The complexity of determining the rainbow vertex-connection of a graph ${ }^{\star}$

Lily Chen, Xueliang Li*, Yongtang Shi
Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history:

Received 17 January 2011
Received in revised form 1 April 2011
Accepted 21 April 2011
Communicated by G. Ausiello

Keywords:

Coloring
Rainbow vertex-connection
Computational complexity

Abstract

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection of a connected graph G, denoted by $r v c(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In this paper, we study the complexity of determining the rainbow vertex-connection of a graph and prove that computing $\operatorname{rvc}(G)$ is NP-Hard. Moreover, we show that it is already NP-Complete to decide whether $\operatorname{rvc}(G)=2$. We also prove that the following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G rainbow vertex-connected.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the notations and terminology of Bondy and Murty [1].

An edge-colored graph is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The concept of rainbow connection in graphs was introduced by Chartrand et al. in [4]. The rainbow connection number of a connected graph G, denoted by $r c(G)$, is the smallest number of colors that are needed in order to make G rainbow connected. Observe that $\operatorname{diam}(G) \leq r c(G) \leq n-1$, where $\operatorname{diam}(G)$ denotes the diameter of G. It is easy to verify that $r c(G)=1$ if and only if G is a complete graph, and that $r c(G)=n-1$ if and only if G is a tree. There are some approaches to study the bounds of $r c(G)$, for which we refer to [2,5,7].

As an analogous concept, Krivelevich and Yuster proposed a concept of the rainbow vertex-connection in [5]. A vertexcolored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. Such a path is called a rainbow vertex-connected path. The rainbow vertex-connection of a connected graph G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. An easy observation is that if G has an order n, then $r v c(G) \leq n-2$ and $r v c(G)=0$ if and only if G is a complete graph. Notice that $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$ with equality if the diameter of G is 1 or 2 . For the rainbow connection and the rainbow vertexconnection, some examples are given in [5] showing that there is no upper bound for one of the parameters in terms of the other. Krivelevich and Yuster [5] proved that if G is a graph with n vertices and minimum degree δ, then $r v c(G)<11 n / \delta$. The bound was then improved later, for which we refer to [6].

Besides its theoretical interest as a natural combinatorial concept, the rainbow connection can also find applications in networking. Suppose we want to route messages in a cellular network in such a way that each link on the route between two

[^0]vertices is assigned with a distinct channel. The minimum number of channels that we have to use is exactly the rainbow connection of the underlying graph.

The complexity of determining the rainbow connection of a graph has been studied in literature. In [2], Caro et al. conjectured that computing $r c(G)$ is an NP-Hard problem, as well as that even deciding whether a graph has $r c(G)=2$ is NP-Complete. In [3], Chakraborty et al. confirmed this conjecture. Motivated by the work of [3], we consider the complexity of determining the rainbow vertex-connection $r v c(G)$ of a graph. It is not hard to image that this problem is also NP-Hard, but a rigorous proof is necessary. This paper is to give such a proof that computing rvc(G) is NP-Hard. Our proof follows a similar idea of [3], but differently by reducing the problem of 3-SAT to some other new problems. Moreover, we show that it is already NP-Complete to decide whether $r v c(G)=2$. We also prove that the following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G rainbow vertex-connected.

2. The problem of rainbow vertex-connection

For two problems A and B, we write $A \preceq B$, if problem A is polynomially reducible to problem B. Now, we give our first theorem.
Theorem 1. The following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G rainbow vertex-connected.

Now we define Problems 1 and 2 in the following. We will prove Theorem 1 by reducing Problem 1 to Problem 2, and then the problem of 3-SAT (see [1]) to Problem 1.
Problem 1. The $s-t$ rainbow vertex-connection.
Given: Vertex-colored graph G with two specified vertices s and t.
Decide: Whether there is a rainbow vertex-connected path connecting s and t ?
Problem 2. The rainbow vertex-connection.
Given: Vertex-colored graph G.
Decide: Whether G is rainbow vertex-connected under the vertex coloring ?
Lemma 1. Problem 1 〔 Problem 2.
Proof. Given a vertex-colored graph G with two specified vertices s and t. We want to construct a new graph G^{\prime} with a vertex coloring such that G^{\prime} is rainbow vertex-connected if and only if there is a rainbow vertex-connected path connecting s and t in G.

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}\right\}$ be the vertices of G, where $v_{1}=s$ and $v_{n}=t$. We construct a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows. Set

$$
V^{\prime}=V \cup\left\{s^{\prime}, t^{\prime}, a, b\right\}
$$

and

$$
E^{\prime}=E \cup\left\{s^{\prime} s, t^{\prime} t\right\} \cup\left\{a v_{i}, b v_{i}: i \in[n]\right\}
$$

Let c be the vertex coloring of G. We define the vertex coloring c^{\prime} of G^{\prime} as follows: $c^{\prime}\left(v_{i}\right)=c\left(v_{i}\right)$ for $i \in\{2,3, \ldots, n-1\}$; $c^{\prime}(s)=c^{\prime}(a)=c_{1}, c^{\prime}(t)=c^{\prime}(b)=c_{2}$, where c_{1}, c_{2} are two new colors; and the vertices s^{\prime} and t^{\prime} are assigned any colors already used.

Suppose that c^{\prime} makes G^{\prime} rainbow vertex-connected. Since each path Q from s^{\prime} to t^{\prime} in G^{\prime} must go through s and t, Q cannot contain a and b as $c^{\prime}(s)=c^{\prime}(a)=c_{1}$ and $c^{\prime}(t)=c^{\prime}(b)=c_{2}$. Therefore, any rainbow vertex-connected path from s^{\prime} to t^{\prime} in G^{\prime} must contain a rainbow vertex-connected path from s to t in G. Thus, there is a rainbow vertex-connected path connecting s and t in G under the vertex coloring c.

Now assume that there is a rainbow vertex-connected path from s to t in G under the vertex coloring c. We are ready to prove that G^{\prime} is rainbow vertex-connected. First, the rainbow vertex-connected path from s^{\prime} to v_{i} can be formed by going through s and b, then to v_{i} for $i \in\{2,3, \ldots, n\}$. The rainbow vertex-connected path from s^{\prime} to t^{\prime} can go through s and t and along a rainbow vertex-connected path from s to t in G. The rainbow vertex-connected path from t^{\prime} to v_{i} can be formed by going through t and a, then to v_{i} for $i \in\{2,3, \ldots, n\}$. For each of the other pairs of vertices, similarly there is a path connecting them with a length less than 3 . Thus, they are obviously rainbow vertex-connected.
Lemma 2. 3-SAT \preceq Problem 1.
Proof. Let ϕ be an instance of the 3-SAT with clauses $c_{1}, c_{2}, \ldots, c_{m}$ and variables $x_{1}, x_{2}, \ldots, x_{n}$. We construct a graph G_{ϕ} with two specified vertices s and t. Let $k \geq m$ and $\ell \geq m$ be two integers.

First, we introduce k new vertices $v_{1}^{i, j}, v_{2}^{i, j}, \ldots, v_{k}^{i, j}$ for each $x_{j} \in c_{i}$ and ℓ new vertices $\bar{v}_{1}^{i, j}, \bar{v}_{2}^{i, j}, \ldots, \bar{v}_{\ell}^{i, j}$ for each $\bar{x}_{j} \in c_{i}$.
Next, for each $v_{a}^{i, j}$ with $a \in[k]$, where and in what follows [k] denotes the set $\{1,2, \ldots, k\}$, we introduce ℓ new vertices $v_{a 1}^{i, j}, v_{a 2}^{i, j}, \ldots, v_{a \ell}^{i, j}$, which form a path in this order (we call $v_{a 1}^{i, j}$ and $v_{a \ell}^{i, j}$ the initial vertex and the terminal vertex of the path, respectively). Similarly, for each $\bar{v}_{b}^{i, j}$ with $b \in[\ell]$, we introduce k new vertices $\bar{v}_{1 b}^{i, j}, \bar{v}_{2 b}^{i, j}, \ldots, \bar{v}_{k b}^{i, j}$, which form a path in that
order (we call $\bar{v}_{1 b}^{i, j}$ and $\bar{v}_{k b}^{i, j}$ the initial vertex and the terminal vertex of the path, respectively). Therefore, for $x_{j} \in c_{i}$ there are k paths of length $\ell-1$, and for $\bar{x}_{j} \in c_{i}$ there are ℓ paths of length $k-1$. We use S_{i} to denote the set of all the paths corresponding to the three variables in c_{i} for $1 \leq i \leq m$, and define $S_{0}=\{s\}$. For each path P in $S_{i}(i \in[m])$, we join the initial vertex of P to the terminal vertices of all the paths in S_{i-1}. And for each path in S_{m}, we join its terminal vertex to t. Thus, we obtain a new graph G_{ϕ}.

Now we define a vertex coloring of G_{ϕ}. For every variable x_{j}, we introduce $k \times \ell$ distinct colors $\alpha_{1,1}^{j}, \alpha_{1,2}^{j}, \ldots, \alpha_{k, \ell}^{j}$. For all $i \in[m]$, we color the vertices $v_{a 1}^{i, j}, v_{a 2}^{i, j}, \ldots, v_{a \ell}^{i, j}$ with colors $\alpha_{a, 1}^{j}, \alpha_{a, 2}^{j}, \ldots, \alpha_{a, \ell}^{j}$, respectively, and color $\bar{v}_{1 b}^{i, j}, \bar{v}_{2 b}^{i, j}, \ldots, \bar{v}_{k b}^{i, j}$ with colors $\alpha_{1, b}^{j}, \alpha_{2, b}^{j}, \ldots, \alpha_{k, b}^{j}$, respectively, where $a \in[k]$ and $b \in[\ell]$.

Now suppose that G_{ϕ} contains a rainbow vertex-connected path Q connecting s and t. Note that Q must contain exactly one of the newly built paths in each S_{i} for $i \in[m]$, and the paths $v_{a 1}^{i, j} v_{a 2}^{i, j} \ldots v_{a \ell}^{i, j}$ and $\bar{v}_{1 b}^{i^{\prime}, j} \frac{i^{\prime}, j}{2} \ldots \bar{v}_{k b}^{i^{\prime}, j}$ cannot both appear in Q for any $i \neq i^{\prime} \in[m]$ since the color $\alpha_{a, b}^{j}$ appears in both the two paths. If $v_{a 1}^{i, j} v_{a 2}^{i, j} \ldots v_{a l}^{i, j}$ appears in Q, set $x_{j}=1$, and if $\bar{v}_{1 b}^{i, j} \bar{v}_{2 b}^{i, j} \ldots \bar{v}_{k b}^{i, j}$ appears in Q, set $x_{j}=0$. Clearly, we can conclude that ϕ is a YES instance of the 3-SAT in this assignment.

On the other hand, suppose that ϕ is a YES instance of the 3-SAT, we will find a rainbow vertex-connected path connecting s and t as follows.
(1) For each $i \in[m]$, if there exists a $j \in[n]$ such that $x_{j} \in c_{i}$ and $x_{j}=1$, then we choose a path Q_{i} as $v_{a 1}^{i, j} v_{a 2}^{i, j} \ldots v_{a \ell}^{i, j}$ for some $a \in[k]$ satisfying that $v_{a 1}^{i^{\prime}, j} i_{a 2}^{i^{\prime}, j} \ldots v_{a \ell}^{i^{\prime}, j}$ has not been chosen for all $i^{\prime} \in[m]$. Note that we can always do this, since $k \geq m$.
(2) For each $i \in[m]$, if there exists a $j \in[n]$ such that $\bar{x}_{j} \in c_{i}$ and $x_{j}=0$, then we choose a path Q_{i} as $\bar{v}_{1 b}^{i, j} \bar{v}_{2 b}^{i, j} \ldots \bar{v}_{k b}^{i, j}$ for
 this.

Therefore, for each $i \in[m]$, we can choose a path Q_{i}, and for convenience, we denote it by $Q_{i}=y_{i 1} y_{i 2} \ldots y_{i r}$, where $r=k$ or ℓ. All these paths together with s and t form a path $Q=s y_{11} \ldots y_{1 r} y_{21} \ldots y_{2 r} \ldots y_{m 1} \ldots y_{m r} t$ connecting s and t by the construction of the graph G_{ϕ}. We can conclude that Q is a rainbow vertex-connected path under the coloring of G_{ϕ}.

3. The problem of rainbow vertex-connection 2

Before proceeding, we first define the following three problems.
Problem 3. The rainbow vertex-connection 2.
Given: Graph $G=(V, E)$.
Decide: Whether there is a vertex coloring of G with two colors such that all pairs $(u, v) \in V(G) \times V(G)$ are rainbow vertex-connected?

Problem 4. The subset rainbow vertex-connection 2.
Given: Graph $G=(V, E)$ and a set of pairs $P \subseteq V(G) \times V(G)$.
Decide: Whether there is a vertex coloring of G with two colors such that all pairs $(u, v) \in P$ are rainbow vertexconnected?

Problem 5. The different subsets rainbow vertex-connection 2.
Given: Graph $G=(V, E)$ and two disjoint subsets V_{1}, V_{2} of V with a one to one correspondence $f: V_{1} \rightarrow V_{2}$.
Decide: Whether there is a vertex coloring of G with two colors such that G is rainbow vertex-connected and for each $v \in V_{1}$, v and $f(v)$ are assigned different colors.

In the following, we will reduce Problem 4 to Problem 3, and then Problem 5 to Problem 4. Finally, we will show that it is NP-Complete to decide whether $r v c(G)=2$ by reducing the 3-SAT to Problem 5.

Lemma 3. Problem $4 \preceq$ Problem 3.
Proof. Given a graph $G=(V, E)$ and a set of pairs $P \subseteq V(G) \times V(G)$, we construct a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows.
For each vertex $v \in V$, we introduce a new vertex x_{v}; for every pair $(u, v) \in(V \times V) \backslash P$, we introduce two new vertices $x_{(u, v)}^{1}$ and $x_{(u, v)}^{2}$; we also add two new vertices s, t. Set

$$
V^{\prime}=V \cup\left\{x_{v}: v \in V\right\} \cup\left\{x_{(u, v)}^{1}, x_{(u, v)}^{2}:(u, v) \in(V \times V) \backslash P\right\} \cup\{s, t\}
$$

and
$E^{\prime}=E \cup\left\{v x_{v}: v \in V\right\} \cup\left\{u x_{(u, v)}^{1}, x_{(u, v)}^{1} x_{(u, v)}^{2}, x_{(u, v)}^{2} v:(u, v) \in(V \times V) \backslash P\right\} \cup\left\{s x_{(u, v)}^{1}, t x_{(u, v)}^{2}:(u, v) \in(V \times V) \backslash P\right\} \cup\left\{s x_{v}, t x_{v}:\right.$ $v \in V\}$.
In the following, we will prove that G^{\prime} is rainbow vertex-connected with two colors if and only if there is a vertex coloring of G with two colors such that all pairs $(u, v) \in P$ are rainbow vertex-connected.

Now suppose that there is a vertex coloring of G^{\prime} with two colors which makes G^{\prime} rainbow vertex-connected. For each pair $(u, v) \in P$, by the construction of G^{\prime}, the paths connecting u and v with lengths at most 3 have to be in G. Observe that G is a subgraph of G^{\prime}. Thus, considering the restriction of the coloring of G^{\prime} on G, all pairs in P are rainbow vertex-connected.

On the other hand, let $c: V \rightarrow\{1,2\}$ be a vertex coloring of G such that all pairs $(u, v) \in P$ are rainbow vertex-connected. We extend the coloring as follows: $c\left(x_{v}\right)=1$ for all $v \in V ; c\left(x_{(u, v)}^{1}\right)=1$ and $c\left(x_{(u, v)}^{2}\right)=2$ for all $(u, v) \in(V \times V) \backslash P$; $c(s)=c(t)=2$. Now we show that G^{\prime} is indeed rainbow vertex-connected under this vertex coloring. Let u and v be any two vertices in G^{\prime}. We consider the following cases.
(1) $(u, v) \in P$. There is a rainbow vertex-connected path connecting u and v by the assumption.
(2) $(u, v) \in(V \times V) \backslash P$. In this case, $u x_{(u, v)}^{1} x_{(u, v)}^{2} v$ is a rainbow vertex-connected path.
(3) $u \in V(G)$ and $v=x_{w}$. If $u \neq w$, then $u x_{u} t v$ is a rainbow vertex-connected path; otherwise, $u v$ is an edge of G^{\prime}.
(4) $u \in V(G)$ and $v=x_{(y, w)}^{j}$, where $j=1$, 2. In this case, $u x_{u} s v$ is a rainbow vertex-connected path if $j=1$, and $u x_{u} t v$ is a rainbow vertex-connected path if $j=2$.
(5) $u \in V(G)$ and $v=s$ or t. In this case, $u x_{u} v$ is a rainbow vertex-connected path.
(6) $u=x_{(y, w)}^{1}$ and $v=x_{\left(y^{\prime}, w^{\prime}\right)}^{2}$. In this case, $u s x_{\left(y^{\prime}, w^{\prime}\right)}^{1} v$ is a rainbow vertex-connected path.
(7) For the other cases of u and v, there is a rainbow vertex-connected path connecting u and v since the distance of u and v in G^{\prime} is at most 2.
Lemma 4. Problem 5 〔 Problem 4.
Proof. Given a graph $G=(V, E)$ and two disjoint subsets V_{1}, V_{2} of V with a one to one correspondence f. Assume that $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $V_{2}=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ satisfying $w_{i}=f\left(v_{i}\right)$ for each $i \in[k]$. We construct a new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows.

We introduce six new vertices $x_{v_{i} w_{i}}^{1}, x_{v_{i} w_{i}}^{2}, x_{v_{i} w_{i}}^{3}, x_{v_{i} w_{i}}^{4}, x_{v_{i} w_{i}}^{5}, x_{v_{i} w_{i}}^{6}$ for each pair (v_{i}, w_{i}), where $i \in[k]$; we add a new vertex s. Set

$$
V^{\prime}=V \cup\left\{x_{v_{i} w_{i}}^{j}: i \in[k], j \in[6]\right\} \cup\{s\},
$$

and
$E^{\prime}=E \cup\left\{s x_{v_{i} w_{i}}^{5}, x_{v_{i} w_{i}}^{5} v_{i}, v_{i} x_{v_{i} w_{i}}^{1}, x_{v_{i} w_{i}}^{1} x_{v_{i} w_{i}}^{2}, x_{v_{i} w_{i}}^{2} x_{v_{i} w_{i}}^{3}, x_{v_{i} w_{i}}^{3} x_{v_{i} w_{i}}^{4}, x_{v_{i} w_{i}}^{4} w_{i}, w_{i} x_{v_{i} w_{i}}^{6}, x_{v_{i} w_{i}}^{6} s: i \in[k]\right\}$.
We define P by
$P=\{(u, v): u, v \in V\} \cup\left\{\left(x_{v_{i} w_{i}}^{5}, x_{v_{i} w_{i}}^{2}\right),\left(v_{i}, x_{v_{i} w_{i}}^{3}\right),\left(x_{v_{i} w_{i}}^{1}, x_{v_{i} w_{i}}^{4}\right),\left(x_{v_{i} w_{i}}^{2}, w_{i}\right),\left(x_{v_{i} w_{i}}^{3}, x_{v_{i} w_{i}}^{6}\right): i \in[k]\right\}$.
Suppose that there is a vertex coloring c of G^{\prime} with two colors such that all pairs $(u, v) \in P$ are rainbow vertex-connected. At first, we will show that G is rainbow vertex-connected. Let u and v be any two vertices in G. We prove the following claim.
Claim 1. The path connecting u and v in G^{\prime} with a length at most 3 must belong to G.
Proof. If one of u and v does not belong to $V_{1} \cup V_{2}$, then the claim holds, obviously. Now we suppose $u, v \in V_{1} \cup V_{2}$.
Case $1 u=v_{i}$ and $v=w_{j}$. If $j=i$, then the shortest path connecting u and v in G^{\prime} which does not belong to G is $u x_{u v}^{5} s x_{u v}^{6} v$, whose length is greater than 3. If $j \neq i$, then the shortest path connecting u and v in G^{\prime} which does not belong to G is $u x_{u w_{i}}^{5}{ }_{s} x_{v_{j} v}^{6} v$, whose length is greater than 3 .

Case $2 u=v_{i}$ and $v=v_{j}$. In this case, the shortest path connecting u and v in G^{\prime} which does not belong to G is $u x_{u w_{i}}^{5} s x_{v w_{j}}^{6} v$, whose length is greater than 3.

Case $3 u=w_{i}$ and $v=w_{j}$. The proof of this case is similar to that of Case 2 .
Therefore, the proof of Claim 1 is complete.
Observe that G is a subgraph of G^{\prime}. Consider the restriction of the vertex coloring of G^{\prime} on G. Since $(u, v) \in P$ and all pairs $(u, v) \in P$ are rainbow vertex-connected, we can deduce that there exists a rainbow vertex-connected path connecting u and v in G from Claim 1. Thus, we have proved that G is rainbow vertex-connected. Now we prove $c\left(v_{i}\right) \neq c\left(w_{i}\right)$ for any $i \in[k]$. Since $\left(x_{v_{i} w_{i}}^{5}, x_{v_{i} w_{i}}^{2}\right) \in P$ are rainbow vertex-connected in G^{\prime} and the only path between them with a length at most 3 is $x_{v_{i} w_{i}}^{5} v_{i} x_{v_{i} w_{i}}^{1} x_{v_{i} w_{i}}^{2}$, we have $c\left(v_{i}\right) \neq c\left(x_{v_{i} w_{i}}^{1}\right)$. Similarly, the fact that $\left(v_{i}, x_{v_{i} w_{i}}^{3}\right),\left(x_{v_{i} w_{i}}^{1}, x_{v_{i} w_{i}}^{4}\right),\left(x_{v_{i} w_{i}}^{2}, w_{i}\right),\left(x_{v_{i} w_{i}}^{3}, x_{v_{i} w_{i}}^{6}\right) \in P$ are rainbow vertex-connected in G^{\prime} implies that $c\left(x_{v_{i} w_{i}}^{1}\right) \neq c\left(x_{v_{i} w_{i}}^{2}\right), c\left(x_{v_{i} w_{i}}^{2}\right) \neq c\left(x_{v_{i} w_{i}}^{3}\right), c\left(x_{v_{i} w_{i}}^{3}\right) \neq c\left(x_{v_{i} w_{i}}^{4}\right), c\left(x_{v_{i} w_{i}}^{4}\right) \neq c\left(w_{i}\right)$, respectively. Therefore, we can observe that $c\left(v_{i}\right)=c\left(x_{v_{i} w_{i}}^{2}\right)=c\left(x_{v_{i} w_{i}}^{4}\right)$ and $c\left(w_{i}\right)=c\left(x_{v_{i} w_{i}}^{3}\right)=c\left(x_{v_{i} w_{i}}^{1}\right)$, which implies $c\left(v_{i}\right) \neq c\left(w_{i}\right)$ as $c\left(x_{v_{i} w_{i}}^{2}\right) \neq c\left(x_{v_{i} w_{i}}^{3}\right)$.

On the other hand, suppose that there is a vertex coloring c of G with two colors such that G is rainbow vertex-connected and v_{i}, w_{i} are colored differently for any $i \in[k]$. We color G^{\prime} with a vertex coloring c^{\prime} as follows: $c^{\prime}(v)=c(v)$ for $v \in V$; if $c\left(v_{i}\right)=1$ and $c\left(w_{i}\right)=2$, then $c^{\prime}\left(x_{v_{i} w_{i}}^{1}\right)=c^{\prime}\left(x_{v_{i} w_{i}}^{3}\right)=2$ and $c^{\prime}\left(x_{v_{i} w_{i}}^{2}\right)=c^{\prime}\left(x_{v_{i} w_{i}}^{4}\right)=1$; if $c\left(v_{i}\right)=2$ and $c\left(w_{i}\right)=1$, then $c^{\prime}\left(x_{v_{i} w_{i}}^{1}\right)=c^{\prime}\left(x_{v_{i} w_{i}}^{3}\right)=1$ and $c^{\prime}\left(x_{v_{i} w_{i}}^{2}\right)=c^{\prime}\left(x_{v_{i} w_{i}}^{4}\right)=2$; for any other vertex u in $G^{\prime}, c^{\prime}(u)=1$ or 2 arbitrarily. Now we check that all $(u, v) \in P$ are rainbow vertex-connected. By the definition of P, we only need to consider the pairs $\left(x_{v_{i} w_{i}}^{5}, x_{v_{i} w_{i}}^{2}\right),\left(v_{i}, x_{v_{i} w_{i}}^{3}\right),\left(x_{v_{i} w_{i}}^{1}, x_{v_{i} w_{i}}^{4}\right),\left(x_{v_{i} w_{i}}^{2}, w_{i}\right),\left(x_{v_{i} w_{i}}^{3}, x_{v_{i} w_{i}}^{6}\right)$ for $i \in[k]$, since G is rainbow vertex-connected. Notice that under the vertex coloring c^{\prime} of G^{\prime}, the paths $x_{v_{i} w_{i}}^{5} v_{i} x_{v_{i} w_{i}}^{1} x_{v_{i} w_{i}}^{2}, v_{i} x_{v_{i} w_{i}}^{1} x_{v_{i} w_{i}}^{2} x_{v_{i} w_{i}}^{3}, x_{v_{i} w_{i}}^{1} x_{v_{i} w_{i}}^{2} x_{v_{i} w_{i}}^{3} x_{v_{i} w_{i}}^{4}, x_{v_{i} w_{i}}^{2} x_{v_{i} w_{i}}^{3} x_{v_{i} w_{i}}^{4} w_{i}$ and $x_{v_{i} w_{i}}^{3} x_{v_{i} w_{i}}^{4} w_{i} x_{v_{i} w_{i}}^{6}$ are rainbow vertex-connected, respectively.

The proof is thus complete.
Lemma 5. $3-S A T \preceq$ Problem 5.

Proof. Let ϕ be an instance of the 3-SAT with clauses $c_{1}, c_{2}, \ldots, c_{m}$ and variables $x_{1}, x_{2}, \ldots, x_{n}$. We construct a new graph $G_{\phi}=\left(V_{\phi}, E_{\phi}\right)$ and define two disjoint vertex sets with a one to one correspondence f, as follows. Add two new vertices s and t. Set

$$
V_{\phi}=\left\{c_{i}: i \in[m]\right\} \cup\left\{x_{i}, \bar{x}_{i}: i \in[n]\right\} \cup\{s, t\}
$$

and
$E_{\phi}=\left\{c_{i} c_{j}: i, j \in[m]\right\} \cup\left\{t x_{i}, t \bar{x}_{i}: i \in[n]\right\} \cup\left\{x_{i} c_{j}: x_{i} \in c_{j}\right\} \cup\left\{\bar{x}_{i} c_{j}: \bar{x}_{i} \in c_{j}\right\} \cup\{s t\}$.
We define $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, V_{2}=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right\}$ and $f: V_{1} \rightarrow V_{2}$ satisfying $f\left(x_{i}\right)=\bar{x}_{i}$. Now we show that G_{ϕ} is rainbow vertex-connected with 2 colors and x_{i} and \bar{x}_{i} are assigned different colors for each $i \in[n]$ if and only if ϕ is satisfiable.

Suppose that there is a vertex coloring $c: V_{\phi} \rightarrow\{0,1\}$ such that G_{ϕ} is rainbow vertex-connected and x_{i}, \bar{x}_{i} are colored differently. We first suppose $c(t)=0$, and set the value of x_{i} as the corresponding color of x_{i}. For each i, consider the rainbow vertex-connected path Q between the vertices s and c_{i}. There must exist some j such that we can write $Q=s t x_{j} c_{i}$ or $Q=s t \bar{x}_{j} c_{i}$. Without loss of generality, suppose $Q=s t x_{j} c_{i}$. Since $c(t)=0$, we have $c\left(x_{j}\right)=1$. Thus, the value of x_{j} is 1 , which implies $c_{i}=1$ as $x_{j} \in c_{i}$ by the construction of G_{ϕ}. For the other case, i.e., $c(t)=1$, we set $x_{i}=1$ if $c\left(x_{i}\right)=0$ and $x_{i}=0$ otherwise. By some similar discussions, we can also deduce that ϕ is a YES instance of the 3-SAT.

On the other hand, for a given truth assignment of ϕ, we color G_{ϕ} as follows: $c(t)=0$ and $c\left(c_{i}\right)=1$ for $i \in[m]$; if $x_{i}=1$, then $c\left(x_{i}\right)=1$ and $c\left(\bar{x}_{i}\right)=0$; otherwise, $c\left(x_{i}\right)=0$ and $c\left(\bar{x}_{i}\right)=1 ; c(s)=0$ or 1 arbitrarily. Hence, by the definition of V_{1} and V_{2}, we know that for any $u \in V_{1}, u$ and $f(u)$ are colored differently. In the following, we will check that the graph G_{ϕ} is rainbow vertex-connected. Let u and v be any two vertices of G_{ϕ}. We only need to consider the case that $u=s$ and $v=c_{i}$ for any $i \in[m]$, since for all the other cases, the length of the shortest paths connecting u and v is at most 2 . If $x_{j} \in c_{i}$ and $x_{j}=1$, then $s t x_{j} c_{i}$ is the path required. If $\bar{x}_{j} \in c_{i}$ and $x_{j}=0$, then $s t \bar{x}_{j} c_{i}$ is the path required.

From the above three lemmas, we can get our second theorem.
Theorem 2. Given a graph G, deciding whether $r v c(G)=2$ is NP-Complete. Thus, computing rvc (G) is NP-Hard.

Acknowledgements

The authors are very grateful to the referees for their comments and suggestions, which helped to improve the presentation of the manuscript.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, in: GTM, 244, Springer, 2008.
[2] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15 (2008) R57.
[3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009(2009), 243-254. Also, see J. Combin. Optim. 21 (2011) 330-347.
[4] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.
[6] X. Li, Y. Shi, On the rainbow vertex-connection, Available from: arXiv: 1012.3504 [math.CO] (2010).
[7] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, in: IWOCA 2009, LNCS 5874 (2009) 432-437.

[^0]: * Supported by NSFC and "the Fundamental Research Funds for the Central Universities".
 * Corresponding author.

 E-mail addresses: lily60612@126.com (L. Chen), lxl@nankai.edu.cn, x.li@eyou.com (X. Li), shi@nankai.edu.cn (Y. Shi).

