and provide significant impact 
on the overall performance of a MapReduce framework which will result in the boosting of overall efficiency of 

Map class 

public static class Map extends MapredBase 
        implements Mapper<LongWritable, Text, Text, 
Text>  
{ 
  private Text inpText   = new Text(); 
  private Text reverText = new Text(); 
  public void map(LongWritable key, Text inputs, 
  OutputCollector<Text, Text> output, 
  Reporter reporter) throws IOException { 
  String inputString = inputs.toString(); 
  int length = inputString.length(); 
  StringBuffer reverse = new StringBuffer(); 
  for(int i=length-1; i>=0; i--) 
       { 
          reverse.append(inputString.charAt(i));     } 
  inputText.set(inpString); 
 reverseText.set(reverse.toString()); 
 output.collect(inpText,reverText); 
 }     } 

 
Now, it is required to combine all such outputs.  
This job is done with  the reduce()method of the Reduce 
class as shown in the steps below: 
 
Reduc.redu() 

public static class Reduc extends MapRedBase 
        implements Reducer<Text, Text, Text, Text> { 
        public void reduc(Text key, Iterator<Text> values, 
                           OutputCollector<Text, Text> output, 
                           Reporter reporter) throws IOException { 
            while (values.hasNext()) { 
                output.collect(key, values.next()); 
            }     }         } 
 

Reduc: Includes functionality for collecting output from 
parallel map processing and outputting that collected data. 
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MapReduce applications in Hadoop.  There may be no change in the ultimate conclusions of the MapReduce versus 
parallel database debate but this new approach of Hadoop and MapReduce will certainly allow a fairer comparison 
of the actual programming models. Though Hadoop provides built-in functionality to profile Map and Reduce task 
execution but there are no built-in tools to contour the framework itself, that can allow performance hurdles to 
remain unexposed. This paper has retrieved the interactions between Hadoop and storage. Here, we explained how 
many performance blockages are not directly attributable to application code (or the MapReduce programming 
style), but rather are caused by the task scheduler and distributed filesystem underlying all Hadoop applications. 
HDFS performance under concurrent workloads can be significantly improved through the use of application-level 
I/O scheduling while preserving portability. Further improvements can be done by reducing fragmentation and 
cache overhead which are also possible at the expense of reducing portability. The portability in Hadoop support 
users by making the development simper and reduce installation complexity. This results in the widespread of this 
parallel computing paradigm. 
 
7.  Conclusion 
Big data and the technologies associated with it can bring significant benefits to the business. But the tremendous 
uses of these technologies make difficult for an organization to strongly control these vast and heterogeneous 
collections of data to get further analysed and investigated. There are several impacts of using the Big Data. For 
facing the competitions and strong growth of individual companies, it supports by providing them a huge potential. 
Certain aspects are needed to be followed so that we can get timely and productive results from Big Data because 
the precise use of Big Data can give the proliferation to throughput, modernization, and effectiveness for entire 
divisions and economies. To be able to extract the benefits of Big Data, it is crucial to know how to ensure 
intelligent use, management and re-use of Data Sources, including public government data, in and across country to 
build useful applications and services. It is crucial to evaluate the best approach to use for filtering and/or analyzing 
the data. For the optimized analytic processing, Hadoop with MapReduce can be used. In this paper, we've presented 
the basics of MapReduce programming with the open source Hadoop framework. This outstanding framework of 
Hadoop speeds-up the processing of large amounts of data through distributed processes and thus, provides the 
responses very fast. It can be adopted and customized to meet various development requirements and can be scaled 
by increasing the number of nodes available for processing. The extensibility and simplicity of the framework are 
the key differentiators that make it a promising tool for data processing. 
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