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Abstract

In this paper, we investigate certain ideals in the center of a symmetric algetwar an alge-
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ideal. They are closely related to thgpower map orA. We generalize some results concerning these
ideals from group algebras to symmetric algebras, and we obtain some new results as well. In case
p = 2, these ideals detect odd diagonal entries in the Cartan matrix lof a sequel to this paper,
we will apply our results to group algebras.

00 2005 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail addresses: hethelyi@math.bme.hu (L. Héthelyi), he@math.bme.hu (E. Horvath),
kuelshammer@uni-jena.de (B. Kilshammer), jmurray@maths.may.ie (J. Murray).

0021-8693/$ — see front mattér 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.01.052


https://core.ac.uk/display/82045142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

244 L. Héthelyi et al. / Journal of Algebra 293 (2005) 243-260

1. Introduction

Let A be a symmetric algebra over an algebraically closed freldf characteristic
p > 0, with symmetrizing bilinear forng. | .). In this paper we investigate the following
chain of ideals of the centérA of A:

ZADT1AT D T4t 2. . DRADHADZoADO;

here ZoA := )z ZB where B ranges over the set of blocks af which are simple
F-algebras. ThuZoA is a direct product of copies af, one for each simple block

of A. FurthermoreH A denotes théligman ideal of A, defined as the image of titieace

map

n
T:A— A, x+— Zbixai;
i=1

hereas, ...,a, andby, ..., b, are a pair of dual bases df Moreover,RA is the Reynolds
ideal of A, defined as the intersection of the so€lé of A and the centeZ A of A. The
idealsT, A+ (n € N) were introduced in [6, II]; they can be viewed as generalizations of
the Reynolds ideal. In facRA is their intersection. These ideals are defined in terms of
the p-power mapA — A, x — x?, and the bilinear forn. | .). The precise definition will

be given below. Motivated by the special case of group algebras [8,9], we show that

ZoA C (T1AY)* CHA,
so that(T 1 A+)? fits nicely into the chain of ideals above. Wheris odd then
(TlAL)z =Z0oA.

The casep = 2 behaves differently and turns out to have some interesting special features.
We show that, in this case,

(T141)% = (T1A1)(T2AY) = Z0A,

but that(T1A1)? £ ZoA in general. We prove that, in cage= 2, the mysterious ideal
(T1A1)2is a principal ideal oZ A. It is generated by the element(1)? where; : ZA —
Z A is a certain natural semilinear map related to phpower map. The map; was first
defined in [6, 1V].

Moreover, in case = 2, the dimension ofT1A1)? is the number of blocks® of A
with the property that the Cartan mat@g = (cjj) of B contains an odd diagonal eniry.
A primitive idempotent in A satisfiesez(1)? # 0 if and only if the dimension ofAe is
odd.

At the end of the paper, we investigate the behaviour of the idgals- under Morita
and derived equivalences, and we dualize some of the results obtained in the previous
sections. In a sequel [2] to this paper, we will apply our results to group algebras of finite
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groups. We will see that a finite group contains a real conjugacy class of 2-defect zero
if and only if the Cartan matrix of; in characteristic 2 contains an odd diagonal entry. We
will also prove a number of related facts.

2. TheReynoldsideal and its generalizations

In the following, let F be an algebraically closed field of characterigtic- 0, and
let A be a symmetricF-algebra with symmetrizing bilinear forra | .). Thus A is a
finite-dimensional associative unitafralgebra, and. | .) is a non-degenerate symmetric
bilinear form onA which is associative, in the sense thab | ¢) = (a | bc) fora, b, c € A.
We denote the center of by ZA, the Jacobson radical @f by JA, the socle ofA by SA
and the commutator subspaceAdby KA. Thusk A is the F-subspace ofA spanned by
all commutatorsib — ba (a,b € A). Forn € N,

TaA:=|x € A: x7" e KA}
is aZ A-submodule ofd, so that

and

o0
ZT”A =JA+KA
n=0

(cf. [7]). For anyF-subspac& of A, we set
xt.= {yeA: (x|y)=0f0rx€X}.
Then
ZA=KAt =ToAt D2T1A+ 2 ToA+ D ...

is a chain of ideals of A such that

o0
ﬂ T, At =SANZA.
n=0

We callRA := SANZA the Reynoldsideal of ZA, in analogy to the terminology used for
group algebras. Fore N andz € ZA, there is a unique elemegi(z) € ZA such that

(222 1 %)” = (2] x”") forxeA.

This defines a map, = ¢ : ZA — Z A with the following properties:
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LemmaZ2.l. Letm,n e N, andlet y, z € ZA. Then the following holds:

() &n(y+2) =& () + & (2) and & (Mz = & (yz").
(") Em ©&n = Cm4n-
(i) Im(g,) =TLAL.
(V) ¢A(2)e = ¢4 (ze) for every idempotent e in A.

Proof. (i)—(iii) are proved in [7, (44)—(47)].
(iv) Recall thate Ae is a symmetricF-algebra; a corresponding symmetric bilinear form

is obtained by restricting. | .) to eAe. Note thatez = eze € eZAe C Z(eAe) and that,
similarly, g,f‘(z)e € Z(eAe). Moreover, forx € eAe, we have

(G2 @elx)" = (@) lex)” = (¢ @) 1x)" = (z]x")

= (clex?) = (ze | x") = (¢ o) | )",
and the result follows. O
We apply these properties in order to prove:

Lemma2.2. Letm,n € N. Then
(TmAL)(TnAJ_) - §m+n ((TnAJ_)pn(pm_l)) c Tm+nAJ_~

Proof. Lety,z € ZA. Then Lemma 2.1 implies that

En ()6 (@) = tn (y6n @) = En (6 (¥ 2)Ea )" 7Y

=t (6u("" 26 @"" ")) € G ((Taa)" " 70).
Thus the result follows from Lemma 2.1(iii).0

Let By, ..., B, denote the blocks ofi, so thatA = B1 @ --- @ B,. EachB; is itself
a symmetricF-algebra. If a blockB; is a simpleF-algebra thenB; = Mat(d;, F) for a
positive integed;, and thusZ B; = F. We set

ZoA = ZZB,-,

1

where the sum ranges over ak {1, ..., r} such thatB; is a simpleF -algebra. TheZgA
is an ideal ofZA and anF-algebra which is isomorphic to a direct sum of copiesFof
Its dimension is the number of simple blocks 4f We exploit Lemma 2.2 in order to
prove:
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Theorem 2.3.

(i) (T1AH)2CRA.
(i) (T1AL)(T244) = (T144)3 =Z0A.
(iii) If pisodd, then (T1AL)2 = ZoA.

Proof. (i) Lemma 2.2 implies
(T1a")* S gao((T2a")"77) € rp((T2AY7).
Iteration yields

(T21A%)? € ta(c2((T1A*)%) = ca((T244)?) S 16((T24%)%) €

Thus

e ¢]

TlAL ﬂ ﬁTz,,ALzs/aerA:RA,

by Lemma 2.1(jii).

(ii) It is easy to see thaf,A=T,B1®--- ®T,B, andT,A* =T,B} &--- & T, B;-
forneN whereTnBiL ={xeB;: x|T,B;)=0}fori=1,...,r. SO we may assume
that A itself is a block.

If Aissimple,then]A =0,s0T,A=KA andT,A+ =ZA forall n € N. Hence

ZA=(T1A1)(T241) = (T144)°
in this case.
Now suppose thatl is non-simple. ThedA # 0. SoZA # RA. It follows thatJA +
KA # KA, whencelA is not contained ilK A. S0T1A # KA. This means thaf 1AL is

a proper ideal oZ A. SinceZ A is a local F-algebra this implies thaf; AL € JZA C JA.
Thus we may conclude, using (i), th@; A1)3 € (RA)(JA) = 0. Hence Lemma 2.2 yields

(T144)(T24%) € 23((T244)" " 7Y) € £3((T14%)°) = 250 =

(iii) Suppose thap is odd. As in the proof of (ii), we may assume thais a block, and
that A is non-simple. Then Lemma 2.2 and (ii) imply that

(T14%) S &o((T1aM)""™Y) C 45((T141)%) = 220 =0,
and the result is proved.O

Theorem 2.3 extends [9, Theorem 9] from group algebras to symmetric algebras. We
will later improve on part (i). But first we note the following consequence.
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Corollary 2.4. Suppose that A is a block, and denote the central character of A by
w:ZA — F.Moreover, let m,n e Nwithm #0#n,andlet x, y e ZA. Then

En ()6 () =00 " 0P (D5 (D).
In particular, we have
(TwAT)(ThAT) = FEu (D)D),
so that dim(T,, A+)(T, A1) < 1.
Proof. Theorem 2.3(i) implies tha, (x)?" € RA € SA. Thus
() y =0 ()5 (x)".
Similarly, we havexs, (1)?" = w(x)¢,(1)P". So we conclude that
n () (1) = & (Gn (D7 Y) = G (@ (NG (X)) = 0 ()P G (2) (D)

=0t (x6D?) =0 tn(@@)5 L")
=0 0P G (DE (D).
The remaining assertions follow from Lemma 2.1(iii)o
We can generalize part of Corollary 2.4 in the following way.
Proposition 2.5. Let m, n € N withm £ 0+ n. Then
(TwAT)(ThAY) =ZA - 4n (D2 (D)
is a principal ideal of ZA. If p is odd, or if m + n > 2, then the dimension of

(T A1) (T, A1) equals the number of simple blocks of A and in particular does not de-
pend on m + n.

Proof. It is easy to see that we may assume thas a block. In this case the assertion
follows from Corollary 2.4 and Theorem 2.30

In the next two sections, we will handle the remaining case2 andm =n = 1. Here
we just illustrate this exceptional case by an example.

Let G be a finite group. Then the group algelif& is a symmetricF-algebra; a sym-
metrizing bilinear form onF' G satisfies

1, ifgh=1,
(g 1h) = {O, otherwise,
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for g,h € G. An elementg € G is called real if g is conjugate to its inversg—1, andg
is said to be ofp-defect zero if |Cg(g)| is not divisible byp. We denote the set of all real
elements of 2-defect zero @ by R . For a subseX of G, we set

x+ Z:ZXEFG.

xeX
It was proved in [8, Proposition 4.1] th&(. = ¢1(1)% € (T1FG1)?, in casep = 2.

Example 2.6. Let p = 2, and suppose tha¥ is the symmetric grougs, of degree 4.
Then FG has no simple blocks; in factFG has just one block, the principal one.
ThusZyFG = 0. On the other handRg is precisely the set of all 3-cycles $y. Thus
0+# RS € (T1FG1)2. (In fact, (T1FG1)? is one-dimensional, by Corollary 2.4.) This
example shows thall 1A+)2 £ ZoA, in general.

3. Odd Cartan invariants

Let F be an algebraically closed field of characterigtie- 2, and letA be a symmetric
F-algebra with symmetrizing bilinear forra | .). In this section, we will prove some
remarkable properties of the idedl; A+)?2 of ZA. We start by recalling some known facts
concerning symmetric bilinear forms over

Lemma 3.1. Let V be a finite-dimensional vector space over F, and let (.| .) be a non-
degenerate symmetric bilinear formon V. Then either (. | .) issymplectic (i.e., (v |v) =0
for every v € V), or there exists an orthonormal basis vy, ..., v, of V (i.e, (v; | v;) = §j
fori,j=1,...,n).

Proof. This can be found in [4, Hauptsatz V.3.5], for examplel

If {.].)is symplectic, then there exists a symplectic basgis. ., vy, vm+1, ..., V2, Of V,
ie.,
(Vi | Vi) = (Ui Vi) =1 fori=1,...,m,

(vi lvj) =0 otherwise

(cf. [4, Hauptsatz V.4.10]). Thus there exist only two types of non-degenerate symmetric
bilinear forms on a finite-dimensional vector spacever F, a symplectic one and a non-
symplectic one. In the symplectic case, the dimensiovi bhs to be even.

We now apply Lemma 3.1 to the symmetrizing bilinear farm.) on A.

Lemma 3.2.

(¢2(D) [ 22(D) = (dimA) - 1.
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Proof. By Lemma 3.1, there exists dn-basis

al, ..., m, Am41s -+ - A2 A2m+1, - - -, Ay
of A such that
@ | amyi) = (amyi la)) =1 fori=1,...,m,

(aj |a;))=1 fori=2m+1,...,n,
(a; |aj) =0 otherwise
(and either: = 2m or m = 0). Then the dual basis, ..., b, of a1, ..., a, is given by
Am+1, -+, a2m, A1, -« ., Ay, A2m+1, - - -5 Ap.-
Thus(c1(D) | a)? = (1]a?) = (a; | @) = (a; | a;))*fori=1,...,n, SO
n n n
a@ =Y (@ la)bi =) (ailadbi= Y a
i=1 i=1 i=2m+1
and

(O la®)= Y (@lap= )Y (ala)=m—-2m)-1p=n-1f

i j=2m+1 i=2m+1
= (dimA) - 1f,

and the result is proved.O

The next statement holds in arbitrary characteristic. It is essentially taken from
[10, Corollary (1.G)].

Lemma 3.3. Let e bea primitive idempotentin A, and let r € RA. Then er = 0if and only
if e|]r)=0.

Proof. If er =0, then 0= (er | 1) = (e | r). Conversely, if(e | r) = 0 then
(eAe|ere) =(eAe|r) = (Fe+J(eAe) | r) CF|rn+UJA-r|DH=0.
Thus 0= ere = er since the restriction of. | .) to eAe is non-degenerate.
Now we choose representatives = e1,...,a; = ¢; for the conjugacy classes of
primitive idempotents inA. (This means thates, ..., Ae; are representatives for the

isomorphism classes of indecomposable projective Aefhodules.) Moreover, we let
aj+1, - - -, a, denote anF-basis 0fJA + KA. Thenay, ..., a, form an F-basis ofA.
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Letbs, ..., b, denote the dual basis ei, ..., a,. Thenry := b1, ..., r; := b; are con-
tained in(JA + KA)L = SA N ZA = RA, so they form anF-basis ofRA. Moreover,
Lemma 3.3 implies that;r; =0 fori # j ande;r; #0fori=1,...,1.

Lemma 3.4. With e1,...,¢; as above, we have ¢1(1)2 = Zﬁzl(dimeiAei) -r; and
e,~§1(1)2 = (dime;Ae;) -e;r; fori=1,...,1.

Proof. Lemma 2.1(iii) and Theorem 2.3(i) imply that(1)? € (T1A+)? € RA. By mak-
ing use of Lemma 2.1(iv) and Lemma 3.2, we obtain

[ l

a@?=Y (a®?le)ri =Y (e | ca(Dei)r;

i=1 i=1
! I
= (é“leiAei () | &5 (e))ri = Z(dimeiAei) ST

i=1 i=1
Sincee;r; =0 fori # j the result follows. O

The next theorem is the main result of this section.

Theorem 3.5. For A a symmetric algebra over an algebraically closed field F of charac-
teristic 2 and for e a primitive idempotent in A, the following assertions are equivalent:

(1) dimeAe iseven.
(2) ecr(1)?=0.
(3) (elaam? =0.

Proof. We may assume that= ¢; for somei € {1, ...,1}. Thene;£1(1)? = (dime; Ae;) -

eir; With e;r; # 0, by Lemma 3.4. This shows that (1) and (2) are equivalent. Since
71(1)%2 € RA, Lemma 3.3 implies that (2) and (3) are equivalent:

The Cartan matrixC := (Cij)é,jzl of A is defined by
cij:=dime;Ae; fori,j=1,...,1

ThusC is a symmetric matrix with non-negative integer coefficients, the Cartan invariants
of A. Hence Theorem 3.5 has the following consequence.

Corollary 3.6. Wth the notation for the Cartan matrix of A as above, 71(1)% # 0 if and
only if ¢ji is odd for some i. More precisely, for a block B of A, we have ¢1(1)%15 # 0 if
and only if the Cartan matrix of B contains an odd diagonal entry.
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In order to illustrate Corollary 3.6, recall that, by Example 2.6, the group algetra
for G = S, satisfies1(1)2 = RZ; # 0. Thus the Cartan matrix af G contains an odd
diagonal entry, by Corollary 3.6. Indeed, the Cartan matrik 6f is

4 2
C'_<2 3)’

as is well known. More substantial examples will be presented in [2].
It may be of interest to note that the existence of odd diagonal Cartan invariants in
characteristic 2 is invariant under derived equivalences (cf. [5]).

Proposition 3.7. Let A’ be a symmetric F-algebra which is derived equivalent to A. Then
the Cartan matrix of A’ contains an odd diagonal entry if and only if the Cartan matrix
of A does.

Proof. Itis known that the Cartan matric&€s= (Cij)éyjzl of AandC’ = (ci’j)ﬁ j—p Of A/
have the same format, and that they are related by an equation

c'=0.C-0Q,
whereQ = (Qij)f’jzl is an integral matrix with determinastl (cf. [5]). Thus
! !
ci= Y qigikcjk= Y gfcj; (mod2
k=1 j=1

fori=1,...,1. If ¢ is odd thenc;; has to be odd for som¢ € {1,...,1} (and con-
versely). O
4. TheHigman ideal

Let F be an algebraically closed field, and letbe a symmetrid--algebra with sym-

metrizing bilinear form(. | .). Moreover, lets, ..., a, andbs, ..., b, denote a pair of dual
bases ofd. In the following, theF-linear map

n
T:A— A, x+— Zbixa,-,
i=1

will be of interest (cf. [3, 866]). We record the following properties of tihece map t:
Lemma4.l.
(i) 7 isindependent of the choice of dual bases.

(i) 7 issef-adjoint with respectto (. |.).
(i) Im(r) CSANZA =RA and JA + KA C Ker(r).
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Proof. (i) Let ay,...,q, andb}, ..., b, be another pair of dual bases af Thenb; =
Z’}Zl(aj | b)b; anda; = Z’}:l(a,- |b})a;. fori=1,...,n. Thus

Zb’xa = Z aJ|b bxa _Zb xz ajlb a; _Zb xa;

i,j=1

forx e A.
(i) Let x, y € A. Then, by (i), we get

(r) 1y) =) (bixai | y) =Y (x |aiyb) = (x | T()).

i=1 i=1

(iii) Let x, y € A. Then

‘c(x)y—bea,y— be(a,ylb)a] Z(a,|yb )bixa;

i=1 i,j=1 i,j=1

n
= Zybjxaj =yT(x).

j=1

Hence In{t) C ZA. In order to prove Inir) € SA, we chooseuy, ..., a, appropriately.
Indeed, we may assume that+ JA, ..., a, + JA form an F-basis ofA /JA, thata, 41 +
(JA)?, ..., as+ (JA)? form an F-basis 0f(JA)/(JA)?, thata, 1 + (JA)3, ..., a; + (JA)3
form an F-basis of(JA)2/(JA)3, etc. Therby, ..., b, are contained ifJA)~L, b1, ..., by
are contained in(JA)2)~, b4, ..., b; are contained ifi(JA)3)L, etc.

Now letx € A andy € JA. Thenb;xa;y € JA)L -A-A-JA) =0fori=1,...,r,
bixa;y € (JA?)L-A-JA)-(JA) =0fori=r+1,...,s,bixa;y € (JA)3L-A-(JA)?.
JA)=0fori=s+1,...,t, etc. We see that(x)y =0, so Im(t) C SA.

Sincer is self-adjoint (i.e.x* = ), we conclude that

Ker(t) =Ker(z*) =Im(t)* D (SANZA)r =JA+ KA. O

ThusHA :=Im(z) is an ideal ofZ A contained irRA, called theHigman ideal of ZA.
By Lemma 4.1, it is independent of the choice of dual bases. In the following, we write

ly=ert+--+enm
with pairwise orthogonal primitive idempotends, ..., e, of A.
Lemma4.2. We have (t(¢;) | ¢;) = (dime; Aej) - 1pfori, j=1,...,m

Proof. We consider the decomposition= @?szl ejAej. Fori, j=1,...,m, let Xjj be
an F-basis ofe; Ae;. ThenX := | J;";_; Xjj is an F-basis ofA. We denote the dual basis
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of X by X*. Forx € X, there is a unique™* € X* such that(x | x*) = 1. Then the map
X — X*, x — x*, is a bijection. Moreover, foi, j =1, ..., m, X;‘Jf = {x" x € Xjj} is an
F-basis ofej Ae;. Thus

T(ei)ej =ejt(e)ej = Zejx*e,-xej = Z ejx*eixej = Z x*x

xeX x€Xij x€Xij

and

(e lej) =(tleej11) =Y (x| D= Y *|x)=|Xj|-1r

X E€Xjj x€Xjj

= (dime,-Aej) -1p,
so the result is proved.O

We may assume thaty,...,e, are numbered in such a way that := ey, ...,
a; ;= e; represent the conjugacy classes of primitive idempotentd.iWVe choose an
F-basisa; 1, ...,a, of JA + KA, so thatay, ..., a, form an F-basis ofA. We denote
the dual basis afy, ...,a, by bs, ..., b,. As aboveri := b1, ..., r; := b; form an F-basis
of RA=SANZA.

Lemma 4.3. We have 7 (¢;) = le:l(dimel'AEj) rifori=1,...,L

Proof. Leti €{1,...,1}. Thent(e;) e HA CRA, so

l

1
T(ej) = Z(‘L’(ei) | ej)rj = Z(dime,-Aej) T

j=1 j=1
by Lemma4.2. O

In the following, suppose that ch&r= p > 0. We know from Theorem 2.3 that
(T1A1)2 C RA. We are going to show that, more precisélj; A1)2 € HA. In the proof,
we will make use of the following fact.

Lemma 4.4. Let C = (cjj) be a symmetric (n x n)-matrix with coefficients in the field I,
with two elements. Then its main diagonal ¢ := (c11, ¢22, ..., cun), COnsidered as a vector
inF5, isalinear combination of the rows of C.

Proof. Arguing by induction oz, we may assume that> 1. If ¢ = 0, then there is noth-
ing to prove. So we may assume tleat= 1 for somei € {1, ...,!}. Permuting the rows
and columns of’, if necessary, we may assume that= 1. We now perform elementary
row operations orC. Fork = 2, ..., n, we subtract the first row, multiplied by, from
thekth row. The resulting matrix” has the entries

0, ck2 — crac12, .- -, Ckn — Ck1CLn
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in its kth row and the entries

Clk, C2k — C21C1k, - - - Cnk — CnlCilk

in its kth column. We now remove the first row and the first column fréhand end up
with a symmetria(n — 1) x (n — 1))-matrix D with diagonal entries

Ckk — CKICIk = Ckk — Cp =k — e (k=2,...,n).
On the other hand, if we subtract the first rom®from ¢, then we obtain the vector
¢ :==(0,¢20— €12, ..., Cun — C10)-

Thus the vectodl := (c22 — c12, . . ., cun — €1,) COINcides with the main diagonal @f. By
induction,d is a linear combination of the rows @, soc is a linear combination of the
rows of C. O

As Gary McGuire kindly pointed out to us, a different proof of Lemma 4.4 can be found
in [1, Proposition 4.6.2]. We apply Lemma 4.4 in the proof of the following result which is
a refinement of Theorem 2.3(i). The special case of group algebras was first proved in [8,
Lemma5.1].

Theorem 4.5. We always have (T1A+)%2 C HA.

Proof. If p is odd then, by Theorem 2.3(iii), we have

(T1AY)>c20A=>"ZB=> HBCHA,
B B

where B ranges over the simple blocks df, in fact, if B = Mat(d, F) for a positive
integerd thenHB =ZB.

Thus we may assume that= 2. Then Lemma 2.2 gives us elemeats. .., o; in the
prime field of F such that

l
> (dime;Aej) - aj = (dime;Ae;) - 1 fori=1,....1.
j=1
Thus Lemmas 3.4 and 4.3 imply that
l l I
f()?=) (dime;jAe;) - ri = Y (dime;Aej) -ajri =Y a;t(e;) € HA.
i=1 i,j=1 j=1

Hence Proposition 2.5 implies théf1A1)? =ZA - 51(1)2CHA. O
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5. Moritainvariance

Let F be an algebraically closed field of characterigtis 0, and letA be a symmetric
F-algebra. In this section we investigate the behaviour of the idga#s" of ZA under
Morita equivalences. These results will be used in [2].
Proposition 5.1. Let e be an idempotent in A such that AeA = A. Then the map

f:ZA— Z(eAe), zt>ez=ze,
is an isomorphism of F-algebras mapping T,A+ onto T, (eAe) ™, for n € N.
Proof. Certainly f is a homomorphism of'-algebras. Let € ZA such that G= f(z) =
ez. Then 0= AezA = AeAz = Az, so thatz = 0. Thusf is injective. SincedeA = A the
F-algebrasA andeAe are Morita equivalent; in particular, their centers are isomorphic.
Hencef is an isomorphism of -algebras. Lemma 2.1(iv) implies thfto {4 = ¢¢4¢ o f,
SO
F(TaAY) = F(GH2Z ) = 572(f ZA)) = ¢4 (Z(eAe)) = Ty(eAe)”

by Lemma 2.1(iii). O

We mention two consequences of Proposition 5.1.

Corollary 5.2. Let d be a positive integer, and let A; denote the symmetric F-algebra
Mat(d, A). Then the map

h:ZA—ZA;, z+> 71,
is an isomorphism of F-algebras mapping T,AL onto (T, Ag)", for n € N.
Proof. We denote the matrix units of; by eij (i, j =1, ...,d). Then the map
f:A— e11Age11, ar> ae1y,

is an isomorphism of -algebras. This implies that(Z A) = Z(e11A4e11) and f (T, A+) =
T, (e11A4e11) " for n € N. On the other hand, Proposition 5.1 implies that the map

8:ZAq — Z(e11Aqe11), z+> ze11=e11z,

is an isomorphism of -algebras such that((T,A4)") = T, (e1144e11) " for n € N. Now
observe thak is an isomorphism of -algebras such thgto 4 is the restriction off to ZA.
Thush(T,AL) = (T,Agx) forneN. O

Corollary 5.3. Let B be a symmetric F-algebra which is Morita equivalent to A. Then
thereis an isomorphismof F-algebrasZA — Z B mapping T, A+ onto T,, B+, for n € N.
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Proof. Let e be an idempotent il such thateAe is a basic algebra o, and letf be
an idempotent irB such thatf Bf is a basic algebra a8. ThenAeA = A andBf B = B.
MoreovereAe and f Bf are isomorphic sincd andB are Morita equivalent. Thus Propo-
sition 5.1 yields a chain of isomorphisms

ZA— Z(eAe) > Z(fBf) — ZB
mappingT, A+ ontoT,Bt, forneN. O

It would be interesting to know whether Corollary 5.3 extends to symmegtadgebras
which are derived equivalent (cf. [5]).

Question 5.4. Suppose thatt andB are derived equivalent symmetidtalgebras. Is there
an isomorphism of”-algebrasZ A — Z B mappingT, A+ onto T, B+, for n € N?
6. Somedual results

Let F be an algebraically closed field of characterigtis 0, and letA be a symmetric
F-algebra. Forn € N,

T,ZA:={z€ZA: /" =0}
is an ideal ofZ A. In this way we obtain an ascending chain of ideals
0=ToZACT1ZACTZAC---CJIJZACZA

of ZA such that

o
ZTnZA = JZA.
n=0

This ascending chain of ideals turns out to be related to the descending chain of ideals
ZA=ToAT DT1AT DT2A+2...DRADO0
of ZA considered before.
Proposition 6.1. Let n € N. Then (T,,AL)(T,ZA) =0.
Proof. Lety € ZA andz € T,ZA, so thatz?" = 0. Then Lemma 2.1(i) implies that
(7 =8u(y2"") = 6 (y0) = £:(0) =0,

Hence(T,AY)(T,ZA) = (Im¢,)(T,ZA) =0, by Lemma 2.1(iii). O
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The result above is essentially [9, Proposition 4]. We conclude that
TWZAC {z€ZA: z(T,AT) =0} C {z € ZA: z5,(1) =0}.

In [2], we will see that these inclusions are proper in general, even for group algebras of
finite groups. Iz is sufficiently large theiT,ZA = JZ A andT, A+ = RA, and certainly

JZA={zeZA: z-RA=0}.

Also, if n is large andA = F G for a finite groupG then¢, (1) = G;; whereG , denotes
the set ofp-elements inG (cf. [7, (48)]), and it is known that

JZFG ={z€ZFG: zG; =0}

(cf. [7, (59)]). However, it is easy to construct an example of a symmétralgebraA
such that

JZA#{z€ZA: 25,(1) =0}

for all sufficiently largen.
Forn e N, the idealT,,ZA of ZA is related to a semilinear map : A/KA - A/KA
first constructed in [6, IV]k, is defined in such a way that

(" 1x) = (z | ka(x))” forzeZA and xeA/KA;

here we setz |a + KA) := (z | a) for z € ZA anda € A. Also, we set(a + KA)?" :=
a?" + KA fora € A. We recall the following properties a&f, (cf. [7, (50)—(53)]).

Lemma6.2. Letm,neN,letx,y € A/KA, andlet z € ZA. Then the following holds:

() Kn(x + ) = kn(x) +kn(¥), 260 (x) = k5 (27" x) @A K (2 7") = ¢4 (2)x.
(i) Kkm o kn =Kmin-

(iii) 1m (k,) =T,ZAL/KA.

Our next result is a dual version of Theorem 2.3. For simplicity, we concentrate on the case
whereA is a non-simple block. (1A is a simple block theT1ZA =0, soT1ZAl = A.
Moreover, we hav@ A+ = T1 A+ = Z A in this case.)

Proposition 6.3. Suppose that A isa non-simple block. Then the following holds:

(i) (T1AL)(T1ZAL) CKAfor p+£2.
(i) (T2AL)(T1ZA+) c KA and (T1AL)(T2ZAL) CKA for p=2.
(i) (T1A1)(T1ZAL) € IZA* for p = 2. Moreover, in this case we have (T1A1) x
(T1ZA+) cKAifand onlyif z1(1)2=0.
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Proof. (i)Lety € ZA andx € A/KA. Theni(y)x1(x) = x1(¢1(y)Px) = 0 since1(y)? €
(T1A+)? =0 by Theorem 2.3(iii). Thus

(T24%)(T1ZA /K A) = (Im¢y)(Imiep) =0,
and (i) is proved.
(i) Let x,y be as in (i). Theniz(y)k1(x) = k1(22(y)%x) = 0 since & (y)%e
(T2A1)2 =0, by Theorem 2.3(ii). Thus
(T2A%)(T1ZAY/KA) = (Im £2)(Im k) = 0.

Similarly, we haveri(y)k2(x) = k2(¢1(y)*x) = 0 sincec1(y)3 € (T14+)3 = 0 by Theo-
rem 2.3(ii). Thus

(T1A4)(T2Z A /K A) = (Im21)(Imip) =0,

and (ii) follows.
(iii) Again, let x, y be as in (i). Then

a(krx) = K1(§1(y)ZX) = K1(§1(y)l<1(yx2)) € k1((IMmg)(Imky)).
Iteration yields
(Imzp)(mkp) € k1((mey)(Imey)) € ka(ka((Imgy)(Imip)))
=k2((IMZ)(IMky)) S -+

Thus

(T141)(T1ZA /KA) = (Imz)(Imky) C () IMGey) = [ TaZAT/KA =IZA /KA,
n=0 n=0

and the first assertion of (iii) is proved. Now note tki&ii A1) (T1ZA1) C KA if and only
if

0= ((T144)(T1ZAT) | ZA) = (T1AT | T1ZAT)

if and only if TiAL € T1ZA if and only if z2 =0 for all z € T1AL. But (T1A1)2 =
F1(1)% by Corollary 2.4, sa?=0forallz e TiAL ifand only if £1(1)°=0. O

Note that, in the situation of Proposition 6.3(iii), we hay&1)? = 0 if and only if all
diagonal Cartan invariants af are even, by Lemma 3.4. Also, we have

dim(T1A4)(T1ZAT) + KA/KAS L

There is the following dual of Proposition 6.1.
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Proposition 6.4. Let n € N. Then (T,,ZA)(T,ZA') CKA.
Proof. Letz € T,ZA andx € A/KA. Then
2kn (X)) =Ky (z”nx) =k, (0x) =0.

Thus(T,ZA)(T,ZAL+/KA) = (T,ZA)(Imk,) =0, and the result follows. O
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