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1. Preface 

Typical of what we define as fine categories are the categories of semiuniform 
spaces, bitopological spaces, preordered sets, and sets. Each admits taking finite 
products, has a base functor to S, and has a conjugation: a self functor of order 2. A 
fine functor between such fine categories preserves products, conjugation and 
respects the base functors. 

In defining a nonnullary operation on such a fine category we also permit 
different variances (co, contra, variance) at different terms. Thus when considering 
a ordered group (additively written) an operation like (a, b)+(a - b) would be a 
binary operation with covariance in the first term and contravariance in the second 
(relative to the order). We use a variance function: here v will take the indices (1,2) 
of the binary operation to (+ 1, - 1). 

When we have composite structures GDF, HD’F’, where F, F’ are collections of 
algebraic operations, 0, D’ equations or identities for the algebras, and G, H types 
of fine category structures, we can have two types of functors between these. A type 
T: GDF*HDF, which keeps the algebraic part unchanged, and a type L : GDF* 
GD’F’ which keeps the fine part unchanged. What we prove in this paper is that, not 
only do these types of functors have left-adjoints, but more: the first type of functor 
is topological in the sense of Herrlich’s definition [l], while the second type is 
algebraic (or monoidal or triplable). 

2. Fine categories and fine functors 

Definition. A category G is called a fine category if it has a base funcfor B: G-S 
and a conjugation functor IV: G-G satisfying the following conditions: G is closed 
for formation of products for finite families of its objects (or morphisms), B is a 
faithful functor which preserves products and conjugation (assuming Is as the 
conjugation in S, B preserves conjugation means that, for any object A of G, and 
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any morphism f of G, B(N(A)) =&A), B(N(f))=Bdf)), and N. N= lo (thus 
N(N(A)) =A and N(Ncf)) =f, for any object A of G and any morphism f of G)). 

When talking of different fine categories we use the same names B, N for the base 
functor and the conjugation functor for all of them. 

Definition. A functor K: G-H, where G, H are both fine categories, is called a 
fine funclor if K preserves finite products, B and N; that is, B=B. K and K. N= 
N.K. 

Clearly the identity functor is a fine functor for any fine category; and the base 
functor B of a fine category is a fine functor, when we set both B, N = 1 s to make S a 
fine category. Also compositions of fine functors give fine functors. 

Thus S is a fine category. Next we have the fine category PO, whose objects are 
preordered sets and morphisms are monotone maps; B being a forgetful functor, 
and N taking a f: (X, I)*( Y, I) tof: (X, z)-+( Y, 1). 

For the next fine category, we define a bitopological space (X, 7’, 7’). When Tis a 
topology (= family of open sets for a topology) on the set X there is an associated 
preorder I(T) on X defined by: x c(T) y iff [ye GE Timplies XE G]. When T, T 
are two topologies on X such that I(T) is the reverse of the preorder I(F) [so that 
x I(T) y iffy I(T’) x], we call (X, T, T’) a bitopofogical space; a map f: X-, Y is 
called doubly conrinuous from (X, T, T’) to (Y, S, s’) when these are both bitopo- 
logical spaces, iff: (X, T)+( Y, S) and f: (X, 7’)+( Y, S’) are both continuous maps. 
We have then a category BT with bitopological spaces for objects and doubly 
continuous maps for morphisms. This is a fine category: for a typical morphism 
f: (X, T, T’)-( Y, S, S’) of BT, B takes the morphism to f: X4 Y and N takes it to 
f:(X,T’,T)-+(Y,S’,S). 

We call (CI, (J, I), c) a semiuniformity on the set X, when (J, I) is a down- 
directed ordered set, c a map of J in itself, and U a monotone map of (J, 5) in 
[&XxX), ~1 such that, for eachj of J, Ix is contained in U(j) and U(cj)o U(cj) is 
also contained in U(j), where cj denotes the image of j under the map c: J-J. 
When such a semiuniformity on X is given, we ca!l (X, U, (J, I), c) a semiuniform 
space. A map f: X-+ Y is a uniform map from the space (X, U,(J, 0,~) to 
(Y, V, (K, I), c) if, for each k of K there is a j of J such that (x,x’) E U(j) implies that 
cf(x),f(x’)) E V(k). We then have a category SU with semiuniform spaces as objects 
and uniform maps as morphisms. A semiuniformity (U, J) on X determines a 
‘conjugate’ semiuniformity (UC, J) when we set U,(j) = [U(j)]‘= ((x’.x) : (x,x’) E 
U(j)}; and it also determines a symmetric semiuniformity (V, j) with V(j)= 
U(j) rl U,(j), for each j. And a semiuniformity (U, J) defines on X a bitopology 
(X, T(U), T(Uc)), where the topology T(U) is one with the base of neighbourhoods 
{U(j)(x) :j in J) at the point x, where y E U(j)(x) means the same as (x, y) E Vu). 
The topology T( V) defined by the symmetric associate of U we call the star topology 
for (X, U) and denote it by T*(U); thus T*(U) = T*(U,) = T*(V). 
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A map s: D-X, when (D, 5) is any down directed set, is called a D-sequence in 
X. Such a sequence in X is called a Cauchy D-sequence in (X, I/) if, for each j of J, a 
nonnull initial subset B of (0, I) can be found such that (s(d),s(e)) is in U(j) 
whenever d, e are from B. With the usual definition of convergence, [that a D- 
sequence in the space (X, T) converges to an x in X if, for each neighbourhood U(r) 
of x, there is a nonnull initial subset B of (D, 4) such that s(d) is in U(x) for all d 
from B], it is easy to see that a D-sequence in X which converges to some point x of 
X in (X, T*(U)) must be a Cauchy D-sequence of (X, U). We shall call the semi- 
uniform space (X, U) a complete space if conversely, every Cauchy sequence of 
(X, U) converges to some point in the space (X, T*(U)). Elsewhere I have proved the 
following results regarding these complete spaces (see [t, 31): 

(a) The product of a set-indexed family of complete semiuniform spaces is a 
complete semiuniform space; a closed subspace of a complete semiuniform space is 
also complete; one can also check that a coproduct of complete semiuniform spaces 
is complete, and that the conjugate (X, U,) is complete when (X, U) is so. 

(b) Given a semiuniform space (X, U, (J, s), c), there is an associated complete, 
To, semiuniform space (X*, U*, (J, I), c), called the canonical completion of (X, U), 
with a uniform map h: (X, U)-(X*, U*), such that, if g: (X, U)+(Y, V) is a 
uniform map of (X, U) in a complete, To, semiuniform space (Y, V), then there is a 
unique uniform map g*: (X*, U*)+( Y, V) such that g*- h =g. 

We have then a full subcategory CSU of SU whose objects are the complete To 
semiuniform spaces. This category is also a fine category, with the same definition 
for the base functor and the conjugate as SU. 

Besides the base functors from PO, BT, SU and CSU which we know are fine 
functors, we have the following functors, and combinations of these that are 
definable, as fine functors: N: CSU-+SU [the inclusion functor], B : SU-+BT [the 
functor taking a typical f: (X, U)-( Y, V) to f: (X, T(U), T(U,))-+( Y, T(V), T( I’,))] 
P: BT+PO [the functor taking a typical f: (X, T, T’)-( Y,S,S’) to f: (X, I(T))+ 
(Y, s(S))]. The verifications of these are not difficult. 

Theorem 1. All the fourfine functors N, B, P and S : PO-S, (and their composites 

that can be defined) have left-adjoints. 

Proof. We describe the nature of the left-adjoint; the verification that they are 
indeed left-adjoints is mostly routine. 

(i) For N: CSU+SU, the left-adjoint C*: SU+CSU is essentially what is given by 
the canonical completion, as described in (b) above. That is, C*(X, U) =(X*, U*), 
and C*Lf: (X, U)-( Y, V)] = the obvious extension f *: (X*, I/*)-+( Y*, V*). for 
which f *. h = h’e f, if h: (X, c/)-(X*, U*) and h’: (Y, v)-( Y*, V*) are as given in 
(b)) the canonical morphisms of the spaces in their completions. 

(ii) For B:SU+BT, the left-adjoint U*:BT*SU is given as follows: for an 
object (X, T, T) of ST, there are semiuniformities [U,] on X such that T is finer 
than T(Uk) and T’ is finer than T(U,,); and the lattice product of these gives the 
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finest such semiuniformity, which we denote by U(T, T’); then if f: (X, z 7’)- 
(Y, S, S’) is in BT, one sees that f: (X, U( T, T’))-( Y, r/(S, 9)) is in SU; we define I/* 
such that it takes the first fin BT to this fin SU. 

(iii) For P: BT-PO, the left-adjoint B *: PO-BT is defined as follows: given a 
preordered set (X, 5). the family of initial sets in (X, 5) is closed for arbitrary 
intersections and arbitrary unions, and contains the null set and X. It is thus a 
topology on X, denoted by Tc; similarly the family of final sets of (X, 5) determines 
another topology on X denoted by T’; and a monotone mapf: (X, I)+( Y, I) gives 
continuous maps f: (X, T<)-*( Y, T’), f: (X, T’)-( Y, T’). Thus we set 
f?*[f: (X, s)-+( Y, s)] to bef: (X, T’, T’)-_( Y, Tc, T’). 

(iv) For S: PO-S, the left adjoint P*:S*PO is defined by setting, for a 
morphism f: X* Y in S, P*(J) =f: (X, =)-( Y, =) in PO. 

3. Algebras over fine categories and top-functors 

In defining the algebras we shall consider a family of formal operations and split 
it into the subfamilies of the nullary ones and the nonnullary ones. Thus F= the 
disjoint union FOUFI, where F,= (0,: j in J) consists of the symbols (or names) for 
a family of nullary operations, and F, = {(ok, nkr v,) : k in K} consists of symbols for 
the nonnullary OperatiOnS; each of these has a name ok, an arity nk ( = an integer L 1) 
and a variance vk, which is a map of the ordered set (1,2, . . . , nk) in the set [ + 1, - I]. 

We say ok has covariance or contravariance at the place m (1 5 m 5 nk) according as 
v,(m)=+1 or -1. 

Given then an object A of a fine category C, we say that A is closed for a 0,of FO, 

if a unique element O;(0) [or just OJA)] of the set B(A) is assigned; B denotes the 
base functor from G to S. And we say that A is closed for a (8, n, v) of F, if a 
morphism eA : P[A ,, . . . , A,,]-+.4 is assigned where P[ ] denotes a product in G of 
the A ‘s, where A,=,4 or N(A) according as v(m) = + 1 or - 1. We call A an F- 

algebra over G (or a GF-algebra) if A is closed for all the operations from F0 and 
from F,. Given two such F-algebras A, B over G, a map f: X- Y which is a 
morphism of G is called an F-homomorphism (or just a GF-morphism) if 

(i) for each 0 of FO, f(O(A)) = O(B); 

(ii) for each (6, n, v) of F1, f - BA = OEe f “, where f” denotes the product morphism 
from P[A ,, . . . . A,] to P[B,, . . . . B,] of the morphisms fi : A ;-+B; in G, where fj is f or 
Ncf) according as v(i) = + 1 or - 1. 

We then get a category GF whose objects are the GF-algebras and whose 
morphisms are the GF-morphisms. When G is taken to be S, the category SF is 
usually just denoted by F; it is the familiar category of F-algebras. In this case, since 
the conjugation in S is trivial, the part v for a nonnullary operation plays no 
significant role. 

When G, H are fine categories and K: G-+H is a fine functor, it is clear that K 

takes products of objects to products of objects and products of morphisms to 
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products of morphisms too. Hence it follows that when A is an F-algebra over G, we 
can consider K(A) = B to be an F-algebra over H by setting: O(B) = O(A), for any 0 of 
Fo, and es= K(@) for any (0, n, V) of Ft. Thus we have an induced functor from GF 

to HF which we also denote by K. In particular, the base functor B: G-S 
determines thus a functor B: CF+F. The base of an F-algebra over G is an F- 

algebra (over S). 
Starting with a set X (of variables) we construct the free F-algebra P(X, F) over 

the set X as usual: it consists of formal polynomials over the set obtained by using 
the operations from F, a finite number of times. Each has a rank: the polynomials 
of rank 0 are the elements of X or F,; a polynomial of rank r, 11, is a symbol of the 
form B(y,, . . . , yn) ‘for some (6, n, v) from F,, with each y, a polynomial of rank I 
(r- 1). To define ‘equational’ algebras or identical equations in an algebra, we 
select a set of pairs D = [(pi, q;)] from this P(X, F). When (Y, F) is any F-algebra 
(over the set base Y), any mapping g: X- Y evidently has a unique extension 
g* : (P(X, F), F)+( Y, F) which is an F-homomorphism (with g*[(x)] =g(x) for each x 
of X). We call the F-algebra (Y,F) over S, a DF-algebra if, for each set map 
g: X+ Y, and for each pair (p;,qJ from D we have g*(pi) =g*(qi). And when we 
have a GF-algebra A, we call it a GDF-algebra if the F-algebra B(A) is a DF- 
algebra, where B is the usual base functor from G to S. We then have a full 
subcategory GDF of DF whose objects are these GDF-algebras. We noted that a 
fine functor K: G+H takes a GF-algebra A to a HF-algebra K(A). Since K respects 
the base functors, it is not hard to see that K would also take a GDF-algebra A to a 
HDF-algebra K(A). We still denote this functor K from GDF to HDF (really a 
restriction of the original K to objects and morphisms of GDF). 

Theorem 2. The four functors N, B, P and S defined in Theorem 1 give rise to 
similarly named functors N: CSUF+SUF, N: CSUDF+SUDF, B: SUF-+BTF, 

B:SUDF*BTDF, P:BTF+POF, P:BTDF+PODF, S:POF+F, P:PODF* 

DF. AN these eight functors also have left-adjoints. 

Proof. (i) The functors N: When (X, U(J, 4), c; F) is a semiuniform F-algebra, and 
we have the canonical completion (X*, U*, (5, I), c) of (X, U), this X* is obtained by 
taking the quotient semiuniformity of a complete semiuniform space 
(X”, CJ+‘, (J, I), c) by an equivalence connecting topologically indistinguishable 
points, where X” has elements which are Cauchy (J, I) sequences from (X, U). 
Each point of X* can be obtained as a limit of a Cauchy sequence of the form 
{h(Xj): j in (J, 5)). with h as the canonical uniform mapping of (X, U) in (X*, U*). 
We extend the F-algebraic structure to X* as follows: for a nullary B from F,,, we set 
#‘(0) = h(#(0)); for a (8,n, v) from F,, and an ordered n-tuple of elements 

cx:, ***t xf) from X*, we choose a Cauchy sequence {Xr*j: j in (J, I)} for each XT, 
r= 1 , . . . , n, such that X: is the limit of h(x,j), for each r. Then if xj = f9x(x,,j, . . . ,X,j) 
for each j of J, it is not hard to see that {Xi: j in J} is a Cauchy sequence of (X, U) 
too; and this determines a unique limit x* for {h(Xj)) in X*. If #*(x:, . . ..x.*) is this 
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x*, we get a definition of (0, n, v) valid in (X*, Lr*). This gives a semiuniform F- 
algebra (X*, U*, (J, I), c; F). We set C*(X, V) equal to this (X*, I/*); and C*cf) = f * 
is again defined, as earlier, as the extension off to the completions. 

It can also be verified that when we start with a semiuniform DF-algebra this 
construction leads to a semiuniform DF-algebra. These describe the left-adjoint C* 
of N in the two cases of N. 

(ii) The functors B: Given a bitopological F-algebra (X, T, r’; F) there are semi- 
uniformities (V, J) on X such that: 

(a) T is finer than T(u), 
(b) T’ is finer than T(I/,), 
(c) (X, U; F) is a semiuniform F-algebra, 

when the operations from Fare as given originally in X; for surely the coarsest semi- 
uniformity on X satisfies all three conditions. Then we see that the lattice product of 
all such CJ on X is also a semiuniformity (V, P) with the same properties. We set 
U*(X, T, T’; F) = (X, U”; F) and U*(f: (X, T, T‘; F)+( Y, S, S’; F) =f: (X, V; F)+ 
(Y, V”; F), where V” is defined for Y similarly in terms of S, S’. Again the same I/* 
gives the left-adjoint for the other B from SUDF to BTDF. 

(iii) The functors P: Using the same definition of B* as in the proof of Theorem 1, 
we see that, when (X, I) is a preordered F-algebra or a preordered DF-algebra, then 
(X, T<, T’) can also be considered as a bitopological F- or DF-algebra, with the 
same effect on the operations for 0 (when the operation is nullary) or for n-tuples of 
elements of X, as earlier. So we again have a left-adjoint named B* for these P. 

(iv) The functors S: In these cases also we repeat the definition of the left-adjoint 
P* of S, as in Theorem 1. 

We formulate a definition of top-functors and top-categories that imply that a 
top-functor is a special case of a topological functor in Herrlich’s sense, and then 
show that all the above functors are top-functors. 

. 

Definition. A top-category (A.&M) is a category A which is (small) complete, and 
admits an (E,M)-factorization that is unique; E, M are classes of epi-, mono- 
morphisms of A closed for compositions with isomorphisms. A functor K: A+B, is 
a top-functor between the top-categories (A, E, M) and (B, E*, M*) if: F preserves 
products, and [A E O(A), m* E M* fl homa(-, K(A))] = [there is an m E Mrl homA(-, A) 
such that (i) K(m) = m*, and (ii) when K(f) = m * - h * for an f from hom,(-, A) then 

f=m.hforanhwithK(h)=h*]. 

The basic result in this connection (that is easily proved, given the definitions) is 
the following: 

Lemma 1. When K: (A, E,M)+(B, E*,M*) is a top-functor between top-categories, 
then K is a topological functor from A to B, which is given the (E*, M**) category 
structure (in Herrlich’s sense), with M*” consisting of sources of the form (A,pi- m) 
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where m is from M* and in hom.,(A,P(AJ), pi being the canonical maps of a 

product P(AJ in the factors Ai. 

We now associate suitable classes E, M with the various categories of the form 
GDF, GF, or G where G is one of the types CSU, SU, BT, or PO, so that each gives 
a top-category. 

When G is CSU, we use the classes E(U), M(U) defined as follows: E(U) consists 
of the morphisms from the category G which are onto subspaces dense in the 
codomain space (under the topology defined by the symmetrised form r/fl CJr from 
the semiuniformity); while M(U) consists of isomorphisms in the given G on a 
closed subspace of the codomain space. 

For G = SU the above E(U), M(u) can be used; a second pair E*(U), M*(u) that 
can be used also is defined by: E*(U) consists of morphisms which are surjective as 
set maps and M*(U) of morphisms which are isomorphisms on subspaces of the 
codomains. 

When G is BT, we use E(B) = the class of morphisms which are surjective as set 
maps, and M(B) =the class of isomorphisms onto subspaces (for both the 
topologies). 

For G = PO, E(P) is the class of morphisms which are surjective as set maps, and 
M(P) the class of isomorphisms onto relatively ordered subalgebras, of the 
codomains. 

Definition. A functor K : A + B is said to: 
(i) raise codomains if [A in O(A), g in homa(K(A),B’)] = [there is an f in 

hom,(A, A’) such that KCf) =g], 
(ii) raise factorizations if If in M(A), K(J) = g,. gz in M(B)] * u=f,. fi in M(A) 

where Kdfd=gl. Kcfi)=g~l, 
(iii) be latticief if 

(a) for each B in O(B), K-‘(B) = {A in O(A): K(A) = B} is a set and a complete 
lattice under the preorder I(K) on it defined by setting A I(K) A’ iff there is a 
g:A+A’inM(A)withK(g)=lg,and 

(b) [Ku;)=a given g of M(B), for a set of morphisms fi: A+Ai, all with the 
same domain A] = [there is a morphism ncfi): Adl7(AJ in M(A) with 
K(n(_fi))=g where l7(Ai) denotes a lattice product of the Ai all from K-’ 
(codomain g)]. 

Theorem 3. (a) The categories CSUDF, CSUF, CSU become top-categories when 
E(U), M(U) are used for E and M. The categories SUDF, SUF, SU also are top- 
categories with the same E( CJ), M(U); they are also top-categories when E*(U), 
M*(U) are usedfor E, M. The categories PODF, POF, PO are top-categories under 
E(P), M(P). The categories BTDF, BTF, BT are top-categories under E(B), M(B). 
The categories DF, F, S are top-categories under E, M (the usual classes of 
surjective, or injective morphisms). 
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(b) The twelve functors of the form N, B, P and S mentioned in Theorems I,2 are 
faithful, raise codomains, raise factorizations, and are latticiel. They are top- 
functors for suitable choice of the E, M for the domain, and codomain categories. 

Proof. All the proofs are quite straightforward and follow from the definitions 
involved. 

To prove that these are top-functors, the part that they preserve products follows 
from the fact that they all have left-adjoin&. The way the M’s are defined, it would 
be seen that in each case when m* is in hom,(-,K(A))nM*, there is an m in 
hom,(-,A)nM for which K(m) = m*; and then the second part would follow from 
the fact that K raises factorisations. 

4. Algebraic functors and free algebras 

If F and D are as before, while F: D’ are subsets of F and D respectively such that 
the pairs of D’ are from P(X,F’), then we could consider DF-algebras as a subclass 
of the D/F’-algebras and similarly the F-algebras as a subclass of the F-algebras. 
Thus we have inclusion functors M: DF+D’F’, L : F-F’, G: DF*F, G’: D’F’+F’, 
T: F-S and T’: F’+S. We use the same symbols for the corresponding functors 
when we have a G-structure along with the algebraic one, where G is one of CSU, 
SU, BT, or PO; thus there is an M: SUDF-SUD’F’, and so on. (The same G is 
tacked on to the domain and codomain). We claim that all these thirty functors are 
algebraic ones. To prove this, we prove later a result regarding raising ‘shortest 
paths’. We relate these paths to existence of adjoints as follows: 

Lemma 2. A functor K: A+B has a left-adjoint J: BdA iff, for each object B of B 
there is a shortest K-path (h(B), J(B)): meaning thereby, that J(B) is an object of A, 

h(B) : B-*K( J(B)) is a morphism in B, andfor any morphism g : B+K(A’) for an A’ 
of O(A), there is a unique g* : J(B)-+A’ in M(A) for which K(g*) . h(B) = g. 

This result is well known, and the proof is therefore omitted. 

Lemma 3. All the functors 192: DF-D’F’, L : F+F’, G: DF+F, G’: D’F’dF’, 
T: F-S and T’: F’-S have left-adjoints. 

Proof. Since G’. T’ are essentially the same as G, Twe can omit them. For T: F-S, 
a left-adjoint T*: S-F is obtained by noting that there is a shortest T-path to any 
set X: [j, (P(X, F), F)], where j is the inclusion map of X in the free algebra P(X, F). 
To get a left-adjoint G*: F-DF for G, for an object (X, F) of F, we first construct 
the free algebra (P(X, F), F) over X and then seek a congruence on it which (i) 
would ensure that the quotient algebra was a DF-algebra and (ii) would be larger 
than the congruence on (P(X, F), F) defined by the natural homomorphism of the 
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free algebra on (X,F). Using the smallest such congruence, the quotient algebra 
(Y, F), and the obvious homomorphism of (X,F) on (Y,F) provide a shortest G- 
path at (X, F). The procedures for finding left-adjoints for L or Mare similar to the 
last, with some obvious modifications. 

From the above result, to deduce the existence of left-adjoints for similar functors 
between categories of the form GDF, CF, GD’F’, etc., we use the following lemma. 

Lemma 4. Given a functor K: A --+ B which raises codomains, raises factorizations, 
and is faithful and latticiel, and given subcategories C, D of A, B with the inclusion 
functors I, : C-+A, Iz: D+B, such that, for an f of M(A), f belongs to M(C) iff 
K(f) belongs to M(D), the following is true: vor an object A of A, if K(A) has a 
shortest I,-path (g, 0). then A has a shortest I, -path (g*, C) such that K(g*) = g]. We 
then say that K raises the shortest Iz-path (g, D) to the shortest I, -path (g*, C). 

Proof. Since K raises factorizations and since K(A’) is in D gives A’ is in C, the 
morphism g: K(A)+D (with D in D) leads to a morphism g’: AdC with C in C and 
with K(g’) =g. The morphisms (g:: A-+C; ( Ci in C and K(g;) = g} form a set, and 
since K is latticiel we also have a g *=17(g:) : A-17(Ci) with K(g*) =g. This implies 
K(n(C,))= D in D, so that I7(C,) is in C. We now show that this (g*,17(CJ) is a 
shortest I, -path at A. For, if f: A-C is any morphism with C in C, then K(J) 
resolves in the form K(f) = h - g, since, by assumption, (g, D) is a shortest I,-path at 
K(A). As K raises factorizations, this leads to a factorization f = h’. g’ with K(g’) =g. 
Then it is clear that this g’ must be one of the g:. But then since 17(C,) I (QC,, there 
is a j:n(C,)-Cj such that K(j)= lo. Hence we have K(j- g*) = K(j) - K(g*) =g= 
K(g’). As K is faithful, it follows that j- g*=g’, and so f = h’. j. g*. That is, f factors 
out through g*; the complementary factor (h’. j) must be unique since K is faithful. 
These prove that (g*,n(CJ) is indeed a shortest [,-path at A. 

From Lemmas 2 and 4 we get the following consequence: 

Corollary. Under the conditions assumed in Lemma 4 for A, B, C, D, K, I, and 12. 
the functor I, has a left-adjoint provided the functor I2 has one. 

Using this corollary with Lemma 2 we can deduce many functors have left- 
adjoints. For example a functor M: GDF+GD’F’, when G is any one of CSU, SU, 
BT or PO, has a left-adjoint; we have only to check that the functor K: GD’F’+ 
D‘F’ (the forgetful functor) has the requisite properties from Lemma 4, to apply the 
corollary. This verification is in all cases quite simple. Thus we have: 

Lemma 5. Besides the six functors listed in Lemma 3, the similarly named ones 
between categories of the form GDF, GD’F’, GF, GF’, and G, where G is any one of 
CSU, SU, BT or PO all have left-adjoints. 
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More is true. All these functors are algebraic functors. To prove this, we note, 
from S. MacLane’s book the following version of Beck’s theorem [4, Theorem 1, 
p. 1471: 

Beck’s Theorem. A functor G: A+X which has a left-adjoint is an algebraic 

functor provided that G creates coequalisers for those parallel pairs J g in A for 
which Gf, Gg has a split coequaiiser in X. 

Theorem 4. Ail the thirty functors named in Lemma 5 are algebraic functors. 

Proof. We shall see how a proof goes for a typical functor M: GDF-+GD’F’; the 
other functors are really simpler and the proofs are quite analoguous. All the cases 
of G we consider are fine categories. Given any fine category A and a operation 
f?*=(&n,v) of arityrl, we note that we have a functor P(O*): A+A taking a 
typical morphism f: A+B of A to f”= Pcf,, . . . ,f,,) : P(A1, . . . ,A,)+P(B,, . . . . B,), 
wherefi:Ai~Biiseitherfi:A;~Biorf::A;~B;accordingas v(i)=+1 or -1. 

If now f, g are a pair of parallel pair of morphisms in GDF from (X, G,F) to 
(Y, G, F) for which M(g), M(f) have a split coequaliser (e, (Z, G, F’)) in GD’F’, this 
split coequaliser being an absolute coequaliser, gives rise to a coequaliser (P(O*)(e), 
P(B*)(Z, G)) for P(O*)(M(f)) and P(B*)(M(g)). If 8* is one of the operations from F, 
since (X, G, F) and (Y, G, F) are closed for 19*, we have morphisms O*‘: 
P(O*)( Y, G))+( Y, G) and 8& : P(O*)(X, G)-(X, G) such that O*y. P(B*)(M(f)) = 
M(f). @’ and 8*y. P(B*)(M(g)) = M(g) - Ocy, for the M(f), M(g) which are homo- 
morphisms for 8* (from F), even as f, g are, since M is an inclusion functor. 

These equations give the equality em O**- P(O*)(M(f)) = e- 61*“- P(O*)(M(g)), 

since em M(f) =e+M(g). Since P(O*)(e) is a coequaliser for the pair P(e*)(M(f)), 
P(O*)(M(g)), it follows that there must be a unique morphism h: P(O*)(Z,G)* 
(Z, G) such that em O*y= h - P(O*)(e). We call this 8*z; so now e is a homomorphism 
of (Y, G) in (Z, G) relative to P. This way each nonnullary fI* of Fcan be defined on 
(Z, G) to make e a homomorphism. For a nullary 0 from F, we set 13(z) = e(O( Y)), so 
that we finally have a GF-algebra (Z, G, F) with e a F-homomorphism, and an 
epimorphism from (Y, G, F) to (Z,G, F). From the nature of the G’s we are using, 
the fact that e is an epimorphism (being a coequaliser) ensures that the GF-algebra 
(Z, F) is a DF-algebra just as (Y, F) is. Thus the split coequaliser e for & g has been 
created, as required in Beck’s theorem. The uniqueness of the e and (Z, G,F) would 
follow from the fact that A4 is a faithful functor. 

Given one of these categories G and an object A from it, we can now call an 
object A * of GF (resp. of GDF) a free F-algebra (a free DF-algebra) over A, if A * is 
the image of A under a left-adjoint of the functor T: GF+G (the functor 
T- G : GDF-*G). 
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