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Abstract

We study the semi-classical trace formula at a critical energy level for a h-pseudo-differential

operator on Rn whose principal symbol has a totally degenerate critical point for that energy.

We compute the contribution to the trace formula of isolated non-extremum critical points

under a condition of ‘‘real principal type’’. The new contribution to the trace formula is valid

for all time in a compact subset of R but the result is modest since we have restrictions on the

dimension.
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1. Introduction

The semi-classical trace formula for a self-adjoint h-pseudo-differential operator
Ph; or more generally h-admissible (see [19]), studies the asymptotic behavior, as h

tends to 0, of the spectral function

gðE; h;jÞ ¼
X

jljðhÞ�Ejpe

j
ljðhÞ � E

h

� �
; ð1Þ

where the ljðhÞ are the eigenvalues of Ph: Here we suppose that the spectrum is

discrete in ½E � e;E þ e�; some sufficient conditions for this will be given below. If p0
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is the principal symbol of Ph we recall that an energy E is regular when rp0ðx; xÞa0
on the energy surface SE ¼ fðx; xÞAT�Rn=p0ðx; xÞ ¼ Eg and critical when it is not
regular.
It is well known that the asymptotics of (1), as h tends to 0, is closely related to the

closed trajectories of the Hamiltonian flow of p on the surface SE ; i.e.

lim
h-0

gðE; h;jÞ"fðt; x; xÞAR SE=Ftðx; xÞ ¼ ðx; xÞg;

where

Ft ¼ expðtHp0Þ : T�Rn-T�Rn;

and Hp0 ¼ @xp0:@x � @xp0:@x is the Hamiltonian vector field attached to p0:

When E is a regular energy a non-exhaustive list of references concerning this
subject is Gutzwiller [11], Balian and Bloch [1] for the physic literature and for a
mathematical point of view Helffer and Robert [12], Brummelhuis and Uribe [3],
Paul and Uribe [17], and more recently Combescure et al. [8], Petkov and Popov [18],
and Charbonnel and Popov [7].
When one drops the assumption that E be a regular value, the behavior of (1) will

depend on the nature of the singularities of p on SE which can be complicated. The
semi-classical trace formula for a non-degenerate critical energy, that is such that the
critical-set Cðp0Þ ¼ fðx; xÞAT�Rn=dp0ðx; xÞ ¼ 0g is a compact CN manifold with a

Hessian d2p0 transversely non-degenerate along this manifold has been studied first
by Brummelhuis et al. [2]. They studied this question for quite general operators but
for some ‘‘small times’’, that is they have supposed that the support of #j is contained
in such a small neighborhood of the origin that the only period of the linearized flow
in suppð #jÞ is 0. Later, Khuat-Duy [15,16] has obtained the contributions of the non-
zero periods of the linearized flow with the assumption that suppð #jÞ is compact, but
for Schrödinger operators with symbol x2 þ VðxÞ and a non-degenerate potential V :
Our contribution to this subject was to compute the contributions of the non-zero
periods of the linearized flow for some more general operators, always with #j of
compact support and under some geometrical assumptions on the flow (see [4] or
[5]). Finally, in [6] we have obtained the contributions to the semi-classical trace
formula of totally degenerate extremum and the objective of this article is to obtain a
generalization when one drop the extremum condition.
Basically, the asymptotics of (1) can be expressed in terms of oscillatory integrals

whose phases are related to the flow of p0 on SE : When ðx0; x0Þ is a critical point of
p0; it is well known that the relation Kerðdx;xFtðx0; x0Þ � IdÞaf0g leads to the study
of degenerate oscillatory integrals. Here we examine the case of a totally degenerate
energy, that is such that the Hessian matrix at our critical point is zero. Hence, the
linearized flow for such a critical point satisfies dx;xFtðx0; x0Þ ¼ Id; for all tAR and

the oscillatory integrals we have to consider are totally degenerate.
The core of the proof lies in establishing suitable normal forms for our phase

functions and in a generalization of the stationary phase formula for these normal
forms. The construction proposed for the normal forms is independent of the
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dimension but the asymptotic expansion of the related oscillatory integrals depends
on the dimension and on the order of the singularity at the critical point. This
explains why the main result is stated with a restriction on the dimension.

2. Hypotheses and main result

Let Ph ¼ Opwh ðpðx; x; hÞÞ be a h-pseudo-differential operator, obtained by Weyl

quantization, in the class of h-admissible operators with symbol

pðx; x; hÞB
P

hjpjðx; xÞ: This means that there exists sequences pjASm
0 ðT�RnÞ and

RNðhÞ such that

Ph ¼
X
joN

hjpwj ðx; hDxÞ þ hNRNðhÞ; 8NAN;

where RNðhÞ is a bounded family of operators on L2ðRnÞ; for hph0; and

Sm
0 ðT�RnÞ ¼ fa : T�Rn-C; supj@a

x@
b
xaðx; xÞjoCa;bmðx; xÞ; 8a;bANng;

where m is a tempered weight on T�Rn: For a detailed exposition on h-admissible
operators we refer to the book of Robert [19]. In particular, p0ðx; xÞ is the principal
symbol of Ph and p1ðx; xÞ the sub-principal symbol. Let be Ft ¼ expðtHp0Þ :
T�Rn-T�Rn; the Hamiltonian flow of Hp0 ¼ @xp0:@x � @xp0:@x:

We study here the asymptotics of the spectral function:

gðEc; hÞ ¼
X

ljðhÞA½Ec�e;Ecþe�
j

ljðhÞ � Ec

h

� �
; ð2Þ

under hypotheses ðH1Þ–ðH4Þ given below.

ðH1Þ The symbol of Ph is real and there exists e040 such that the set p�1
0 ð½Ec �

e0;Ec þ e0�Þ is compact in T�Rn:

Remark 1. By Theorem 3.13 of [19] the spectrum sðPhÞ-½Ec � e;Ec þ e� is discrete
and consists in a sequence l1ðhÞpl2ðhÞp?pljðhÞ of eigenvalues of finite

multiplicities, if e and h are small enough.

To simplify notations we write z ¼ ðx; xÞ for any point of the phase space.

ðH2Þ On SEc
¼ p�1

0 ðfEcgÞ; p0 has a unique critical point z0 ¼ ðx0; x0Þ and near z0:

p0ðzÞ ¼ Ec þ
XN

j¼k

pjðzÞ þ Oðjjðz � z0ÞjjNþ1Þ; k42;

where the functions pj are homogeneous of degree j in z � z0:

ðH3Þ We have #jACN

0 ðRÞ:
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Since we are interested in the contribution of the fixed point z0; to understand the
new phenomenon it is suffices to study

gz0
ðEc; hÞ ¼ 1

2p
Tr

Z
R

ei
tEc

h #jðtÞcwðx; hDxÞexp � i

h
tPh

� �
YðPhÞ dt: ð3Þ

Here Y is a function of localization near the critical energy surface SEc

and cACN

0 ðT�RnÞ has an appropriate support near z0: Rigorous justifications

are given in Section 3 for the introduction of YðPhÞ and in Section 4
for cwðx; hDxÞ:
In [6] it was proven that:

Theorem 2. Under hypotheses ðH1Þ–ðH3Þ and if z0 is a local extremum of the principal

symbol p0 we have

gz0
ðEc; hÞBh

2n
k
�n

XN

j¼0
Lj;kðjÞh

j
k þ Oðh

Nþ1
k Þ

 !
as h-0;

where the Lj;k are some distributions and the leading coefficient is given by

L0;kðjÞ ¼
1

k
jðt þ p1ðz0ÞÞ; t

2n�k
k

z0

� 	
1

ð2pÞn

Z
S2n�1

jpkðyÞj�
2n
k dy; ð4Þ

with tz0 ¼ maxðt; 0Þ if z0 is a minimum and tz0 ¼ maxð�t; 0Þ for a maximum.

To obtain a generalization of Theorem 2, when the critical point z0 is not a local
extremum, we consider the classical hypothesis:

ðH4Þ We have rpka0 on the set Cpk
¼ fyAS2n�1=pkðyÞ ¼ 0g:

Remark 3. We would like to emphasize that, contrary to the case of a local
extremum, the critical point z0 is not necessarily isolated on SEc

: This imposes to
study the classical dynamic in a micro-local neighborhood of z0: Moreover, by
homogeneity ðH4Þ implies that rpka0 on the cone fðx; xÞa0=pkðx; xÞ ¼ 0g: This
allows to define the Liouville measure on the set Cpk

:

Then, the new contribution to the trace formula is given by:

Theorem 4. Under hypotheses ðH1Þ–ðH4Þ and if k42n we have

gz0
ðEc; hÞBh

2n
k
�nL0;kðjÞ þ Oðh

2nþ1
k

�n log2ðhÞÞ as h-0;
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where the leading coefficient is given by

L0;kðjÞ ¼
1

k
jtj

2n
k
�1

þ ;jðt þ p1ðz0ÞÞ
� 	

1

ð2pÞn

Z
S2n�1-fpkX0g

jpkðyÞj�
2n
k dy

 

þ jtj
2n
k
�1

� ;jðt þ p1ðz0ÞÞ
� 	

1

ð2pÞn

Z
S2n�1-fpkp0g

jpkðyÞj
�2n

k dy

!
: ð5Þ

If k ¼ 2n a similar result is

gz0
ðEc; hÞBh1�nlogðhÞLðjÞ þ Oðh1�nÞ as h-0;

with leading coefficient

LðjÞ ¼ 1

ð2pÞn #jð0ÞLVolðCpk
Þ; ð6Þ

where LVol is the Liouville measure attached to pk restricted to the sphere:

LVolðCpk
Þ ¼

Z
Cpk

dLpk
ðyÞ;

with dLpk
ðyÞ4dypkðyÞ ¼ dy on Cpk

:

Remark 5. In Eq. (5) and under the assumption on the dimension both terms are

well defined since for the first term jtj
2n
k
�1 is locally integrable and for the second term

the integral is convergent.

3. Oscillatory representation

Let be jASðRÞ with #jACN

0 ðRÞ; we recall that

gðEc; hÞ ¼
X

ljðhÞAIe

j
ljðhÞ � Ec

h

� �
; Ie ¼ ½Ec � e;Ec þ e�;

with p�1
0 ðIe0Þ compact in T�Rn: By Proposition 3.13 of [19] the spectrum of Ph is

discrete in Ie for h40 small enough and eoe0: Now, we localize near the critical
energy Ec with a cut-off function YACN

0 ð�Ec � e;Ec þ e½Þ; such that Y ¼ 1 near Ec

and 0pYp1 on R: The associated decomposition is:

gðEc; hÞ ¼ g1ðEc; hÞ þ g2ðEc; hÞ
with

g1ðEc; hÞ ¼
X

ljðhÞAIe

ð1�YÞðljðhÞÞj
ljðhÞ � Ec

h

� �
; ð7Þ

g2ðEc; hÞ ¼
X

ljðhÞAIe

YðljðhÞÞj
ljðhÞ � Ec

h

� �
: ð8Þ

The asymptotic behavior of g1ðEc; hÞ is classical and is given by:
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Lemma 6. g1ðEc; hÞ ¼ OðhNÞ as h-0:

For a proof see e.g. [6].
Consequently, for the study of gðEc; hÞ modulo OðhNÞ; we have only to consider

the quantity g2ðEc; hÞ: By inversion of the Fourier transform we obtain the identity

YðPhÞj
Ph � Ec

h

� �
¼ 1

2p

Z
R

ei
tEc

h #jðtÞexp � i

h
tPh

� �
YðPhÞ dt:

Since the trace of the left-hand side is exactly g2ðEc; hÞ; we have

g2ðEc; hÞ ¼ 1

2p
Tr

Z
R

ei
tEc

h #jðtÞexp � i

h
tPh

� �
YðPhÞ dt; ð9Þ

and with Lemma 6 this gives

gðEc; hÞ ¼ 1

2p
Tr

Z
R

ei
tEc

h #jðtÞexp � i

h
tPh

� �
YðPhÞ dt þ OðhNÞ:

Let be UhðtÞ ¼ expð�it
h
PhÞ; the evolution operator. For each integer N we can

approximate UhðtÞYðPhÞ; modulo OðhNÞ; by a Fourier integral-operator, or FIO,
depending on a parameter h: Let L be the Lagrangian manifold associated to the
flow of p0; i.e.

L ¼ fðt; t; x; x; y; ZÞAT�R T�Rn  T�Rn : t ¼ pðx; xÞ; ðx; xÞ ¼ Ftðy; ZÞg:

Theorem 7. The operator UhðtÞYðPhÞ is h-FIO associated to L; there exist U
ðNÞ
Y;h ðtÞ

with integral kernel in IðR2nþ1;LÞ and R
ðNÞ
h ðtÞ bounded, with a L2-norm uniformly

bounded for 0ohp1 and t in a compact subset of R; such that UhðtÞYðPhÞ ¼
U

ðNÞ
Y;h ðtÞ þ hNR

ðNÞ
h ðtÞ:

We refer to Duistermaat [9] for a proof of this theorem.

Remark 8. By a theorem of Helffer and Robert, see e.g. [19, Theorem 3.11 and

Remark 3.14], YðPhÞ is an h-admissible operator with a symbol supported in p�1
0 ðIeÞ:

This allows us to consider only oscillatory-integrals with compact support.

For the control of the remainder, associated to R
ðNÞ
h ðtÞ; we use:

Corollary 9. Let be Y1ACN

0 ðRÞ such that Y1 ¼ 1 on suppðYÞ and suppðY1ÞCIe; then

8NAN:

Tr YðPhÞj
Ph � Ec

h

� �� �
¼ 1

2p
Tr

Z
R

#jðtÞe
i
h

tEcU
ðNÞ
Y;h ðtÞY1ðPhÞ dt þ OðhNÞ:

For a proof, see e.g. [6].
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If ðx0; x0ÞAL and if j ¼ jðx; yÞACNðRk  RNÞ parameterizes L in a sufficiently

small neighborhood U of ðx0; x0Þ then for each uhAIðRk;LÞ and wACN

0 ðT�RkÞ;
suppðwÞCU ; there exists a sequence of amplitudes aj ¼ ajðx; yÞACN

0 ðRk  RNÞ such
that for all LAN:

wwðx; hDxÞuh ¼
X

�dpjoL

hjIðaje
i
h
jÞ þ OðhLÞ: ð10Þ

We will use this remark with the following result of Hörmander [14, Tome 4,
Proposition 25.3.3]. Let be ðT ; t; x0; x0; y0;�Z0ÞALflow; Z0a0; then near this point
there exists, after perhaps a change of local coordinates in y near y0; a function
Sðt; x; ZÞ such that

fðt; x; y; ZÞ ¼ Sðt; x; ZÞ � y; Zh i; ð11Þ

parameterizes Lflow: In particular this implies that

fðt; @tSðt; x; ZÞ; x; @xSðt; x; ZÞ; @ZSðt; x; ZÞ;�ZÞgCLflow;

and that the function S is a generating function of the flow, i.e.

Ftð@ZSðt; x; ZÞ; ZÞ ¼ ðx; @xSðt; x; ZÞÞ: ð12Þ

Moreover, S satisfies the Hamilton–Jacobi equation

@tSðt; x; ZÞ þ p0ðx; @xSðt; x; ZÞÞ ¼ 0;

Sð0; x; xÞ ¼ /x; xS:




Now, we apply this result with ðx0; x0Þ ¼ ðy0; Z0Þ; our unique fixed point of the flow
on the energy surface SEc

:

Remark 10. If x0 ¼ 0 we can replace the operator Ph by e
i
h
/x;x1SPhe�

i
h
/x;x1S with

x1a0: This will not change the spectrum since this new operator has the symbol
pðx; x� x1; hÞ and the critical point is now ðx0; x1Þ with x1a0:

Consequently, the localized trace g2ðEc; hÞ; defined in Eq. (9), can be written for all
NAN and modulo OðhNÞ as

g2ðEc; hÞ ¼
X
joN

ð2phÞ�dþj

Z
RR2n

e
i
h
ðSðt;x;xÞ�/x;xSþtEcÞajðt; x; xÞ #jðtÞ dt dx dx: ð13Þ

To obtain the right power �d of h occurring here we apply results of Duistermaat [9]
(following here Hörmander for the FIO, see [13, Tome 4], for example) concerning
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the order. An h-pseudo-differential operator obtained by Weyl quantization

ð2phÞ�
N
2

Z
RN

a
x þ y

2
; x

� �
e

i
h
/x�y;xS dx

is of order 0 w.r.t. 1=h: Now since the order of UhðtÞYðPhÞ is �1
4
; we find that

cwðx; hDxÞUhðtÞYðPhÞB
X
joN

ð2phÞ�nþj

Z
Rn

ajðt; x; y; ZÞe
i
h
ðSðt;x;ZÞ�/y;ZSÞ dy: ð14Þ

Multiplying Eq. (14) by #jðtÞe
i
h
tEc and passing to the trace we find Eq. (13) with d ¼ n

and where we write again ajðt; x; ZÞ for ajðt; x; x; ZÞ:
To each element uh of IðRk;LÞ we can associate a principal symbol e

i
h

SsprincðuhÞ;
where S is a function on L such that x dx ¼ dS on L: In fact, if uh ¼ Iðae

i
h
jÞ then we

have S ¼ Sj ¼ j3i�1j and sprincðuhÞ is a section of jLj
1
2#MðLÞ; where MðLÞ is the

Maslov vector-bundle of L and jLj
1
2 the bundle of half-densities on L: The half-

density of the propagator UhðtÞ can be easily expressed in the global coordinates
ðt; y; ZÞ on Lflow: If p1 is the sub-principal symbol of Ph; then this half-density is given
by

exp i

Z t

0

p1ðFsðy;�ZÞÞ ds

� �
j dt dy dZj

1
2: ð15Þ

This expression is related to the resolution of the first transport equation for the
propagator, for a proof we refer to Duistermaat and Hörmander [10].

4. Classical dynamic near the equilibrium

A critical points of the phase function of (13) satisfies the equations

Ec ¼ �@tSðt; x; xÞ;
x ¼ @xSðt; x; xÞ;
x ¼ @xSðt; x; xÞ;

8><
>: 3

p0ðx; xÞ ¼ Ec;

Ftðx; xÞ ¼ ðx; xÞ;




where the right-hand side defines a closed trajectory of the flow inside SEc
: Since we

are interested in the contribution of the critical point, we choose a function
cACN

0 ðT�RnÞ; with c ¼ 1 near z0; hence

g2ðEc; hÞ ¼ 1

2p
Tr

Z
R

ei
tEc

h #jðtÞcwðx; hDxÞexp � i

h
tPh

� �
YðPhÞ dt

þ 1

2p
Tr

Z
R

ei
tEc

h #jðtÞð1� cwðx; hDxÞÞexp � i

h
tPh

� �
YðPhÞ dt:
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Under the additional hypothesis of having a clean flow, the asymptotics
of the second term is given by the semi-classical trace formula on a regular
level. We also observe that the contribution of the first term is micro-local.
Hence this allows to introduce local coordinates near z0: To separate the
contribution of z0 from other closed trajectories we use the following result on the
classical dynamic.

Lemma 11. For all T40 there exists a neighborhood UT of the critical point such that

FtðzÞaz for all zAUT \fz0g and for all tA�-T ; 0½,�0;T ½:

Proof. Since z0 is a degenerate critical point we have dHp0ðz0Þ ¼ 0: Hence, for all

e40 we can find a neighborhood U of z0 such that

jjdHp0ðzÞjjpe; 8zAU :

By a theorem of Yorke [21] we obtain that any closed trajectory in U has a period T0

that satisfies T0X2pe�1: Thus for any T we can choose eT ; and then UT ; such that
T04T : &

With suppð #jÞ compact we can choose c such that Lemma 11 holds on suppðcÞ for
all tAsuppð #jÞ: Hence, on the support of c there is two contributions:

(1) Points ðt; x; xÞ ¼ ð0; x; xÞ for ðx; xÞASEc
:

(2) Points ðt; x; xÞ ¼ ðt; z0Þ for tAsuppð #jÞ:

The first contribution is non-singular for ðx; xÞaz0 and can be treated, again, by the
regular trace formula. Now, we restrict our attention to the second contribution and,
since z0 is totally degenerate, we obtain

dFtðz0Þ ¼ expð0Þ ¼ Id; 8t: ð16Þ

The next homogeneous components of the flow are given, with ðH2Þ; by

djFtðz0Þ ¼ 0; 8t; 8jAf2;y; k � 2g: ð17Þ

To obtain the next non-zero term of the Taylor expansion of the flow, we will use the
following technical result:

Lemma 12. Let be z0 an equilibrium of the CN vector field X and Ft the flow of X :
Then for all mAN�; there exists a polynomial map Pm; vector valued and of degree at

most m; such that

dmFtðz0ÞðzmÞ ¼ dFtðz0Þ
Z t

0

dF�sðz0ÞPmðdFsðz0ÞðzÞ;y; dm�1Fsðz0Þðzm�1ÞÞ ds:

For a proof we refer to [4] or [5].
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Since dFtðz0Þ ¼ Id; for all t; the first non-zero term of the Taylor expansion of the
flow is given by

dk�1Ftðz0Þðzk�1Þ ¼
Z t

0

dk�1Hp0ðz0Þðzk�1Þ ds ¼ tdk�1Hpk
ðz0Þðzk�1Þ; ð18Þ

where the last identity is obtained using that dk�1Hp0ðz0Þ ¼ dk�1Hpk
ðz0Þ: Moreover,

with d2pðz0Þ ¼ 0; for the next term Lemma 12 gives

dkFtðz0ÞðzkÞ ¼
Z t

0

dkHp0ðz0ÞðzkÞ ds ¼ tdkHpkþ1ðz0Þðz
kÞ:

Remark 13. For higher order derivatives djFtðz0Þ; with j4k; there is two different
kind of terms, namelyZ t

0

djHp0ðz0ÞðzjÞ ds ¼ tdjHp0ðz0ÞðzjÞ ¼ OðjjzjjjÞ;

and terms involving powers of t; for example we have:Z t

0

djþ2�kHp0ðz0Þðzjþ1�k; dk�1Ftðz0Þðzk�1ÞÞ

¼ t2

2
djþ2�kHp0ðz0Þðzjþ1�k; dk�1Hpk

ðz0Þðzk�1ÞÞ:

This term is simultaneously Oðt2Þ and OðjjzjjjÞ near ð0; z0Þ: A similar result holds for

other terms, which are OðtdÞ for dX2; by an easy recurrence.

Lemma 14. Near z0; here supposed to be 0 to simplify, we have

Sðt; x; xÞ �/x; xSþ tEc ¼ �tðpkðx; xÞ þ Rkþ1ðx; xÞ þ tGkþ1ðt; x; xÞÞ; ð19Þ

where Rkþ1ðx; xÞ ¼ Oðjjðx; xÞjjkþ1Þ and Gkþ1ðt; x; xÞ ¼ Oðjjðx; xÞjjkþ1Þ; uniformly with

respect to t:

Proof. By Taylor we obtain

Ftðx; xÞ ¼ ðx; xÞ þ 1

ðk � 1Þ! dk�1Ftð0Þðzk�1Þ þ OðjjzjjkÞ:

We search our local generating function as

Sðt; x; xÞ ¼ �tEc þ/x; xSþ
XN

j¼3
Sðt; x; xÞ þ Oðjjðx; xÞjjNþ1Þ;

where the Sj are time dependant and homogeneous of degree j w.r.t. ðx; xÞ: With the

implicit relation Ftð@xSðt; x; xÞ; xÞ ¼ ðx; @xSðt; x; xÞÞ; we have

Sðt; x; xÞ ¼ �tEc þ/x; xSþ Skðt; x; xÞ þ Oðjjðx; xÞjjkþ1Þ;
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where Sk is homogeneous of degree k w.r.t. ðx; xÞ: If J is the matrix of the usual
symplectic form, comparing terms of same degree gives

JrSkðt; x; xÞ ¼ 1

ðk � 1Þ! dk�1Ftð0Þððx; xÞk�1Þ:

By homogeneity and with Eq. (18) we obtain

Skðt; x; xÞ ¼ 1

k!
/ðx; xÞ; tJdk�1Hpk

ðx; xÞk�1S ¼ �tpkðx; xÞ;

Sðt; x; xÞ ¼ �tEc þ/x; xS� tpkðx; xÞ þ Oðjjðx; xÞjjkþ1Þ:

As concern the remainder, we first observe that Sð0; x; xÞ ¼ /x; xS: Hence, we can
write

Sðt; x; xÞ �/x; xS ¼ tFðt; x; xÞ;

with F smooth in a neighborhood of ðx; xÞ ¼ 0: Now, the Hamilton–Jacobi equation
imposes that Fð0; x; xÞ ¼ �p0ðx; xÞ and we obtain

Rkþ1ðx; xÞ ¼ p0ðx; xÞ � Ec � pkðx; xÞ ¼ Oðjjðx; xÞjjkþ1Þ:

Finally, the time-dependant remainder can be written as

Sðt;x; xÞ � Sð0; x; xÞ � t@tSð0; x; xÞ ¼ Oðt2Þ;

since by construction this term is of order Oðjjðx; xÞjjkþ1Þ we get the desired result
when t is in a compact subset of R: &

5. Normal forms of the phase function

Since the contribution we study is local, we can work with some coordinates and

identify locally T�Rn with R2n near the critical point. We define

Cðt; zÞ ¼ Cðt; x; xÞ ¼ Sðt; x; xÞ �/x; xSþ tEc; z ¼ ðx; xÞAR2n: ð20Þ

Lemma 15. If Ph satisfies conditions ðH2Þ and ðH4Þ then, in a neighborhood of ðt; zÞ ¼
ð0; z0Þ; there exists local coordinates w such that

Cðt; zÞC� w0w
k
1 ; in all directions where pkðyÞ40;

Cðt; zÞCþ w0w
k
1 ; in all directions where pkðyÞo0;

Cðt; zÞCw0w
k
1w2; near any point where pkðyÞ ¼ 0:
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Proof. We can here assume that z0 is the origin and we use polar coordinates z ¼
ðr; yÞ; yAS2n�1ðRÞ: With Lemma 14, near the critical point we have

Cðt; zÞC� trkðpkðyÞ þ rRkþ1ðyÞ þ tGkþ1ðt; ryÞÞ;

where pkðyÞ is the restriction of pk on S2n�1:
If pkðy0Þa0 we define new coordinates

ðw0; w2;y; w2nÞðt; r; yÞ ¼ ðt; y1;y; y2n�1Þ;

w1ðt; r; yÞ ¼ rjpkðyÞ þ rRkþ1ðyÞ þ tGkþ1ðt; ryÞj
1
k:

In these coordinates the phase becomes �w0w
k
1 if pkðy0Þ is positive (resp. w0wk

1 for a

negative value). Near y0; we have

@w1
@r

ðt; 0; yÞ ¼ jpkðyÞj
1
ka0; 8t;

hence, the corresponding Jacobian satisfies jJwjðt; 0; yÞ ¼ jpkðyÞj
1
ka0:

Now, let y0 be such that pkðy0Þ ¼ 0: Up to a permutation, we can suppose that
@y1pkðy0Þa0: We choose here the new coordinates

ðw0; w1; w3;y; w2nÞðt; r; yÞ ¼ ðt; r; y2;y; y2n�1Þ;

w2ðt; r; yÞ ¼ pkðyÞ þ rRkþ1ðyÞ þ tGkþ1ðt; ryÞ:

Since we have jJwjðt; 0; y0Þ ¼ j@y1pkðy0Þja0; lemma follows. &

In order to use these normal forms we introduce an adapted partition of unity on

S2n�1: We choose functions OjðyÞ; with compact supports, such that

fyAS2n�1=pkðyÞ ¼ 0gC
[

j

suppðOjÞ;

so that normal forms of Lemma 15 exist inside suppðOiÞ: Since S2n�1 is compact this
set of functions can be chosen finite and we obtain a partition of unity with O0 ¼
1�

P
Oi: The support of O0 might be not connected and we define Oþ

0 ; with

pkðyÞ40 on suppðOþ
0 Þ; and similarly we define O�

0 where pko0; so that O0 ¼
Oþ
0 þ O�

0 :
If we accordingly split up our oscillatory-integral we obtain

IþðlÞ ¼
Z
RRþS2n�1

e
i
h
Cðt;r;yÞOþ

0 ðyÞaðt; ryÞr2n�1 dt dr dy

¼
Z
RRþ

e�
i
h
w0w

k
1Aþ

0 ðw0; w1Þ dw0 dw1;

ARTICLE IN PRESS
B. Camus / Journal of Functional Analysis 217 (2004) 79–10290



for the directions where pkðyÞ40 and

I�ðlÞ ¼
Z
RRþS2n�1

e
i
h
Cðt;r;yÞO�

0 ðyÞaðt; ryÞr2n�1 dt dr dy

¼
Z
RRþ

e
i
h
w0w

k
1A�

0 ðw0; w1Þ dw0 dw1;

for the directions where pkðyÞo0: Similarly, the contribution of the neighborhood of
the set fpkðyÞ ¼ 0g is given by

IjðlÞ ¼
Z
RRþS2n�1

e
i
h
Cðt;r;yÞOjðyÞaðt; ryÞr2n�1 dt dr dy

¼
Z
RRþR

e
i
h
w0w

k
1
w2Ajðw0; w1; w2Þ dw0 dw1 dw2:

The associated new amplitudes are, respectively, given by

A7
0 ðw0; w1Þ ¼

Z
w�ðO7

0 ðyÞaðt; ryÞr2n�1jJwjÞdw2ydw2n; ð21Þ

Ajðw0; w1; w2Þ ¼
Z

w�ðOjðyÞaðt; ryÞr2n�1jJwjÞdw3ydw2n: ð22Þ

Remark 16. Since w1ðt; r; yÞ ¼ rjpkðyÞ þ rRkþ1ðyÞ þ tGkþ1ðt; ryÞj
1
k; our new ampli-

tude satisfies A7
0 ðw0; w1Þ ¼ Oðw2n�1

1 Þ; near w1 ¼ 0: A similar argument shows that

Aiðw0; w1; w2Þ ¼ Oðw2n�1
1 Þ; near w1 ¼ 0: These facts will play a major role in Lemmas

17, 19 and 21.

We end this section with lemmas on asymptotics of oscillatory integrals with
phases as in Lemma 15.

Lemma 17. There exists a sequence ðcjÞj of distributions, whose support is contained in

the set fw1 ¼ 0g; such that for all function aACN

0 ðRþ  RÞ:
Z

N

0

Z
R

eilw0w
k
1aðw0; w1Þdw0

� �
dw1B

XN
j¼0

l�
jþ1

k cjðaÞ; ð23Þ

asymptotically for l-N; where

cj ¼
1

k

1

j!
ðFðx

jþ1�k
k� Þðw0Þ#dðjÞ0 ðw1ÞÞ; x� ¼ maxð�x; 0Þ:

We refer to [6] for a proof of this lemma.
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Remark 18. A similar result holds for a phase �w0w
k
1 if we replace terms x� by xþ in

Lemma 17.

Lemma 19. If k42n we have

Z
N

0

Z
R2

eilw0w
k
1
w2aðw0; w1; w2Þdw0dw2

� �
w2n�1
1 dw1 ¼ l�

2n
k dðaÞ þ Oðl�

2nþ1
k log2ðlÞÞ;

where the leading coefficient is given by

dðaÞ ¼ 1

k
G

2n

k

� �Z
R2

jw0w2j�
2n
k exp i

pn

k
sign ðw0w2Þ

� �
aðw0; 0; w2Þ dw0 dw2: ð24Þ

Proof. We use the Bernstein–Sato polynomial, see [20] for a detailed construction.
We use variables ðt; r; vÞ instead of ðw0; w1; w2Þ and since w1X0 for tvX0 we can write

@2

@t@v

@k

@rk
ððtvrkÞ1�z

r2n�1Þ ¼ bkðzÞðtvrkÞ�z
r2n�1; ð25Þ

bkðzÞ ¼ ð1� zÞ2
Yk

j¼1
ð j � kz þ 2n � 1Þ: ð26Þ

With the classical representation

Z
N

0

Z
ftvX0g

eiltvrk

aðt; r; vÞ dt dv dr

¼ 1

2ip

Z
g

ei
pz
2 GðzÞl�z

Z
N

0

Z
ftvX0g

ðtvrkÞ�z
aðt; r; vÞ dt dv dr

 !
dz;

where g ¼�c � iN; c þ iN½ and ReðcÞok�1; we can compute the asymptotic
expansion with the residue method by pushing of the complex path of integration
g to the right. Note that, when the phase is negative, we have

1

2ip

Z
g

e�i
pz
2 GðzÞl�z

Z
N

0

Z
ftvp0g

ðjtvjrkÞ�z
aðt; r; vÞ dt dv dr

 !
dz: ð27Þ

With Eqs. (25) and (26) the meromorphic extension is given byZ
N

0

Z
ftvX0g

ðtrkvÞ�z
r2n�1aðt; r; vÞ dt dr dv

¼ ð�1Þk

bkðzÞ

Z
N

0

Z
ftvX0g

ðtvrkÞ1�z
r2n�1 @2

@t@v

@k

@rk
aðt; r; vÞ dt dv dr:
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Under our assumptions, the poles are z ¼ 1 as a double pole and

z ¼ j þ 2n � 1

k
; jA½1;y; k�:

Since k42n; the first pole is 2n
k
eZ: The residue in this pole is

ck;nl
�2n

k exp ip
n

k

� �
G

2n

k

� �Z
ftv40g

ðtvÞ1�
2n
k rk�1 @2

@t@v

@k

@rk
aðt; r; vÞ dt dv dr;

ck;n ¼ ð�1Þk lim
z-

2n
k

ðz � 2n
k
Þ

bkðzÞ
¼ ð�1Þkþ1 k

ðk � 2nÞ2GðkÞ
:

Now, with the following relations:

Z
t;v40

ðtvÞ1�
2n
k

@2a

@t@v
ðt; vÞ dt dv ¼ 1� 2n

k

� �2Z
t;v40

ðtvÞ�
2n
k aðt; vÞ dt dv;

ð�1Þk

Z
r40

rk�1 @
ka

@rk
dr ¼ ðk � 1Þ!að0Þ;

and also using that

k

ðk � 2nÞ2GðkÞ
1� 2n

k

� �2

ðk � 1Þ!G 2n

k

� �
¼

Gð2n
k
Þ

k
;

we find that the first residue is given by

expðipn
k
Þ

k
l�

2n
k G

2n

k

� �Z
ft;vX0g

ðtvÞ�
2n
k aðt; 0; vÞ dt dv:

The summation over the other quadrants gives the result with Eq. (27). Finally, the

remainder is of order Oðl�
2nþ1

k log2ðlÞÞ if 2n þ 1 ¼ k and of order Oðl�
2nþ1

k Þ
otherwise. &

Remark 20. The preceding result holds again, in a weaker sense, if k is not a divisor
of 2n; as can be shown by iterating the process of meromorphic extension above and

using the fact that our amplitude is Oðw2n�1
1 Þ near w1 ¼ 0: Now, if k divide 2n then

terms l�j logdðlÞ; with d ¼ 1; 2; can appear for the leading term, since we obtain
poles of order 3 for the first non-zero residue.
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Example. If we consider Gaussian amplitude, we obtain easily

Iðl; k; nÞ ¼
Z
RþR2

eiltrkve�ðt2þv2þr2Þr2n�1 dr dt dv ¼ 2p
Z

N

0

r2n�1e�r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ r2kl2

p dr:

The choice of k ¼ 5 and n ¼ 2 leads to

Iðl; 5; 2ÞB2p
Gð2

5
ÞGð11

10
Þ

2
1
5
ffiffiffi
p

p l�
4
5 þ Oðl�1Þ:

This extra Gamma-factor comes from the identity

Z
R2

jtvj�
4
5e�t2e�v2 dt dv ¼ G

1

10

� �2

:

Lemma 21. When k ¼ 2n we have the particular resultZ
N

0

Z
R2

eilw0w
2n
1
w2aðw0; w1; w2Þdw0dw2

� �
w2n�1
1 dw1 ¼ l�1logðlÞdðaÞ þ Oðl�1Þ;

with the leading coefficient

dðaÞ ¼ p
n

að0; 0; 0Þ: ð28Þ

Proof. We use again the Bernstein–Sato polynomial method. We use variables
ðt; r; vÞ instead of ðw0; w1; w2Þ and we define

JþðlÞ ¼
Z

N

0

Z
ftv40g

eiltvr2n

aðt; r; vÞr2n�1 dt dr dv;

similarly, we define J�ðlÞ on the set ftvo0g: Then we can write

JþðlÞ ¼
1

2ip

Z
g

ei
pz
2 GðzÞl�z

Z
N

0

Z
ftv40g

ðtvÞ�z
r�2nzaðt; r; vÞr2n�1 dt dr dv;

where g ¼�c � iN; c þ iN½; coð2nÞ�1: Similar computations as in the proof of
Lemma 19 show that the associated Bernstein–Sato polynomial is

b2nðzÞ ¼ ð1� zÞ2
Y2n

j¼1
ð j � 2nz þ 2n � 1Þ;

under our assumptions the first pole is z ¼ 1 and is of order 3. We define two
holomorphic functions, near z ¼ 1; via

G7
n ðzÞ ¼ ðz � 1Þ3

b2nðzÞ
e7i

pz
2 GðzÞ:
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Hence, when using the residue method, the first terms of the asymptotic expansion of
JþðlÞ are given by the formula

1

2
lim
z-1

@2

@z2
Gþ

n ðzÞl�z

Z
N

0

Z
ftv40g

ðtvÞ1�z
r2n�2nzr2n�1 @2

@t@v

@2n

@r2n
aðt; r; vÞ dt dr dv

 ! !
;

and we have a similar formula for J�ðlÞ if we use G�
n ðzÞ and integration over

ftvo0g: For all holomorphic application f and all l40; we have

@2

@z2
ð f ðzÞl�zÞ ¼ @2f

@z2
ðzÞl�z � 2 logðlÞ@f

@z
ðzÞl�z þ log2ðlÞ f ðzÞl�z: ð29Þ

The term involving log2ðlÞ is computed as in Lemma 19 and we have

lim
z-1

Gþ
n ðzÞ ¼ � i

ð2nÞ!:

The distributional factor is here given by

Z
N

0

Z
ftv40g

r2n�1 @2

@t@v

@2n

@r2n
aðt; r; vÞ dt dr dv ¼ 2ð2n � 1Þ!að0; 0; 0Þ:

Hence the contribution is given by

�log2ðlÞl�1 i

n
að0; 0; 0Þ;

but when the phase is negative we have

lim
z-1

G�
n ðzÞ ¼ þ i

ð2nÞ!;

consequently, by summation, there is no term associated to logðlÞ2:
Now, we compute the main term associated to the logðlÞ:
For the same reason as previously all terms obtained by derivation of GðzÞ and

ðz � 1Þ3=b2nðzÞ will give a zero contribution by summation. This will not be true for
terms obtained by derivation of the exponential. As concerns derivation of the
meromorphic distributions, we obtain, respectively,

� i

ð2nÞ!

Z
N

0

Z
ftv40g

logðtvr2nÞr2n�1 @2

@t@v

@2n

@r2n
aðt; r; vÞ dt dr dv;

þ i

ð2nÞ!

Z
N

0

Z
ftvo0g

logðjtvjr2nÞr2n�1 @2

@t@v

@2n

@r2n
aðt; r; vÞ dt dr dv:
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By summation and using that logðjtvjr2nÞ ¼ logðjtvjÞ þ logðr2nÞ we easily obtain that
the associated factor is given by

� i

2n

Z
ftv40g

logðtvÞ @2

@t@v
aðt; 0; vÞ dt dv �

Z
ftvo0g

logðjtvjÞ @2

@t@v
aðt; 0; vÞ dt dv

 !
:

A new splitting of the logarithms and integrations by parts show that the associated
contribution vanish.
It remains now to compute the term associated to the derivation of the

exponential. An easy computation shows that the associated contribution is

logðlÞl�1 i
p
2

� � ei
p
2

ð2nÞ!

Z
N

0

Z
ftv40g

r2n�1 @2

@t@v

@2n

@r2n
aðt; r; vÞ dt dr dv;

by integrations by parts, we finally obtain that the contribution is given by

logðlÞl�1 i
p
2

� �ei
p
2

2n

Z
ftv40g

@2

@t@v
aðt; 0; vÞ dt dv ¼ � p

2n
logðlÞl�1að0; 0; 0Þ:

With Eq. (29) we have

JþðlÞ ¼
p
2n

logðlÞl�1að0; 0; 0Þ þ Oðl�1Þ:

A totally similar calculation gives

J�ðlÞ ¼
p
2n

logðlÞl�1að0; 0; 0Þ þ Oðl�1Þ;

and the result holds by summation of J�ðlÞ and JþðlÞ: &

Example. We use again an amplitude that is a product of Gaussian-functions, we
have

Iðl; k; nÞ ¼
Z
RþR2

eiltrkve�ðt2þv2þr2Þr2n�1 dr dt dv ¼ 2p
Z

N

0

r2n�1e�r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ r2kl2

p dr:

Hence, for k ¼ 2 and n ¼ 1 we obtain

Iðl; 2; 1Þ ¼ 1

4l
�2p2Y0

2

l

� �
þ ð2p� 1ÞJ0

2

l

� �
log

1

l2

� �
þ pH0

2

l

� �� �
;

where JvðxÞ; YvðxÞ are, respectively, the standard Bessel functions of first and second
kind. Also, HvðxÞ is the standard Struve function defined by

z2y00ðzÞ þ zy0ðzÞ þ ðz2 � v2ÞyðzÞ ¼ 2

p
zvþ1

ð2v � 1Þ!!:
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From classical properties of these special functions, we obtain

Iðl; 2; 1ÞB p logðlÞ � gp
l

� �
þ Oðl�2Þ: ð30Þ

Here, g is Euler’s constant and is obtained by derivation of the GðzÞ factor in the
formula that gives meromorphic extensions of our distributions. &

6. Proof of the main results

Directions where pkðyÞa0: Following step by step the proof of Lemma 4 of [6] we
obtain that the first non-zero coefficient is obtained for l ¼ 2n � 1 (see Remark 16)
and is given by

1

k

1

ð2n � 1Þ! Fðx
2n�k

k
þ Þ#dð2n�1Þ

0 ;Aþ
0 ðw0; w1Þ

� 	
¼ 1

k

Z
Fðx

2n�k
k

þ Þðw0ÞÃþ
0 ðw0; 0Þdw0:

Since by construction

Ãþ
0 ðw0; 0Þ ¼

Z
S2n�1

aðw0; 0ÞOþ
0 ðyÞjpkðyÞj�

2n
k dy; ð31Þ

we obtain that the local contribution, associated to suppðOþ
0 Þ; is

1

k
ðFðx

2n�k
k

þ Þðw0Þ; aðw0; 0Þ
� 	Z

S2n�1
Oþ
0 ðyÞjpkðyÞj�

2n
k dy: ð32Þ

A similar computation gives the contribution of suppðO�
0 Þ; via

1

k
ðFðx

2n�k
k� Þðw0Þ; aðw0; 0Þ

� 	Z
S2n�1

O�
0 ðyÞjpkðyÞj�

2n
k dy: ð33Þ

Now, since aðt; 0Þ ¼ #jðtÞexpðitp1ðz0ÞÞ; cf. Eq. (15), the contributions of the
directions where pkðyÞa0 are given, respectively, by

IþðlÞB
1

k
l�

2n
k jtj

2n�k
k

þ ;jðt þ p1ðz0ÞÞ
� 	Z

S2n�1
Oþ
0 ðyÞjpkðyÞj

�2n
k dy; ð34Þ

for the set of directions where pkðyÞ40 and by

I�ðlÞB
1

k
l�

2n
k jtj

2n�k
k� ;jðt þ p1ðz0ÞÞ

� 	Z
S2n�1

O�
0 ðyÞjpkðyÞj�

2n
k dy; ð35Þ

for the directions where pkðyÞ is negative.
Microlocal contribution of the set pkðyÞ ¼ 0:
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Case of k42n: Here we examine the contribution of termsZ
e

i
h
w0w

k
1
w2Aiðw0; w1; w2Þ dw0 dw1 dw2;

but Lemma 19 shows that these are given by

1

k
G

2n

k

� �
h
2n
k

Z
jw0w2j

�2n
k exp i

pn

k
signðw0w2Þ

� �
Ãiðw0; 0; w2Þ dw0 dw2 þ Oðh

2nþ1
k log2ðhÞÞ:

Writing the delta-Dirac distribution as an oscillatory integral leads to

1

k
G

2n

k

� �
h
2n
k
1

2p

Z
eizw1 jw0w2j�

2n
k exp i

pn

k
sign ðw0w2Þ

� �
Ãiðw0; w1; w2Þ dw0 dw1 dw2 dz;

with the amplitude

Ãiðw0; w1; w2Þ ¼
Z

w�ðOiðyÞaðt; ryÞjJwjÞdw3ydw2n:

Now, we return to the initial coordinates and with w1 ¼ r this gives

1

k
G

2n

k

� �
h
2n
k
1

2p

Z
eizrjðw0w2Þðt; r; yÞj�

2n
k OiðyÞexp i

pn

k
signðw0w2Þ

� �
aðt; ryÞ dt dr dy dz;

if we use that ðw0; w1; w2Þðt; 0; yÞ ¼ ðt; 0; pkðyÞÞ; we obtain

1

k
G

2n

k

� �
h
2n
k

Z
RS2n�1

jtpkðyÞj�
2n
k exp i

pn

k
signðtpkðyÞÞ

� �
OiðyÞaðt; 0Þ dt dy:

Hence, when pkðyÞ is positive, we have

1

k
G

2n

k

� �Z
R

jtj�
2n
k exp i

pn

k
signðtÞ

� �
#jðtÞeitp1ðz0Þ dt

¼ 1

k
G

2n

k

� �
jtj�

2n
k

þ exp i
pn

k

� �
þ jtj�

2n
k� exp �i

pn

k

� �
; #jðtÞeitp1ðz0Þ

� 	
:

Similarly, when pkðyÞ is negative we have

1

k
G

2n

k

� �Z
R

jtj�
2n
k exp �i

pn

k
signðtÞ

� �
#jðtÞeitp1ðz0Þ dt

¼ 1

k
G

2n

k

� �
jtj�

2n
k

þ exp �i
pn

k

� �
þ jtj�

2n
k� exp i

pn

k

� �
; #jðtÞeitp1ðz0Þ

� 	
:
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Hence, by summation the contribution is

1

k
G

2n

k

� �
h
2n
k cos

pn

k

� �
jtj�

2n
k ; #jðtÞeitp1ðz0Þ

� 	Z
S2n�1

OiðyÞjpkðyÞj�
2n
k dy

�

þ i sin
pn

k

� �
jtj�

2n
k signðtÞ; #jðtÞeitp1ðz0Þ

� 	Z
S2n�1

OiðyÞjpkðyÞj
�2n

k signðpkðyÞÞ dy
�
:

If we use the classical relations

FðjxjlÞðxÞ ¼ �2 sin lp
2

� �
Gðlþ 1Þjxj�l�1;

FðjxjlsignðxÞÞðxÞ ¼ 2i cos
lp
2

� �
Gðlþ 1Þjxj�l�1 signðxÞ;

we obtain, after some manipulations, that the contribution is

1

k
h
2n
k jtj

2n
k
�1;jðt þ p1ðz0ÞÞ

� 	Z
S2n�1

OiðyÞjpkðyÞj
�2n

k dy
�

þ jtj
2n
k
�1signðtÞ;jðt þ p1ðz0ÞÞ

� 	Z
S2n�1

OiðyÞjpkðyÞj�
2n
k signðpkðyÞÞ dy

�
:

We can split the integral with respect to dy into two parts to finally obtain

1

k
h
2n
k jtj

2n
k
�1

þ ;jðt þ p1ðz0ÞÞ
� 	Z

S2n�1-fpkX0g
OiðyÞjpkðyÞj

�2n
k dy

 

þ jtj
2n
k
�1

� ;jðt þ p1ðz0ÞÞ
� 	Z

S2n�1-fpkp0g
OiðyÞjpkðyÞj�

2n
k dy

!
:

With Eqs. (34) and (35), by summation on the partition of unity the main
contribution to the trace formula is given by

gz0
ðEc; hÞC 1

k

h
2n
k
�n

ð2pÞn jtj
2n
k
�1

þ ;jðt þ p1ðz0ÞÞ
� 	Z

S2n�1-fpkX0g
jpkðyÞj�

2n
k dy

 

þ jtj
2n
k
�1

� ;jðt þ p1ðz0ÞÞ
� 	Z

S2n�1-fpkp0g
jpkðyÞj�

2n
k dy

!
: ð36Þ

And this proves the first statement of Theorem 4 for k42n: &
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Case of k ¼ 2n. Here the contribution is given by

Z
RRþS2n�1

e
i
h
Cðt;r;yÞOiðyÞaðt; ryÞr2n�1 dt dr dy ¼

Z
e

i
h
w0w

k
1
w2Aiðw0; w1; w2Þdw0 dw1 dw2;

and we recall that the amplitude is given by

Aiðw0; w1; w2Þ ¼
Z

w�ðOiðyÞaðt; ryÞr2n�1jJwjÞ dw3ydw2n:

With Ai ¼ w2n�1
1 Ãi; from Lemma 21 we know that we have

Z
e

i
h
w0w

k
1
w2Ãiðw0; w1; w2Þw2n�1

1 dw0 dw1 dw2 ¼
ph

n
logðhÞÃið0; 0; 0Þ þ OðhÞ:

Where, by construction, we have defined

Ãiðw0; w1; w2Þ ¼ w�ð2n�1Þ
1

Z
w�ðOiðyÞaðt; ryÞr2n�1jJwjÞ dw3ydw2n:

With z ¼ ðz1; z2; z3Þ; we write the amplitude as

Ãið0; 0; 0Þ ¼
1

ð2pÞ3
Z

e�i/z;ðw0;w1;w2ÞSÃiðw0; w1; w2Þ dz dw0 dw1 dw2;

and by inversion of our diffeomorphism we obtain:

Ãið0; 0; 0Þ ¼
1

ð2pÞ3
Z

e�i/z;ðw0;w1;w2ÞSOiðyÞaðt; ryÞ dr dt dy dz:

Using that ðw0; w1Þ ¼ ðt; rÞ; by integration w.r.t. ðt; r; z1; z2Þ we get

Ãið0; 0; 0Þ ¼
1

2p

Z
e�iz3w2ð0;0;yÞOiðyÞað0; 0Þ dy dz3:

By construction w2ðt; 0; yÞ ¼ pkðyÞ and, since pkðyÞ is an admissible coordinate on
suppðOiÞ; we can use the change of coordinates u ¼ pkðyÞ; this leads to

Ãið0; 0; 0Þ ¼
1

2p
að0; 0Þ

Z
e�iz3uOiðyÞ dLpk

ðyÞ du dz3;

with dpk4dLpk
ðyÞ ¼ dy: If we introduce

Cpk
¼ fyAS2n�1=pkðyÞ ¼ 0g;
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the sum over the partition of unity gives

X
i

Z
Cpk

OiðyÞ dLpk
ðyÞ ¼ LVolðCpk

Þ;

where LVol is the Liouville volume attached to pkðyÞ on S2n�1: Finally, since we
have aðt; 0Þ ¼ #jðtÞexpðitp1ðz0ÞÞ; the second statement of Theorem 4 holds.
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Thèse de l’université Paris 9, 1996.
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