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a b s t r a c t

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by
a path whose internal vertices have distinct colors, which was introduced by Krivelevich
and Yuster. The rainbow vertex-connection of a connected graphG, denoted by rvc(G), is the
smallest number of colors that are needed in order to make G rainbow vertex-connected.
In this paper, we study the complexity of determining the rainbow vertex-connection of a
graph and prove that computing rvc(G) is NP-Hard. Moreover, we show that it is already
NP-Complete to decide whether rvc(G) = 2. We also prove that the following problem
is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes
G rainbow vertex-connected.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the notations and terminology of Bondy
and Murty [1].

An edge-colored graph is rainbow connected if any two vertices are connected by a path whose edges have distinct colors.
The concept of rainbow connection in graphs was introduced by Chartrand et al. in [4]. The rainbow connection number of a
connected graphG, denoted by rc(G), is the smallest number of colors that are needed in order tomakeG rainbow connected.
Observe that diam(G) ≤ rc(G) ≤ n − 1, where diam(G) denotes the diameter of G. It is easy to verify that rc(G) = 1 if and
only if G is a complete graph, and that rc(G) = n−1 if and only if G is a tree. There are some approaches to study the bounds
of rc(G), for which we refer to [2,5,7].

As an analogous concept, Krivelevich and Yuster proposed a concept of the rainbow vertex-connection in [5]. A vertex-
colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct
colors. Such a path is called a rainbow vertex-connected path. The rainbow vertex-connection of a connected graph G, denoted
by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. An easy
observation is that if G has an order n, then rvc(G) ≤ n − 2 and rvc(G) = 0 if and only if G is a complete graph. Notice
that rvc(G) ≥ diam(G) − 1 with equality if the diameter of G is 1 or 2. For the rainbow connection and the rainbow vertex-
connection, some examples are given in [5] showing that there is no upper bound for one of the parameters in terms of the
other. Krivelevich and Yuster [5] proved that if G is a graph with n vertices and minimum degree δ, then rvc(G) < 11n/δ.
The bound was then improved later, for which we refer to [6].

Besides its theoretical interest as a natural combinatorial concept, the rainbow connection can also find applications in
networking. Supposewewant to routemessages in a cellular network in such away that each link on the route between two
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vertices is assigned with a distinct channel. The minimum number of channels that we have to use is exactly the rainbow
connection of the underlying graph.

The complexity of determining the rainbow connection of a graph has been studied in literature. In [2], Caro et al.
conjectured that computing rc(G) is an NP-Hard problem, as well as that even deciding whether a graph has rc(G) = 2 is
NP-Complete. In [3], Chakraborty et al. confirmed this conjecture. Motivated by the work of [3], we consider the complexity
of determining the rainbow vertex-connection rvc(G) of a graph. It is not hard to image that this problem is also NP-Hard,
but a rigorous proof is necessary. This paper is to give such a proof that computing rvc(G) is NP-Hard. Our proof follows a
similar idea of [3], but differently by reducing the problem of 3-SAT to some other new problems. Moreover, we show that
it is already NP-Complete to decide whether rvc(G) = 2. We also prove that the following problem is NP-Complete: given
a vertex-colored graph G, check whether the given coloring makes G rainbow vertex-connected.

2. The problem of rainbow vertex-connection

For two problems A and B, we write A ≼ B, if problem A is polynomially reducible to problem B. Now, we give our first
theorem.

Theorem 1. The following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G
rainbow vertex-connected.

Now we define Problems 1 and 2 in the following. We will prove Theorem 1 by reducing Problem 1 to Problem 2, and
then the problem of 3-SAT (see [1]) to Problem 1.

Problem 1. The s–t rainbow vertex-connection.
Given: Vertex-colored graph Gwith two specified vertices s and t .
Decide: Whether there is a rainbow vertex-connected path connecting s and t ?

Problem 2. The rainbow vertex-connection.
Given: Vertex-colored graph G.
Decide: Whether G is rainbow vertex-connected under the vertex coloring ?

Lemma 1. Problem 1 ≼ Problem 2.

Proof. Given a vertex-colored graph G with two specified vertices s and t . We want to construct a new graph G′ with a
vertex coloring such that G′ is rainbow vertex-connected if and only if there is a rainbow vertex-connected path connecting
s and t in G.

Let V = {v1, v2, . . . , vn−1, vn} be the vertices of G, where v1 = s and vn = t . We construct a new graph G′
= (V ′, E ′) as

follows. Set

V ′
= V ∪ {s′, t ′, a, b}

and

E ′
= E ∪ {s′s, t ′t} ∪ {avi, bvi : i ∈ [n]}.

Let c be the vertex coloring of G. We define the vertex coloring c ′ of G′ as follows: c ′(vi) = c(vi) for i ∈ {2, 3, . . . , n− 1};
c ′(s) = c ′(a) = c1, c ′(t) = c ′(b) = c2, where c1, c2 are two new colors; and the vertices s′ and t ′ are assigned any colors
already used.

Suppose that c ′ makes G′ rainbow vertex-connected. Since each path Q from s′ to t ′ in G′ must go through s and t , Q
cannot contain a and b as c ′(s) = c ′(a) = c1 and c ′(t) = c ′(b) = c2. Therefore, any rainbow vertex-connected path from
s′ to t ′ in G′ must contain a rainbow vertex-connected path from s to t in G. Thus, there is a rainbow vertex-connected path
connecting s and t in G under the vertex coloring c.

Now assume that there is a rainbow vertex-connected path from s to t in G under the vertex coloring c. We are ready to
prove that G′ is rainbow vertex-connected. First, the rainbow vertex-connected path from s′ to vi can be formed by going
through s and b, then to vi for i ∈ {2, 3, . . . , n}. The rainbow vertex-connected path from s′ to t ′ can go through s and t
and along a rainbow vertex-connected path from s to t in G. The rainbow vertex-connected path from t ′ to vi can be formed
by going through t and a, then to vi for i ∈ {2, 3, . . . , n}. For each of the other pairs of vertices, similarly there is a path
connecting them with a length less than 3. Thus, they are obviously rainbow vertex-connected.

Lemma 2. 3-SAT ≼ Problem 1.

Proof. Let φ be an instance of the 3-SAT with clauses c1, c2, . . . , cm and variables x1, x2, . . . , xn. We construct a graph Gφ

with two specified vertices s and t . Let k ≥ m and ℓ ≥ m be two integers.
First, we introduce k new vertices v

i,j
1 , v

i,j
2 , . . . , v

i,j
k for each xj ∈ ci and ℓ new vertices v

i,j
1 , v

i,j
2 , . . . , v

i,j
ℓ for each xj ∈ ci.

Next, for each v
i,j
a with a ∈ [k], where and in what follows [k] denotes the set {1, 2, . . . , k}, we introduce ℓ new vertices

v
i,j
a1, v

i,j
a2, . . . , v

i,j
aℓ, which form a path in this order (we call vi,j

a1 and v
i,j
aℓ the initial vertex and the terminal vertex of the path,

respectively). Similarly, for each v
i,j
b with b ∈ [ℓ], we introduce k new vertices v

i,j
1b, v

i,j
2b, . . . , v

i,j
kb, which form a path in that
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order (we call vi,j
1b and v

i,j
kb the initial vertex and the terminal vertex of the path, respectively). Therefore, for xj ∈ ci there

are k paths of length ℓ − 1, and for xj ∈ ci there are ℓ paths of length k − 1. We use Si to denote the set of all the paths
corresponding to the three variables in ci for 1 ≤ i ≤ m, and define S0 = {s}. For each path P in Si (i ∈ [m]), we join the
initial vertex of P to the terminal vertices of all the paths in Si−1. And for each path in Sm, we join its terminal vertex to t .
Thus, we obtain a new graph Gφ .

Nowwe define a vertex coloring of Gφ . For every variable xj, we introduce k×ℓ distinct colors α
j
1,1, α

j
1,2, . . . , α

j
k,ℓ . For all

i ∈ [m], we color the vertices v
i,j
a1, v

i,j
a2, . . . , v

i,j
aℓ with colors α

j
a,1, α

j
a,2, . . . , α

j
a,ℓ , respectively, and color v

i,j
1b, v

i,j
2b, . . . , v

i,j
kb with

colors α
j
1,b, α

j
2,b, . . . , α

j
k,b , respectively, where a ∈ [k] and b ∈ [ℓ].

Now suppose that Gφ contains a rainbow vertex-connected path Q connecting s and t . Note that Q must contain exactly
one of the newly built paths in each Si for i ∈ [m], and the paths v

i,j
a1v

i,j
a2 . . . v

i,j
aℓ and v

i′,j
1b v

i′,j
2b . . . v

i′,j
kb cannot both appear in

Q for any i ≠ i′ ∈ [m] since the color α
j
a,b appears in both the two paths. If v

i,j
a1v

i,j
a2 . . . v

i,j
aℓ appears in Q , set xj = 1, and if

v
i,j
1bv

i,j
2b . . . v

i,j
kb appears in Q , set xj = 0. Clearly, we can conclude that φ is a YES instance of the 3-SAT in this assignment.

On the other hand, suppose thatφ is a YES instance of the 3-SAT,wewill find a rainbowvertex-connected path connecting
s and t as follows.

(1) For each i ∈ [m], if there exists a j ∈ [n] such that xj ∈ ci and xj = 1, then we choose a path Qi as v
i,j
a1v

i,j
a2 . . . v

i,j
aℓ for

some a ∈ [k] satisfying that vi′,j
a1 v

i′,j
a2 . . . v

i′,j
aℓ has not been chosen for all i′ ∈ [m]. Note that we can always do this, since k ≥ m.

(2) For each i ∈ [m], if there exists a j ∈ [n] such that xj ∈ ci and xj = 0, then we choose a path Qi as v
i,j
1bv

i,j
2b . . . v

i,j
kb for

some b ∈ [ℓ] satisfying that v
i′,j
1b v

i′,j
2b . . . v

i′,j
kb has not been chosen for all i′ ∈ [m]. Similarly, since ℓ ≥ m, we can always do

this.
Therefore, for each i ∈ [m], we can choose a path Qi, and for convenience, we denote it by Qi = yi1yi2 . . . yir , where r = k

or ℓ. All these paths together with s and t form a path Q = sy11 . . . y1ry21 . . . y2r . . . ym1 . . . ymr t connecting s and t by the
construction of the graph Gφ . We can conclude that Q is a rainbow vertex-connected path under the coloring of Gφ .

3. The problem of rainbow vertex-connection 2

Before proceeding, we first define the following three problems.

Problem 3. The rainbow vertex-connection 2.
Given: Graph G = (V , E).
Decide: Whether there is a vertex coloring of G with two colors such that all pairs (u, v) ∈ V (G) × V (G) are rainbow
vertex-connected ?

Problem 4. The subset rainbow vertex-connection 2.
Given: Graph G = (V , E) and a set of pairs P ⊆ V (G) × V (G).
Decide: Whether there is a vertex coloring of G with two colors such that all pairs (u, v) ∈ P are rainbow vertex-
connected ?

Problem 5. The different subsets rainbow vertex-connection 2.
Given: Graph G = (V , E) and two disjoint subsets V1, V2 of V with a one to one correspondence f : V1 → V2.
Decide:Whether there is a vertex coloring of Gwith two colors such that G is rainbow vertex-connected and for each v ∈ V1,
v and f (v) are assigned different colors.

In the following, we will reduce Problem 4 to Problem 3, and then Problem 5 to Problem 4. Finally, we will show that it
is NP-Complete to decide whether rvc(G) = 2 by reducing the 3-SAT to Problem 5.

Lemma 3. Problem 4 ≼ Problem 3.

Proof. Given a graph G = (V , E) and a set of pairs P ⊆ V (G) × V (G), we construct a new graph G′
= (V ′, E ′) as follows.

For each vertex v ∈ V , we introduce a new vertex xv; for every pair (u, v) ∈ (V × V ) \ P , we introduce two new vertices
x1(u,v) and x2(u,v); we also add two new vertices s, t . Set

V ′
= V ∪ {xv : v ∈ V } ∪ {x1(u,v), x

2
(u,v) : (u, v) ∈ (V × V ) \ P} ∪ {s, t}

and
E ′

= E∪{vxv : v ∈ V }∪{ux1(u,v), x
1
(u,v)x

2
(u,v), x

2
(u,v)v : (u, v) ∈ (V ×V )\P}∪{sx1(u,v), tx

2
(u,v) : (u, v) ∈ (V ×V )\P}∪{sxv, txv :

v ∈ V }.
In the following, we will prove that G′ is rainbow vertex-connected with two colors if and only if there is a vertex coloring
of Gwith two colors such that all pairs (u, v) ∈ P are rainbow vertex-connected.

Now suppose that there is a vertex coloring of G′ with two colors which makes G′ rainbow vertex-connected. For each
pair (u, v) ∈ P , by the construction of G′, the paths connecting u and v with lengths at most 3 have to be in G. Observe that
G is a subgraph of G′. Thus, considering the restriction of the coloring of G′ on G, all pairs in P are rainbow vertex-connected.
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On the other hand, let c : V → {1, 2} be a vertex coloring ofG such that all pairs (u, v) ∈ P are rainbowvertex-connected.
We extend the coloring as follows: c(xv) = 1 for all v ∈ V ; c(x1(u,v)) = 1 and c(x2(u,v)) = 2 for all (u, v) ∈ (V × V ) \ P;
c(s) = c(t) = 2. Now we show that G′ is indeed rainbow vertex-connected under this vertex coloring. Let u and v be any
two vertices in G′. We consider the following cases.

(1) (u, v) ∈ P . There is a rainbow vertex-connected path connecting u and v by the assumption.
(2) (u, v) ∈ (V × V ) \ P . In this case, ux1(u,v)x

2
(u,v)v is a rainbow vertex-connected path.

(3) u ∈ V (G) and v = xw . If u ≠ w, then uxutv is a rainbow vertex-connected path; otherwise, uv is an edge of G′.
(4) u ∈ V (G) and v = xj(y,w), where j = 1, 2. In this case, uxusv is a rainbow vertex-connected path if j = 1, and uxutv is

a rainbow vertex-connected path if j = 2.
(5) u ∈ V (G) and v = s or t . In this case, uxuv is a rainbow vertex-connected path.
(6) u = x1(y,w) and v = x2

(y′,w′)
. In this case, usx1

(y′,w′)
v is a rainbow vertex-connected path.

(7) For the other cases of u and v, there is a rainbow vertex-connected path connecting u and v since the distance of u
and v in G′ is at most 2.

Lemma 4. Problem 5 ≼ Problem 4.

Proof. Given a graph G = (V , E) and two disjoint subsets V1, V2 of V with a one to one correspondence f . Assume that
V1 = {v1, v2, . . . , vk} and V2 = {w1, w2, . . . , wk} satisfying wi = f (vi) for each i ∈ [k]. We construct a new graph
G′

= (V ′, E ′) as follows.
We introduce six new vertices x1viwi

, x2viwi
, x3viwi

, x4viwi
, x5viwi

, x6viwi
for each pair (vi, wi), where i ∈ [k]; we add a new vertex

s. Set

V ′
= V ∪ {xjviwi

: i ∈ [k], j ∈ [6]} ∪ {s},

and
E ′

= E ∪ {sx5viwi
, x5viwi

vi, vix1viwi
, x1viwi

x2viwi
, x2viwi

x3viwi
, x3viwi

x4viwi
, x4viwi

wi, wix6viwi
, x6viwi

s : i ∈ [k]}.
We define P by
P = {(u, v) : u, v ∈ V } ∪ {(x5viwi

, x2viwi
), (vi, x3viwi

), (x1viwi
, x4viwi

), (x2viwi
, wi), (x3viwi

, x6viwi
) : i ∈ [k]}.

Suppose that there is a vertex coloring c of G′ with two colors such that all pairs (u, v) ∈ P are rainbow vertex-connected.
At first, wewill show that G is rainbow vertex-connected. Let u and v be any two vertices in G. We prove the following claim.

Claim 1. The path connecting u and v in G′ with a length at most 3must belong to G.

Proof. If one of u and v does not belong to V1 ∪ V2, then the claim holds, obviously. Now we suppose u, v ∈ V1 ∪ V2.
Case 1 u = vi and v = wj. If j = i, then the shortest path connecting u and v in G′ which does not belong to G is

ux5uvsx
6
uvv, whose length is greater than 3. If j ≠ i, then the shortest path connecting u and v in G′ which does not belong to

G is ux5uwi
sx6vjvv, whose length is greater than 3.

Case 2 u = vi and v = vj. In this case, the shortest path connecting u and v in G′ which does not belong to G is ux5uwi
sx6vwj

v,
whose length is greater than 3.

Case 3 u = wi and v = wj. The proof of this case is similar to that of Case 2.
Therefore, the proof of Claim 1 is complete.

Observe that G is a subgraph of G′. Consider the restriction of the vertex coloring of G′ on G. Since (u, v) ∈ P and all pairs
(u, v) ∈ P are rainbow vertex-connected, we can deduce that there exists a rainbow vertex-connected path connecting u
and v in G from Claim 1. Thus, we have proved that G is rainbow vertex-connected. Now we prove c(vi) ≠ c(wi) for any
i ∈ [k]. Since (x5viwi

, x2viwi
) ∈ P are rainbow vertex-connected in G′ and the only path between them with a length at most 3

is x5viwi
vix1viwi

x2viwi
, we have c(vi) ≠ c(x1viwi

). Similarly, the fact that (vi, x3viwi
), (x1viwi

, x4viwi
), (x2viwi

, wi), (x3viwi
, x6viwi

) ∈ P are
rainbow vertex-connected in G′ implies that c(x1viwi

) ≠ c(x2viwi
), c(x2viwi

) ≠ c(x3viwi
), c(x3viwi

) ≠ c(x4viwi
), c(x4viwi

) ≠ c(wi),
respectively. Therefore, we can observe that c(vi) = c(x2viwi

) = c(x4viwi
) and c(wi) = c(x3viwi

) = c(x1viwi
), which implies

c(vi) ≠ c(wi) as c(x2viwi
) ≠ c(x3viwi

).
On the other hand, suppose that there is a vertex coloring c of Gwith two colors such that G is rainbow vertex-connected

and vi, wi are colored differently for any i ∈ [k]. We color G′ with a vertex coloring c ′ as follows: c ′(v) = c(v) for v ∈ V ;
if c(vi) = 1 and c(wi) = 2, then c ′(x1viwi

) = c ′(x3viwi
) = 2 and c ′(x2viwi

) = c ′(x4viwi
) = 1; if c(vi) = 2 and c(wi) = 1,

then c ′(x1viwi
) = c ′(x3viwi

) = 1 and c ′(x2viwi
) = c ′(x4viwi

) = 2; for any other vertex u in G′, c ′(u) = 1 or 2 arbitrarily.
Now we check that all (u, v) ∈ P are rainbow vertex-connected. By the definition of P , we only need to consider the
pairs (x5viwi

, x2viwi
), (vi, x3viwi

), (x1viwi
, x4viwi

), (x2viwi
, wi), (x3viwi

, x6viwi
) for i ∈ [k], since G is rainbow vertex-connected. Notice

that under the vertex coloring c ′ of G′, the paths x5viwi
vix1viwi

x2viwi
, vix1viwi

x2viwi
x3viwi

, x1viwi
x2viwi

x3viwi
x4viwi

, x2viwi
x3viwi

x4viwi
wi and

x3viwi
x4viwi

wix6viwi
are rainbow vertex-connected, respectively.

The proof is thus complete.

Lemma 5. 3-SAT ≼ Problem 5.
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Proof. Let φ be an instance of the 3-SAT with clauses c1, c2, . . . , cm and variables x1, x2, . . . , xn. We construct a new graph
Gφ = (Vφ, Eφ) and define two disjoint vertex sets with a one to one correspondence f , as follows. Add two new vertices s
and t . Set

Vφ = {ci : i ∈ [m]} ∪ {xi, xi : i ∈ [n]} ∪ {s, t}

and
Eφ = {cicj : i, j ∈ [m]} ∪ {txi, txi : i ∈ [n]} ∪ {xicj : xi ∈ cj} ∪ {xicj : xi ∈ cj} ∪ {st}.
We define V1 = {x1, x2, . . . , xn}, V2 = {x1, x2, . . . , xn} and f : V1 → V2 satisfying f (xi) = xi. Now we show that Gφ

is rainbow vertex-connected with 2 colors and xi and xi are assigned different colors for each i ∈ [n] if and only if φ is
satisfiable.

Suppose that there is a vertex coloring c : Vφ → {0, 1} such that Gφ is rainbow vertex-connected and xi, xi are colored
differently. We first suppose c(t) = 0, and set the value of xi as the corresponding color of xi. For each i, consider the
rainbow vertex-connected path Q between the vertices s and ci. There must exist some j such that we can write Q = stxjci
or Q = stxjci. Without loss of generality, suppose Q = stxjci. Since c(t) = 0, we have c(xj) = 1. Thus, the value of xj is 1,
which implies ci = 1 as xj ∈ ci by the construction of Gφ . For the other case, i.e., c(t) = 1, we set xi = 1 if c(xi) = 0 and
xi = 0 otherwise. By some similar discussions, we can also deduce that φ is a YES instance of the 3-SAT.

On the other hand, for a given truth assignment of φ, we color Gφ as follows: c(t) = 0 and c(ci) = 1 for i ∈ [m]; if xi = 1,
then c(xi) = 1 and c(xi) = 0; otherwise, c(xi) = 0 and c(xi) = 1; c(s) = 0 or 1 arbitrarily. Hence, by the definition of V1
and V2, we know that for any u ∈ V1, u and f (u) are colored differently. In the following, we will check that the graph Gφ is
rainbow vertex-connected. Let u and v be any two vertices of Gφ . We only need to consider the case that u = s and v = ci
for any i ∈ [m], since for all the other cases, the length of the shortest paths connecting u and v is at most 2. If xj ∈ ci and
xj = 1, then stxjci is the path required. If xj ∈ ci and xj = 0, then stxjci is the path required.

From the above three lemmas, we can get our second theorem.

Theorem 2. Given a graph G, deciding whether rvc(G) = 2 is NP-Complete. Thus, computing rvc(G) is NP-Hard.
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