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Abstract
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1. Introduction

Let A be a symmetric algebra over an algebraically closed fieldF of characteristic
p > 0, with symmetrizing bilinear form(. | .). In this paper we investigate the followin
chain of ideals of the centerZA of A:

ZA ⊇ T1A
⊥ ⊇ T2A

⊥ ⊇ · · · ⊇ RA ⊇ HA ⊇ Z0A ⊇ 0;
here Z0A := ∑

B ZB where B ranges over the set of blocks ofA which are simple
F -algebras. ThusZ0A is a direct product of copies ofF , one for each simple blockB
of A. Furthermore,HA denotes theHigman ideal of A, defined as the image of thetrace
map

τ : A → A, x �→
n∑

i=1

bixai;

herea1, . . . , an andb1, . . . , bn are a pair of dual bases ofA. Moreover,RA is the Reynolds
ideal of A, defined as the intersection of the socleSA of A and the centerZA of A. The
idealsTnA

⊥ (n ∈ N) were introduced in [6, II]; they can be viewed as generalization
the Reynolds ideal. In fact,RA is their intersection. These ideals are defined in term
thep-power mapA → A, x �→ xp, and the bilinear form(. | .). The precise definition wil
be given below. Motivated by the special case of group algebras [8,9], we show that

Z0A ⊆ (
T1A

⊥)2 ⊆ HA,

so that(T1A
⊥)2 fits nicely into the chain of ideals above. Whenp is odd then

(
T1A

⊥)2 = Z0A.

The casep = 2 behaves differently and turns out to have some interesting special fea
We show that, in this case,

(
T1A

⊥)3 = (
T1A

⊥)(
T2A

⊥) = Z0A,

but that(T1A
⊥)2 �= Z0A in general. We prove that, in casep = 2, the mysterious idea

(T1A
⊥)2 is a principal ideal ofZA. It is generated by the elementζ1(1)2 whereζ1 : ZA →

ZA is a certain natural semilinear map related to thep-power map. The mapζ1 was first
defined in [6, IV].

Moreover, in casep = 2, the dimension of(T1A
⊥)2 is the number of blocksB of A

with the property that the Cartan matrixCB = (cij) of B contains an odd diagonal entrycii.
A primitive idempotente in A satisfieseζ1(1)2 �= 0 if and only if the dimension ofeAe is
odd.

At the end of the paper, we investigate the behaviour of the idealsTnA
⊥ under Morita

and derived equivalences, and we dualize some of the results obtained in the p
sections. In a sequel [2] to this paper, we will apply our results to group algebras of
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groups. We will see that a finite groupG contains a real conjugacy class of 2-defect z
if and only if the Cartan matrix ofG in characteristic 2 contains an odd diagonal entry.
will also prove a number of related facts.

2. The Reynolds ideal and its generalizations

In the following, letF be an algebraically closed field of characteristicp > 0, and
let A be a symmetricF -algebra with symmetrizing bilinear form(. | .). Thus A is a
finite-dimensional associative unitaryF -algebra, and(. | .) is a non-degenerate symmet
bilinear form onA which is associative, in the sense that(ab | c) = (a | bc) for a, b, c ∈ A.
We denote the center ofA by ZA, the Jacobson radical ofA by JA, the socle ofA by SA

and the commutator subspace ofA by KA. ThusKA is theF -subspace ofA spanned by
all commutatorsab − ba (a, b ∈ A). Forn ∈ N,

TnA := {
x ∈ A: xpn ∈ KA

}

is aZA-submodule ofA, so that

KA = T0A ⊆ T1A ⊆ T2A ⊆ · · ·

and

∞∑
n=0

TnA = JA + KA

(cf. [7]). For anyF -subspaceX of A, we set

X⊥ := {
y ∈ A: (x | y) = 0 for x ∈ X

}
.

Then

ZA = KA⊥ = T0A
⊥ ⊇ T1A

⊥ ⊇ T2A
⊥ ⊇ · · ·

is a chain of ideals ofZA such that

∞⋂
n=0

TnA
⊥ = SA ∩ ZA.

We callRA := SA∩ ZA the Reynolds ideal of ZA, in analogy to the terminology used f
group algebras. Forn ∈ N andz ∈ ZA, there is a unique elementζn(z) ∈ ZA such that

(
ζn(z) | x)pn = (

z | xpn)
for x ∈ A.

This defines a mapζn = ζA
n : ZA → ZA with the following properties:
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Lemma 2.1. Let m,n ∈ N, and let y, z ∈ ZA. Then the following holds:

(i) ζn(y + z) = ζn(y) + ζn(z) and ζn(y)z = ζn(yzpn
).

(ii) ζm ◦ ζn = ζm+n.
(iii) Im (ζn) = TnA

⊥.
(iv) ζA

n (z)e = ζ eAe
n (ze) for every idempotent e in A.

Proof. (i)–(iii) are proved in [7, (44)–(47)].
(iv) Recall thateAe is a symmetricF -algebra; a corresponding symmetric bilinear fo

is obtained by restricting(. | .) to eAe. Note thatez = eze ∈ eZAe ⊆ Z(eAe) and that,
similarly, ζA

n (z)e ∈ Z(eAe). Moreover, forx ∈ eAe, we have

(
ζA
n (z)e | x)pn = (

ζA
n (z) | ex)pn = (

ζA
n (z) | x)pn = (

z | xpn)
= (

z | expn) = (
ze | xpn) = (

ζ eAe
n (ze) | x)pn

,

and the result follows. �
We apply these properties in order to prove:

Lemma 2.2. Let m,n ∈ N. Then

(
TmA⊥)(

TnA
⊥) ⊆ ζm+n

((
TnA

⊥)pn(pm−1)) ⊆ Tm+nA
⊥.

Proof. Let y, z ∈ ZA. Then Lemma 2.1 implies that

ζm(y)ζn(z) = ζm

(
yζn(z)

pm) = ζm

(
ζn

(
ypn

z
)
ζn(z)

pm−1)
= ζm

(
ζn

(
ypn

zζn(z)
pn(pm−1)

)) ∈ ζm+n

((
TnA

⊥)pn(pm−1))
.

Thus the result follows from Lemma 2.1(iii).�
Let B1, . . . ,Br denote the blocks ofA, so thatA = B1 ⊕ · · · ⊕ Br . EachBi is itself

a symmetricF -algebra. If a blockBi is a simpleF -algebra thenBi
∼= Mat(di,F ) for a

positive integerdi , and thusZBi
∼= F . We set

Z0A :=
∑

i

ZBi,

where the sum ranges over alli ∈ {1, . . . , r} such thatBi is a simpleF -algebra. ThenZ0A

is an ideal ofZA and anF -algebra which is isomorphic to a direct sum of copies ofF .
Its dimension is the number of simple blocks ofA. We exploit Lemma 2.2 in order t
prove:
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(i) (T1A
⊥)2 ⊆ RA.

(ii) (T1A
⊥)(T2A

⊥) = (T1A
⊥)3 = Z0A.

(iii) If p is odd, then (T1A
⊥)2 = Z0A.

Proof. (i) Lemma 2.2 implies

(
T1A

⊥)2 ⊆ ζ2
((

T1A
⊥)p(p−1)) ⊆ ζ2

((
T1A

⊥)2)
.

Iteration yields

(
T1A

⊥)2 ⊆ ζ2
(
ζ2

((
T1A

⊥)2)) = ζ4
((

T1A
⊥)2) ⊆ ζ6

((
T1A

⊥)2) ⊆ · · · .

Thus

(
T1A

⊥)2 ⊆
∞⋂

n=0

�(ζ2n) =
∞⋂

n=0

T2nA
⊥ = SA ∩ ZA = RA,

by Lemma 2.1(iii).
(ii) It is easy to see thatTnA = TnB1 ⊕ · · · ⊕ TnBr andTnA

⊥ = TnB
⊥
1 ⊕ · · · ⊕ TnB

⊥
r

for n ∈ N whereTnB
⊥
i = {x ∈ Bi : (x | TnBi) = 0} for i = 1, . . . , r . So we may assum

thatA itself is a block.
If A is simple, thenJA = 0, soTnA = KA andTnA

⊥ = ZA for all n ∈ N. Hence

ZA = (
T1A

⊥)(
T2A

⊥) = (
T1A

⊥)3

in this case.
Now suppose thatA is non-simple. ThenJA �= 0. SoZA �= RA. It follows thatJA +

KA �= KA, whenceJA is not contained inKA. SoT1A �= KA. This means thatT1A
⊥ is

a proper ideal ofZA. SinceZA is a localF -algebra this implies thatT1A
⊥ ⊆ JZA ⊆ JA.

Thus we may conclude, using (i), that(T1A
⊥)3 ⊆ (RA)(JA) = 0. Hence Lemma 2.2 yield

(
T1A

⊥)(
T2A

⊥) ⊆ ζ3
((

T2A
⊥)p2(p−1)) ⊆ ζ3

((
T1A

⊥)3) = ζ3(0) = 0.

(iii) Suppose thatp is odd. As in the proof of (ii), we may assume thatA is a block, and
thatA is non-simple. Then Lemma 2.2 and (ii) imply that

(
T1A

⊥)2 ⊆ ζ2
((

T1A
⊥)p(p−1)) ⊆ ζ2

((
T1A

⊥)3) = ζ2(0) = 0,

and the result is proved.�
Theorem 2.3 extends [9, Theorem 9] from group algebras to symmetric algebra

will later improve on part (i). But first we note the following consequence.
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Corollary 2.4. Suppose that A is a block, and denote the central character of A by
ω : ZA → F . Moreover, let m,n ∈ N with m �= 0 �= n, and let x, y ∈ ZA. Then

ζm(x)ζn(y) = ω(x)p
−m

ω(y)p
−n

ζm(1)ζn(1).

In particular, we have

(
TmA⊥)(

TnA
⊥) = Fζm(1)ζn(1),

so that dim(TmA⊥)(TnA
⊥) � 1.

Proof. Theorem 2.3(i) implies thatζm(x)p
n ∈ RA ⊆ SA. Thus

ζm(x)p
n

y = ω(y)ζm(x)p
n

.

Similarly, we havexζn(1)p
m = ω(x)ζn(1)p

m
. So we conclude that

ζm(x)ζn(y) = ζn

(
ζm(x)p

n

y
) = ζn

(
ω(y)ζm(x)p

n) = ω(y)p
−n

ζm(x)ζn(1)

= ω(y)p
−n

ζm

(
xζn(1)p

m) = ω(y)p
−n

ζm

(
ω(x)ζn(1)p

m)
= ω(y)p

−n

ω(x)p
−m

ζm(1)ζn(1).

The remaining assertions follow from Lemma 2.1(iii).�
We can generalize part of Corollary 2.4 in the following way.

Proposition 2.5. Let m,n ∈ N with m �= 0 �= n. Then

(
TmA⊥)(

TnA
⊥) = ZA · ζm(1)ζn(1)

is a principal ideal of ZA. If p is odd, or if m + n > 2, then the dimension of
(TmA⊥)(TnA

⊥) equals the number of simple blocks of A and in particular does not de-
pend on m + n.

Proof. It is easy to see that we may assume thatA is a block. In this case the asserti
follows from Corollary 2.4 and Theorem 2.3.�

In the next two sections, we will handle the remaining casep = 2 andm = n = 1. Here
we just illustrate this exceptional case by an example.

Let G be a finite group. Then the group algebraFG is a symmetricF -algebra; a sym
metrizing bilinear form onFG satisfies

(g | h) =
{

1, if gh = 1,
0, otherwise,
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for g,h ∈ G. An elementg ∈ G is called real if g is conjugate to its inverseg−1, andg

is said to be ofp-defect zero if |CG(g)| is not divisible byp. We denote the set of all re
elements of 2-defect zero inG by RG. For a subsetX of G, we set

X+ :=
∑
x∈X

x ∈ FG.

It was proved in [8, Proposition 4.1] thatR+
G = ζ1(1)2 ∈ (T1FG⊥)2, in casep = 2.

Example 2.6. Let p = 2, and suppose thatG is the symmetric groupS4 of degree 4.
Then FG has no simple blocks; in fact,FG has just one block, the principal on
ThusZ0FG = 0. On the other hand,RG is precisely the set of all 3-cycles inS4. Thus
0 �= R+

G ∈ (T1FG⊥)2. (In fact, (T1FG⊥)2 is one-dimensional, by Corollary 2.4.) Th
example shows that(T1A

⊥)2 �= Z0A, in general.

3. Odd Cartan invariants

Let F be an algebraically closed field of characteristicp = 2, and letA be a symmetric
F -algebra with symmetrizing bilinear form(. | .). In this section, we will prove som
remarkable properties of the ideal(T1A

⊥)2 of ZA. We start by recalling some known fac
concerning symmetric bilinear forms overF .

Lemma 3.1. Let V be a finite-dimensional vector space over F , and let 〈. | .〉 be a non-
degenerate symmetric bilinear form on V . Then either 〈. | .〉 is symplectic (i.e., 〈v | v〉 = 0
for every v ∈ V ), or there exists an orthonormal basis v1, . . . , vn of V (i.e., 〈vi | vj 〉 = δij

for i, j = 1, . . . , n).

Proof. This can be found in [4, Hauptsatz V.3.5], for example.�
If 〈. | .〉 is symplectic, then there exists a symplectic basisv1, . . . , vm, vm+1, . . . , v2m of V ,
i.e.,

〈vi | vm+i〉 = 〈vm+i | vi〉 = 1 for i = 1, . . . ,m,

〈vi | vj 〉 = 0 otherwise

(cf. [4, Hauptsatz V.4.10]). Thus there exist only two types of non-degenerate sym
bilinear forms on a finite-dimensional vector spaceV overF , a symplectic one and a no
symplectic one. In the symplectic case, the dimension ofV has to be even.

We now apply Lemma 3.1 to the symmetrizing bilinear form(. | .) onA.

Lemma 3.2.

(
ζ1(1) | ζ1(1)

) = (dimA) · 1F .
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Proof. By Lemma 3.1, there exists anF -basis

a1, . . . , am, am+1, . . . , a2m,a2m+1, . . . , an

of A such that

(ai | am+i ) = (am+i | ai) = 1 for i = 1, . . . ,m,

(ai | ai) = 1 for i = 2m + 1, . . . , n,

(ai | aj ) = 0 otherwise

(and eithern = 2m or m = 0). Then the dual basisb1, . . . , bn of a1, . . . , an is given by

am+1, . . . , a2m,a1, . . . , am, a2m+1, . . . , an.

Thus(ζ1(1) | ai)
2 = (1 | a2

i ) = (ai | ai) = (ai | ai)
2 for i = 1, . . . , n, so

ζ1(1) =
n∑

i=1

(
ζ1(1) | ai

)
bi =

n∑
i=1

(ai | ai)bi =
n∑

i=2m+1

ai

and

(
ζ1(1) | ζ1(1)

) =
n∑

i,j=2m+1

(ai | aj ) =
n∑

i=2m+1

(ai | ai) = (n − 2m) · 1F = n · 1F

= (dimA) · 1F ,

and the result is proved.�
The next statement holds in arbitrary characteristic. It is essentially taken

[10, Corollary (1.G)].

Lemma 3.3. Let e be a primitive idempotent in A, and let r ∈ RA. Then er = 0 if and only
if (e | r) = 0.

Proof. If er = 0, then 0= (er | 1) = (e | r). Conversely, if(e | r) = 0 then

(eAe | ere) = (eAe | r) = (
Fe + J(eAe) | r) ⊆ F(e | r) + (JA · r | 1) = 0.

Thus 0= ere = er since the restriction of(. | .) to eAe is non-degenerate.�
Now we choose representativesa1 = e1, . . . , al = el for the conjugacy classes o

primitive idempotents inA. (This means thatAe1, . . . ,Ael are representatives for th
isomorphism classes of indecomposable projective leftA-modules.) Moreover, we le
al+1, . . . , an denote anF -basis ofJA + KA. Thena1, . . . , an form anF -basis ofA.
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Let b1, . . . , bn denote the dual basis ofa1, . . . , an. Thenr1 := b1, . . . , rl := bl are con-
tained in(JA + KA)⊥ = SA ∩ ZA = RA, so they form anF -basis ofRA. Moreover,
Lemma 3.3 implies thateirj = 0 for i �= j andeiri �= 0 for i = 1, . . . , l.

Lemma 3.4. With e1, . . . , el as above, we have ζ1(1)2 = ∑l
i=1(dimeiAei) · ri and

eiζ1(1)2 = (dimeiAei) · eiri for i = 1, . . . , l.

Proof. Lemma 2.1(iii) and Theorem 2.3(i) imply thatζ1(1)2 ∈ (T1A
⊥)2 ⊆ RA. By mak-

ing use of Lemma 2.1(iv) and Lemma 3.2, we obtain

ζ1(1)2 =
l∑

i=1

(
ζ1(1)2 | ei

)
ri =

l∑
i=1

(
ζ1(1)ei | ζ1(1)ei

)
ri

=
l∑

i=1

(
ζ

eiAei

1 (ei) | ζ eiAei

1 (ei)
)
ri =

l∑
i=1

(dimeiAei) · ri .

Sinceeirj = 0 for i �= j the result follows. �
The next theorem is the main result of this section.

Theorem 3.5. For A a symmetric algebra over an algebraically closed field F of charac-
teristic 2 and for e a primitive idempotent in A, the following assertions are equivalent:

(1) dimeAe is even.
(2) eζ1(1)2 = 0.
(3) (e|ζ1(1)2) = 0.

Proof. We may assume thate = ei for somei ∈ {1, . . . , l}. Theneiζ1(1)2 = (dimeiAei) ·
eiri with eiri �= 0, by Lemma 3.4. This shows that (1) and (2) are equivalent. S
ζ1(1)2 ∈ RA, Lemma 3.3 implies that (2) and (3) are equivalent.�

The Cartan matrixC := (cij)
l
i,j=1 of A is defined by

cij := dimeiAej for i, j = 1, . . . , l.

ThusC is a symmetric matrix with non-negative integer coefficients, the Cartan inva
of A. Hence Theorem 3.5 has the following consequence.

Corollary 3.6. With the notation for the Cartan matrix of A as above, ζ1(1)2 �= 0 if and
only if cii is odd for some i. More precisely, for a block B of A, we have ζ1(1)21B �= 0 if
and only if the Cartan matrix of B contains an odd diagonal entry.
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In order to illustrate Corollary 3.6, recall that, by Example 2.6, the group algebraFG,
for G = S4, satisfiesζ1(1)2 = R+

G �= 0. Thus the Cartan matrix ofFG contains an odd
diagonal entry, by Corollary 3.6. Indeed, the Cartan matrix ofFG is

C :=
(

4 2
2 3

)
,

as is well known. More substantial examples will be presented in [2].
It may be of interest to note that the existence of odd diagonal Cartan invaria

characteristic 2 is invariant under derived equivalences (cf. [5]).

Proposition 3.7. Let A′ be a symmetric F -algebra which is derived equivalent to A. Then
the Cartan matrix of A′ contains an odd diagonal entry if and only if the Cartan matrix
of A does.

Proof. It is known that the Cartan matricesC = (cij)
l
i,j=1 of A andC′ = (c′

ij)
l
i,j=1 of A′

have the same format, and that they are related by an equation

C′ = Q · C · Q�,

whereQ = (qij)
l
i,j=1 is an integral matrix with determinant±1 (cf. [5]). Thus

c′
ii =

l∑
j,k=1

qijqikcjk ≡
l∑

j=1

q2
ijcjj (mod 2)

for i = 1, . . . , l. If c′
ii is odd thencjj has to be odd for somej ∈ {1, . . . , l} (and con-

versely). �

4. The Higman ideal

Let F be an algebraically closed field, and letA be a symmetricF -algebra with sym-
metrizing bilinear form(. | .). Moreover, leta1, . . . , an andb1, . . . , bn denote a pair of dua
bases ofA. In the following, theF -linear map

τ : A → A, x �→
n∑

i=1

bixai,

will be of interest (cf. [3, §66]). We record the following properties of thistrace map τ :

Lemma 4.1.

(i) τ is independent of the choice of dual bases.
(ii) τ is self-adjoint with respect to (. | .).

(iii) Im (τ ) ⊆ SA ∩ ZA = RA and JA + KA ⊆ Ker(τ ).
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Proof. (i) Let a′
1, . . . , a

′
n andb′

1, . . . , b
′
n be another pair of dual bases ofA. Thenb′

i =∑n
j=1(aj | b′

i )bj andai = ∑n
j=1(ai | b′

j )a
′
j for i = 1, . . . , n. Thus

n∑
i=1

b′
ixa′

i =
n∑

i,j=1

(
aj | b′

i

)
bjxa′

i =
n∑

j=1

bjx

n∑
i=1

(
aj | b′

i

)
a′
i =

n∑
j=1

bjxaj

for x ∈ A.
(ii) Let x, y ∈ A. Then, by (i), we get

(
τ(x) | y) =

n∑
i=1

(bixai | y) =
n∑

i=1

(x | aiybi) = (
x | τ(y)

)
.

(iii) Let x, y ∈ A. Then

τ(x)y =
n∑

i=1

bixaiy =
n∑

i,j=1

bix(aiy | bj )aj =
n∑

i,j=1

(ai | ybj )bixaj

=
n∑

j=1

ybjxaj = yτ(x).

Hence Im(τ ) ⊆ ZA. In order to prove Im(τ ) ⊆ SA, we choosea1, . . . , an appropriately.
Indeed, we may assume thata1 + JA, . . . , ar + JA form anF -basis ofA/JA, thatar+1 +
(JA)2, . . . , as + (JA)2 form anF -basis of(JA)/(JA)2, thatas+1 + (JA)3, . . . , at + (JA)3

form anF -basis of(JA)2/(JA)3, etc. Thenb1, . . . , br are contained in(JA)⊥, b1, . . . , bs

are contained in((JA)2)⊥, b1, . . . , bt are contained in((JA)3)⊥, etc.
Now let x ∈ A andy ∈ JA. Thenbixaiy ∈ (JA)⊥ · A · A · (JA) = 0 for i = 1, . . . , r ,

bixaiy ∈ ((JA)2)⊥ ·A · (JA) · (JA) = 0 for i = r +1, . . . , s, bixaiy ∈ ((JA)3)⊥ ·A · (JA)2 ·
(JA) = 0 for i = s + 1, . . . , t , etc. We see thatτ(x)y = 0, so Im(τ ) ⊆ SA.

Sinceτ is self-adjoint (i.e.,τ ∗ = τ ), we conclude that

Ker(τ ) = Ker(τ ∗) = Im(τ )⊥ ⊇ (SA ∩ ZA)⊥ = JA + KA. �
ThusHA := Im(τ ) is an ideal ofZA contained inRA, called theHigman ideal of ZA.

By Lemma 4.1, it is independent of the choice of dual bases. In the following, we wr

1A = e1 + · · · + em

with pairwise orthogonal primitive idempotentse1, . . . , em of A.

Lemma 4.2. We have (τ (ei) | ej ) = (dimeiAej ) · 1F for i, j = 1, . . . ,m.

Proof. We consider the decompositionA = ⊕m
i,j=1 eiAej . For i, j = 1, . . . ,m, let Xij be

anF -basis ofeiAej . ThenX := ⋃m
Xij is anF -basis ofA. We denote the dual bas
i,j=1
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of X by X∗. For x ∈ X, there is a uniquex∗ ∈ X∗ such that(x | x∗) = 1. Then the map
X → X∗, x �→ x∗, is a bijection. Moreover, fori, j = 1, . . . ,m, X∗

ij := {x∗: x ∈ Xij} is an
F -basis ofejAei . Thus

τ(ei)ej = ej τ (ei)ej =
∑
x∈X

ejx
∗eixej =

∑
x∈Xij

ejx
∗eixej =

∑
x∈Xij

x∗x

and

(
τ(ei) | ej

) = (
τ(ei)ej | 1

) =
∑
x∈Xij

(x∗x | 1) =
∑
x∈Xij

(x∗ | x) = |Xij| · 1F

= (dimeiAej ) · 1F ,

so the result is proved.�
We may assume thate1, . . . , em are numbered in such a way thata1 := e1, . . . ,

al := el represent the conjugacy classes of primitive idempotents inA. We choose an
F -basisal+1, . . . , an of JA + KA, so thata1, . . . , an form anF -basis ofA. We denote
the dual basis ofa1, . . . , an by b1, . . . , bn. As above,r1 := b1, . . . , rl := bl form anF -basis
of RA = SA ∩ ZA.

Lemma 4.3. We have τ(ei) = ∑l
j=1(dimeiAej ) · rj for i = 1, . . . , l.

Proof. Let i ∈ {1, . . . , l}. Thenτ(ei) ∈ HA ⊆ RA, so

τ(ei) =
l∑

j=1

(
τ(ei) | ej

)
rj =

l∑
j=1

(dimeiAej ) · rj

by Lemma 4.2. �
In the following, suppose that charF = p > 0. We know from Theorem 2.3 tha
(T1A

⊥)2 ⊆ RA. We are going to show that, more precisely,(T1A
⊥)2 ⊆ HA. In the proof,

we will make use of the following fact.

Lemma 4.4. Let C = (cij) be a symmetric (n × n)-matrix with coefficients in the field F2
with two elements. Then its main diagonal c := (c11, c22, . . . , cnn), considered as a vector
in F

n
2, is a linear combination of the rows of C.

Proof. Arguing by induction onn, we may assume thatn > 1. If c = 0, then there is noth
ing to prove. So we may assume thatcii = 1 for somei ∈ {1, . . . , l}. Permuting the rows
and columns ofC, if necessary, we may assume thatc11 = 1. We now perform elementar
row operations onC. For k = 2, . . . , n, we subtract the first row, multiplied byck1, from
thekth row. The resulting matrixC′ has the entries

0, ck2 − ck1c12, . . . , ckn − ck1c1n
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d in [8,
in its kth row and the entries

c1k, c2k − c21c1k, . . . , cnk − cn1c1k

in its kth column. We now remove the first row and the first column fromC′ and end up
with a symmetric((n − 1) × (n − 1))-matrixD with diagonal entries

ckk − ck1c1k = ckk − c2
1k = ckk − c1k (k = 2, . . . , n).

On the other hand, if we subtract the first row ofC from c, then we obtain the vector

c′ := (0, c22 − c12, . . . , cnn − c1n).

Thus the vectord := (c22 − c12, . . . , cnn − c1n) coincides with the main diagonal ofD. By
induction,d is a linear combination of the rows ofD, soc is a linear combination of th
rows ofC. �

As Gary McGuire kindly pointed out to us, a different proof of Lemma 4.4 can be fo
in [1, Proposition 4.6.2]. We apply Lemma 4.4 in the proof of the following result whic
a refinement of Theorem 2.3(i). The special case of group algebras was first prove
Lemma 5.1].

Theorem 4.5. We always have (T1A
⊥)2 ⊆ HA.

Proof. If p is odd then, by Theorem 2.3(iii), we have

(
T1A

⊥)2 ⊆ Z0A =
∑
B

ZB =
∑
B

HB ⊆ HA,

whereB ranges over the simple blocks ofA; in fact, if B = Mat(d,F ) for a positive
integerd thenHB = ZB.

Thus we may assume thatp = 2. Then Lemma 2.2 gives us elementsα1, . . . , αl in the
prime field ofF such that

l∑
j=1

(dimeiAej ) · αj = (dimeiAei) · 1F for i = 1, . . . , l.

Thus Lemmas 3.4 and 4.3 imply that

ζ1(1)2 =
l∑

i=1

(dimeiAei) · ri =
l∑

i,j=1

(dimeiAej ) · αj ri =
l∑

j=1

αj τ(ej ) ∈ HA.

Hence Proposition 2.5 implies that(T1A
⊥)2 = ZA · ζ1(1)2 ⊆ HA. �
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5. Morita invariance

Let F be an algebraically closed field of characteristicp > 0, and letA be a symmetric
F -algebra. In this section we investigate the behaviour of the idealsTnA

⊥ of ZA under
Morita equivalences. These results will be used in [2].

Proposition 5.1. Let e be an idempotent in A such that AeA = A. Then the map

f : ZA → Z(eAe), z �→ ez = ze,

is an isomorphism of F -algebras mapping TnA
⊥ onto Tn(eAe)⊥, for n ∈ N.

Proof. Certainlyf is a homomorphism ofF -algebras. Letz ∈ ZA such that 0= f (z) =
ez. Then 0= AezA = AeAz = Az, so thatz = 0. Thusf is injective. SinceAeA = A the
F -algebrasA andeAe are Morita equivalent; in particular, their centers are isomorp
Hencef is an isomorphism ofF -algebras. Lemma 2.1(iv) implies thatf ◦ ζA

n = ζ eAe
n ◦ f ,

so

f
(
TnA

⊥) = f
(
ζA
n (ZA)

) = ζ eAe
n

(
f (ZA)

) = ζ eAe
n

(
Z(eAe)

) = Tn(eAe)⊥

by Lemma 2.1(iii). �
We mention two consequences of Proposition 5.1.

Corollary 5.2. Let d be a positive integer, and let Ad denote the symmetric F -algebra
Mat(d,A). Then the map

h : ZA → ZAd, z �→ z1d ,

is an isomorphism of F -algebras mapping TnA
⊥ onto (TnAd)⊥, for n ∈ N.

Proof. We denote the matrix units ofAd by eij (i, j = 1, . . . , d). Then the map

f : A → e11Ade11, a �→ ae11,

is an isomorphism ofF -algebras. This implies thatf (ZA) = Z(e11Ade11) andf (TnA
⊥) =

Tn(e11Ade11)
⊥ for n ∈ N. On the other hand, Proposition 5.1 implies that the map

g : ZAd → Z(e11Ade11), z �→ ze11 = e11z,

is an isomorphism ofF -algebras such thatg((TnAd)⊥) = Tn(e11Ade11)
⊥ for n ∈ N. Now

observe thath is an isomorphism ofF -algebras such thatg ◦h is the restriction off to ZA.
Thush(TnA

⊥) = (TnAd)⊥ for n ∈ N. �
Corollary 5.3. Let B be a symmetric F -algebra which is Morita equivalent to A. Then
there is an isomorphism of F -algebras ZA → ZB mapping TnA

⊥ onto TnB
⊥, for n ∈ N.



L. Héthelyi et al. / Journal of Algebra 293 (2005) 243–260 257

o-

e

als
Proof. Let e be an idempotent inA such thateAe is a basic algebra ofA, and letf be
an idempotent inB such thatf Bf is a basic algebra ofB. ThenAeA = A andBf B = B.
Moreover,eAe andf Bf are isomorphic sinceA andB are Morita equivalent. Thus Prop
sition 5.1 yields a chain of isomorphisms

ZA → Z(eAe) → Z(f Bf ) → ZB

mappingTnA
⊥ ontoTnB

⊥, for n ∈ N. �
It would be interesting to know whether Corollary 5.3 extends to symmetricF -algebras

which are derived equivalent (cf. [5]).

Question 5.4. Suppose thatA andB are derived equivalent symmetricF -algebras. Is ther
an isomorphism ofF -algebrasZA → ZB mappingTnA

⊥ ontoTnB
⊥, for n ∈ N?

6. Some dual results

Let F be an algebraically closed field of characteristicp > 0, and letA be a symmetric
F -algebra. Forn ∈ N,

TnZA := {
z ∈ ZA: zpn = 0

}

is an ideal ofZA. In this way we obtain an ascending chain of ideals

0= T0ZA ⊆ T1ZA ⊆ T2ZA ⊆ · · · ⊆ JZA ⊆ ZA

of ZA such that

∞∑
n=0

TnZA = JZA.

This ascending chain of ideals turns out to be related to the descending chain of ide

ZA = T0A
⊥ ⊇ T1A

⊥ ⊇ T2A
⊥ ⊇ · · · ⊇ RA ⊇ 0

of ZA considered before.

Proposition 6.1. Let n ∈ N. Then (TnA
⊥)(TnZA) = 0.

Proof. Let y ∈ ZA andz ∈ TnZA, so thatzpn = 0. Then Lemma 2.1(i) implies that

ζn(y)z = ζn

(
yzpn) = ζn(y0) = ζn(0) = 0.

Hence(TnA
⊥)(TnZA) = (Im ζn)(TnZA) = 0, by Lemma 2.1(iii). �
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The result above is essentially [9, Proposition 4]. We conclude that

TnZA ⊆ {
z ∈ ZA: z

(
TnA

⊥) = 0
} ⊆ {

z ∈ ZA: zζn(1) = 0
}
.

In [2], we will see that these inclusions are proper in general, even for group algeb
finite groups. Ifn is sufficiently large thenTnZA = JZA andTnA

⊥ = RA, and certainly

JZA = {z ∈ ZA: z · RA = 0}.

Also, if n is large andA = FG for a finite groupG thenζn(1) = G+
p whereGp denotes

the set ofp-elements inG (cf. [7, (48)]), and it is known that

JZFG = {
z ∈ ZFG: zG+

p = 0
}

(cf. [7, (59)]). However, it is easy to construct an example of a symmetricF -algebraA

such that

JZA �= {
z ∈ ZA: zζn(1) = 0

}

for all sufficiently largen.
For n ∈ N, the idealTnZA of ZA is related to a semilinear mapκn : A/KA → A/KA

first constructed in [6, IV];κn is defined in such a way that

(
zpn | x) = (

z | κn(x)
)pn

for z ∈ ZA and x ∈ A/KA;

here we set(z | a + KA) := (z | a) for z ∈ ZA anda ∈ A. Also, we set(a + KA)p
n :=

apn + KA for a ∈ A. We recall the following properties ofκn (cf. [7, (50)–(53)]).

Lemma 6.2. Let m,n ∈ N, let x, y ∈ A/KA, and let z ∈ ZA. Then the following holds:

(i) κn(x + y) = κn(x) + κn(y), zκn(x) = κn(z
pn

x) and κn(zx
pn

) = ζn(z)x.
(ii) κm ◦ κn = κm+n.

(iii) Im (κn) = TnZA⊥/KA.

Our next result is a dual version of Theorem 2.3. For simplicity, we concentrate on th
whereA is a non-simple block. (IfA is a simple block thenT1ZA = 0, soT1ZA⊥ = A.
Moreover, we haveT2A

⊥ = T1A
⊥ = ZA in this case.)

Proposition 6.3. Suppose that A is a non-simple block. Then the following holds:

(i) (T1A
⊥)(T1ZA⊥) ⊆ KA for p �= 2.

(ii) (T2A
⊥)(T1ZA⊥) ⊆ KA and (T1A

⊥)(T2ZA⊥) ⊆ KA for p = 2.
(iii) (T1A

⊥)(T1ZA⊥) ⊆ JZA⊥ for p = 2. Moreover, in this case we have (T1A
⊥) ×

(T1ZA⊥) ⊆ KA if and only if ζ1(1)2 = 0.



L. Héthelyi et al. / Journal of Algebra 293 (2005) 243–260 259
Proof. (i) Let y ∈ ZA andx ∈ A/KA. Thenζ1(y)κ1(x) = κ1(ζ1(y)px) = 0 sinceζ1(y)p ∈
(T1A

⊥)p = 0 by Theorem 2.3(iii). Thus

(
T1A

⊥)(
T1ZA⊥/KA

) = (Im ζ1)(Imκ1) = 0,

and (i) is proved.
(ii) Let x, y be as in (i). Thenζ2(y)κ1(x) = κ1(ζ2(y)2x) = 0 since ζ2(y)2 ∈

(T2A
⊥)2 = 0, by Theorem 2.3(ii). Thus

(
T2A

⊥)(
T1ZA⊥/KA

) = (Im ζ2)(Imκ1) = 0.

Similarly, we haveζ1(y)κ2(x) = κ2(ζ1(y)4x) = 0 sinceζ1(y)3 ∈ (T1A
⊥)3 = 0 by Theo-

rem 2.3(ii). Thus

(
T1A

⊥)(
T2ZA⊥/KA

) = (Im ζ1)(Imκ2) = 0,

and (ii) follows.
(iii) Again, let x, y be as in (i). Then

ζ1(y)κ1(x) = κ1
(
ζ1(y)2x

) = κ1
(
ζ1(y)κ1(yx2)

) ∈ κ1
(
(Im ζ1)(Imκ1)

)
.

Iteration yields

(Im ζ1)(Imκ1) ⊆ κ1
(
(Im ζ1)(Imκ1)

) ⊆ κ1
(
κ1

(
(Im ζ1)(Imκ1)

))
= κ2

(
(Im ζ1)(Imκ1)

) ⊆ · · · .
Thus

(
T1A

⊥)(
T1ZA⊥/KA

) = (Im ζ1)(Imκ1) ⊆
∞⋂

n=0

Im(κn) =
∞⋂

n=0

TnZA⊥/KA = JZA⊥/KA,

and the first assertion of (iii) is proved. Now note that(T1A
⊥)(T1ZA⊥) ⊆ KA if and only

if

0= ((
T1A

⊥)(
T1ZA⊥) | ZA

) = (
T1A

⊥ | T1ZA⊥)

if and only if T1A
⊥ ⊆ T1ZA if and only if z2 = 0 for all z ∈ T1A

⊥. But (T1A
⊥)2 =

Fζ1(1)2 by Corollary 2.4, soz2 = 0 for all z ∈ T1A
⊥ if and only if ζ1(1)2 = 0. �

Note that, in the situation of Proposition 6.3(iii), we haveζ1(1)2 = 0 if and only if all
diagonal Cartan invariants ofA are even, by Lemma 3.4. Also, we have

dim
(
T1A

⊥)(
T1ZA⊥) + KA/KA � 1.

There is the following dual of Proposition 6.1.
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Proposition 6.4. Let n ∈ N. Then (TnZA)(TnZA⊥) ⊆ KA.

Proof. Let z ∈ TnZA andx ∈ A/KA. Then

zκn(x) = κn

(
zpn

x
) = κn(0x) = 0.

Thus(TnZA)(TnZA⊥/KA) = (TnZA)(Imκn) = 0, and the result follows. �
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