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result. We study cosmological constraints on thermally and non-thermally produced gravitinos for a wide 
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m3/2 � 16 eV, m3/2 � 10–1000 TeV and m3/2 � 1013 GeV.
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1. Introduction

Recently the BICEP2 Collaboration reported a detection of the 
primordial B-mode polarization of the cosmic microwave back-
ground (CMB) [1], which, if confirmed, would provide the strong 
case for inflation [2,3]. The BICEP2 result can be explained by 
a large tensor-to-scalar ratio, r = 0.20+0.07

−0.05. Taken at face value, it 
implies large-field inflation models, where the inflaton field excur-
sion exceeds the Planck scale [4].

Among various large-field inflation models, by far the simplest 
one is the quadratic chaotic inflation model [5] given by

V (ϕ) = 1

2
m2ϕ2, (1)

where ϕ is the inflaton, and the inflaton mass is fixed to be 
m � 2 × 1013 GeV by the observed curvature perturbations. The 
energy density of the Universe during inflation is close to the GUT 
scale, and therefore, it is conceivable that the inflation model (1)
is realized in the framework of supergravity or string theory. The 
chaotic inflation model in supergravity was proposed in Refs. [6,7], 
where an approximate shift symmetry on the inflaton was intro-
duced to have good control over inflaton field values greater than 
the Planck scale.1
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In order to lead to the standard Big Bang cosmology after in-
flation, the inflaton must transfer its energy to the standard model 
(SM) particles, i.e., reheating of the Universe. In supergravity, the 
inflaton generically decays through various Planck-suppressed in-
teractions, unless the inflaton is charged under unbroken sym-
metry. Specifically, the inflaton decays into top quarks and Higgs, 
gluon pairs, right-handed neutrinos, etc. even without introducing 
ad hoc couplings with the visible sector [30–32]. Some unwanted 
relics, however, are also produced at the same time. One of such 
unwanted relics is the gravitino. In fact, it is known that gravitinos 
are generically produced by decays of the inflaton [31,33–35] and 
the moduli [36–38], and the solutions to the gravitino overproduc-
tion problem were studied in Refs. [39–41].

The amount of gravitinos produced by the inflaton decay de-
pends on the properties of the inflaton and the supersymmetry 
(SUSY) breaking field. The gravitino production rate is enhanced 
for a heavier inflaton with a larger coefficient of the linear term 
in the Kähler potential. In many inflation models, the latter ap-
proximately coincides with the vacuum expectation value (VEV) of 
the inflaton or waterfall fields after inflation. The gravitino over-
production problem becomes acute especially if the SUSY breaking 
field, z, is a purely singlet, i.e., the so called Polonyi field, as in the 
gravity mediation [33,37,38]. In this case the inflaton decay pro-
duces too many gravitinos, and as a result, various inflation models 
are tightly constrained or excluded for a wide range of the grav-
itino mass [31,33–35].

Moreover, the Polonyi field itself causes a serious cosmolog-
ical problem [42]; the coherent oscillations of the Polonyi field 
easily dominate the energy density of the Universe, and typi-
cally decay into the SM particles during and after the Big-Bang
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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nucleosynthesis (BBN), altering the light element abundances in 
contradiction with observations, and they also produce too many 
lightest SUSY particles (LSPs). It is possible to consider dynamical 
SUSY breaking scenarios in which z is charged under some sym-
metry and is stabilized with a heavy SUSY breaking mass [41–44]. 
Then, the Polonyi problem becomes significantly relaxed since the 
Polonyi field can be stabilized at the enhanced symmetry point 
during inflation, suppressing the initial oscillation amplitude. Also, 
the inflaton decay rate into gravitinos and the Polonyi fields can be 
suppressed [41].

In this letter we revisit the gravitino overproduction problem 
in the chaotic inflation in light of the recent BICEP2 data, for 
a wide range of the gravitino mass. In particular we take account 
of various sources for the gravitino production; thermal produc-
tion as well as non-thermal one from decays of the inflaton and 
the Polonyi field. We will show that there are only three allowed 
regions of the gravitino mass, m3/2 � 16 eV, m3/2 � 10–1000 TeV
and m3/2 � 1013 GeV.

2. Chaotic inflation in supergravity

In this section we briefly review the chaotic inflation model 
given in Refs. [6,7]. We impose a shift symmetry on the inflaton 
superfield,

φ → φ + iC, (2)

where C is a real transformation parameter. With an abuse of 
notation, we shall use the same symbol to denote both a chiral 
superfield and its scalar component, unless noted otherwise. The 
relevant interactions are given by

K inf = c
(
φ + φ†) + 1

2

(
φ + φ†)2 + |X |2 − k|X |4 + · · · , (3)

W inf = mXφ, (4)

where c and k are real constants of order unity and X is 
a gauge singlet chiral superfield, and we assume that X has an R
charge +2 whereas φ is neutral. Here we have chosen the origin 
of φ so that the superpotential takes the above form. The inflaton 
is identified with ϕ ≡ √

2 Imφ. The Kähler potential respects the 
shift symmetry (2), which is explicitly broken by the superpoten-
tial. Here and in what follows, we adopt the Planck unit in which 
the reduced Planck mass is set to be unity, M P = 1.

The scalar potential in supergravity is given by

V sugra = eK (
(Di W )K i j̄(D j W )∗ − 3|W |2). (5)

The inflaton potential is given by (1) even for ϕ � 1 because of the 
shift symmetry. Note that, during inflation, X is stabilized at the 
origin X = 0 for k �O(1), whereas the real component of φ is sta-
bilized at Reφ ≈ −c/2. After inflation, both X and φ are stabilized 
at the origin. For the graceful exit of the inflation we assume c
is at most of order unity [7]. Note that the real component of φ

starts to oscillate after inflation with an initial amplitude ∼c/2. For 
c =O(1), its abundance is comparable to that of the inflaton ϕ .

One can impose a discrete Z2 symmetry under which both φ
and X flip their sign. Then those terms proportional to odd pow-
ers of (φ +φ†) in the Kähler potential are absent, and in particular, 
c = 0. In this case, the inflaton decay into gravitinos can be for-
bidden. On the other hand, it becomes non-trivial to induce the 
inflaton decay. As long as the Z2 symmetry is unbroken, the in-
flaton would be stable unless we assign the Z2 charge on the SM 
particles and its SUSY partners. Otherwise, we would need to break 
the Z2 symmetry to induce the inflaton decay. Therefore, introduc-
ing a Z2 symmetry imposes extra conditions on the structure of 
the underlying theory. Throughout this letter we assume that there 
is no such Z2 symmetry so that there is a linear term in the Kähler 
potential with c =O(1).

The inflaton decay into the visible sector in the chaotic infla-
tion model was studied in detail in Ref. [32]. In the presence of 
the linear term in the Kähler potential, the inflaton is automat-
ically coupled to all the fields that appear in the superpotential 
with gravitational strength. For instance, the inflaton can decay 
into top (s)quarks and Higgs(ino) at tree level [30], and a pair of 
gauge bosons and gauginos at one-loop level [31]. Also the inflaton 
decays into a pair of the right-handed (s)neutrinos if kinematically 
allowed. The inflaton decay rate into the visible sector is of or-
der m3, and the reheating temperature is O(109) GeV for c =O(1), 
without introducing ad hoc couplings with the visible sector. This 
is one of the virtues of the chaotic inflation without the Z2 sym-
metry. Therefore we will adopt the inflaton decay rate Γinf ∼ 1 GeV
and the reheating temperature TR ∼ 109 GeV as reference values in 
the following analysis.

Lastly let us comment on the mass eigenstates of the inflaton 
sector after inflation. We will add a constant term W0 � m3/2 in 
the superpotential in order to cancel positive contributions from 
the SUSY breaking. Then, φ and X get maximally mixed with each 
other to form mass eigenstates [33],

Φ± ≡ φ ± X†

√
2

. (6)

Both eigenstates have a mass � m. This mixing is effective only 
if the inflaton decay rate is smaller than the gravitino mass. For 
our reference value of the inflaton decay rate, the critical value 
is m3/2 ∼ 1 GeV. For m3/2 � O(1) GeV, the inflaton can decay 
through the interactions of φ and X with the other sectors, and 
as we shall see in the next section, the mixing between φ and X
is crucial for non-thermal gravitino production. On the other hand, 
for m3/2 � O(1) GeV, φ is an effective mass eigenstate until the 
decay, the mixing between φ and X is irrelevant for the inflaton 
decay. In this case, although the direct gravitino production from 
the inflaton becomes ineffective, too many gravitinos are ther-
mally produced for TR ∼ 109 GeV except m3/2 � 16 eV [50]. In the 
next section we will study the gravitino production from various 
sources in detail.

3. Gravitino production

Gravitinos are produced from various sources. First, gravitinos 
are generically produced non-thermally by inflaton decays. As we 
shall see shortly, the gravitino production rate sensitively depends 
on the properties of the SUSY breaking field. Secondly, graviti-
nos are produced by thermal scatterings in plasmas. Thirdly, the 
Polonyi field mainly decays into a pair of gravitinos, if kinemati-
cally allowed. The Polonyi field is copiously produced by coherent 
oscillations, and it is also produced by the inflaton decays. We will 
consider these production processes alternately.

3.1. Non-thermal production from inflaton decays

The gravitino production from inflaton decays proceeds through 
couplings between the inflaton and SUSY breaking field(s). In the 
following we assume m > 2m3/2. Otherwise gravitinos are not pro-
duced by the inflaton decay.

Let us add a simple extension of the Polonyi model to the in-
flation model (3):

K = K inf + |z|2 − |z|4
Λ2

,

W = W inf + μ2z + W0, (7)
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where z is the SUSY breaking field, Λ is an effective cut-off scale 
for the quartic coupling, and W0 is a constant term that is required 
to make the cosmological constant (almost) zero in the present 
Universe. The linear term of z in the superpotential could be gener-
ated dynamically, and the quartic coupling in the Kähler potential 
may or may not be induced by the same dynamics. We however 
do not specify the origin of μ2 to retain generality, and indeed, 
the following discussion does not depend on it.2 For simplicity we 
take μ2 and W0 real in the following.

Let us first consider the original Polonyi model which is ob-
tained in the limit of Λ → ∞. In this case z is a purely singlet, 
and there is no special point in the field space. One can show 
that z is stabilized at 〈z〉 = √

3 − 1 with the F -term, F z = −√
3μ2. 

In the original Polonyi model, there is the notorious cosmologi-
cal Polonyi problem [42]. The Polonyi field is copiously produced 
by coherent oscillations, and easily dominates the Universe after 
reheating. For the gravitino mass comparable to or lighter than 
O(1) TeV, it decays during or after BBN, altering the light element 
abundances in contradiction with observations. In fact, even if the 
Polonyi problem is solved by some mechanism,3 there is the grav-
itino overproduction from the inflaton decay. As the SUSY breaking 
field z is a purely singlet, the following operator is allowed [33,37,
38],

K int = 1

2

(
φ + φ†)zz + h.c. (8)

This leads to the coupling of the inflaton to goldstinos χ ,

L = mXχχ + h.c. = m
Φ

†
+ − Φ

†
−√

2
χχ + h.c. (9)

where we have expanded the F -term of the inflaton in terms 
of X and used m ≈ Wφ X , and χ is the fermionic component of z. 
Therefore, the inflaton mass eigenstates Φ± decay into a pair of 
gravitinos with a rate of order m3, which results in the gravitino 
overproduction for a wide range of the gravitino mass. Here and 
in what follows, we assume that the mixing between φ and X is 
effective as long as the non-thermal gravitino production from in-
flaton decay is concerned.

The Polonyi problem can be ameliorated if the SUSY breaking 
field z is charged under some symmetry as in the dynamical SUSY 
breaking scenario [43]. The low-energy effective theory is given by 
Eq. (7) with the cut-off scale Λ  1. The F -term of z is given by 
F z ≈ −μ2 = √

3m3/2, and the mass is given by

m2
z � 12m2

3/2

Λ2
. (10)

The low energy true minimum is located at

〈z〉 � 2
√

3

(
m3/2

mz

)2

� m3/2

mz
Λ.

During inflation the z can be stabilized in the vicinity of the origin 
where the symmetry is enhanced, suppressing the initial oscilla-
tion amplitude. Still, some amount of coherent oscillations of z is 
induced because the low-energy minimum of z is slightly deviated 
from the origin. We will return to the (relaxed) Polonyi problem 
later in this section.

Let us estimate the gravitino production from inflation decays 
in the case of Λ  1. Since z is charged under some symmetry, in-
teractions like (8) and K int = (φ + φ†)z + h.c. are forbidden. Note 

2 Actually the situation gets worse if μ2 is of dynamical origin and if its dynam-
ical scale is below the inflaton mass, as the inflaton directly decays into hidden 
gauge sectors, producing many gravitinos [31].

3 One possibility is the so called adiabatic suppression mechanism [45–47].
however that the effective interactions are induced from higher or-
der terms, since z develops a small but non-zero VEV. For instance 
let us consider

K = (
φ + φ†) |z|4

Λ2
, (11)

which leads to the effective interaction (8) with a coefficient sup-
pressed by 〈z〉2/Λ2 ∼ m2

3/2/m2
z . The contribution to the gravitino 

pair production rate is therefore significantly suppressed for mz �
m3/2, as expected.

There is another process that becomes relevant for a heavy mz , 
which can be understood as follows. First, the SUSY breaking 
field z is known to mainly decay into a pair of gravitinos, as its 
coupling is enhanced for longitudinal modes (see Eq. (23)). This 
is an analogue of the standard model Higgs boson which would 
mainly decay into the longitudinal modes of W bosons for the 
Higgs mass heavier than twice the W boson mass. Secondly, there 
is a non-zero mixing between X and z in supergravity. Thus, the 
inflaton decays into a pair of gravitinos through the mixing be-
tween X and z.

To get the feeling of how the decay proceeds, let us write down 
a part of the interactions leading to the mixing:

V sugra ⊃ eK Kφ W K φφ̄(Dφ W ) + h.c. ⊃ m〈Kφ〉μ2zX† + h.c., (12)

where we have expanded W and Wφ with respect to z and X , re-
spectively. This induces a mixing between z and X , and the mixing 
angle θ depends on the relation between m and mz:

θ ∼
{ m3/2

m Kφ for m � mz,
m3/2m

m2
z

Kφ for m  mz.
(13)

There is another contribution to the mixing of comparable size 
from interaction like K = (φ + φ†)|z|2. Although not shown here, 
there is also a contribution from the kinetic mixing, Kφ z̄ ∼ 〈z〉. The 
following results on the gravitino production rate can be under-
stood by combining the above mixing angle and the decay rate 
of z into a pair of gravitinos given in Eq. (23). The detailed expres-
sions for the gravitino pair production rate are given in Ref. [38].

Here we summarize the gravitino production rate (cf. Ref. [41]):

Γ (Φ → 2ψ3/2)

�
⎧⎨
⎩

1
8π

m3

M2
P

(
c̃2

(m3/2
m

)2 + c′ 2
(m3/2

mz

)4 + d2

8

(mz
m

)4)
for m � mz,

d2

64π
m3

M2
P

for m  mz,

(14)

where we have defined4

c̃ ≡ 〈Kφzz̄〉, (15)

c′ ≡ 1

4
〈Kφzz̄zz̄〉, (16)

d ≡ 〈Kφ − Kφzz̄〉, (17)

which are considered to be of order unity. The second term in d
has a comparable contribution to the first term if there is an inter-
action like K ⊃ (φ + φ†)|z|2.

The inflaton also decays into a pair of the SUSY breaking fields 
with the rate

4 Precisely speaking, c̃ should be defined in the eigenstate basis of the non-
analytic mass terms [36]. Our results are not changed by this simplification.
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Γ
(
Φ → zz†) = d̃2

32π

(
mz

m

)4 m3

M2
P

(
1 − 4m2

z

m2

)1/2

for m > 2mz, (18)

where we have defined

d̃ ≡
〈

Kφ − Kφzz̄ + Kzz̄zz̄φ

Kzz̄zz̄

〉
. (19)

The second and third terms in d̃ have comparable contributions 
to the first term if there are operators like K ⊃ (φ + φ†)|z|2 and 
(φ + φ†)|z|4/Λ2. Since z predominantly decays into a pair of grav-
itinos, this decay process gives a comparable contribution to the 
final gravitino abundance, with respect to the direct production. 
We will set c′ = c̃ = d = d̃ = 1 in the next section.

From these decay rates, it is obvious that the gravitino pro-
duction rate is significantly suppressed for a certain range of mz

satisfying m3/2  mz  m, because of the suppression factor of 
(mz/m)4 and (m3/2/mz)

4. The non-thermal gravitino abundance is 
then given by

Y (φ)
3/2 = 3TR

4m

2Γ (Φ → z̃z̃) + 4Γ (Φ → zz†)

Γtot
, (20)

where Γtot = (π2 g∗/90)1/2T 2
R/M P is the total decay rate of the in-

flaton.

3.2. Thermal production

Gravitinos are also produced by scatterings of SM particles and 
their superpartners in thermal bath. The gravitino abundance is 
proportional to the reheating temperature TR [48]:

Y (th)
3/2 �

⎧⎪⎪⎨
⎪⎪⎩

min
[
2 × 10−12

(
1 + m2

g̃

3m2
3/2

)( TR
1010 GeV

)
, 0.42

g∗ s(T3/2)

]
for TR � mSUSY,

0 for TR � mSUSY,

(21)

where mg̃ denotes the gluino mass, mSUSY is the typical soft SUSY 
breaking mass, and g∗ s(T3/2) is the effective degrees of freedom 
at the gravitino freezeout, if the gravitinos are thermalized [49,50]. 
We will take mg̃ = mSUSY in the next section.

3.3. Production from decays of the Polonyi field

The true minimum of the Polonyi field z is deviated from the 
position during inflation, and hence it starts to oscillate when the 
Hubble parameter becomes equal to the Polonyi mass.

If mz  m, the Polonyi can be stabilized in the vicinity of the 
origin z ∼ 0 due to the Hubble-induced mass term. The low energy 
true minimum, on the other hand, is located at 〈z〉 = 2

√
3m2

3/2/m2
z . 

Thus it starts to oscillate with an amplitude of 〈z〉 when the Hub-
ble parameter becomes comparable to mz . On the other hand, the 
coherent oscillations are not induced if mz � m,5 since the Polonyi 
field adiabatically follows the temporal minimum of the potential 
in this case [47]. Therefore, the abundance of Polonyi coherent os-
cillations is estimated as

ρz

s
�

{
3TR

(m3/2
mz

)4
for mz  m,

0 for mz � m.
(22)

The Polonyi field decays into gravitinos with a rate:

5 m is close to the Hubble scale at the end of inflation in the chaotic inflation 
model.
Fig. 1. The green shaded regions, purple shaded region and blue shaded region are 
excluded from thermal production (Y (th)

3/2 ), non-thermal production by the inflaton 
decay (Y (φ)

3/2) and the Polonyi decay (Y (z)
3/2), respectively. The two black lines show 

typical values of mz (see text). In this figure we have taken TR = 109 GeV. (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Γ (z → 2ψ3/2) � 1

96π

m5
z

m2
3/2M2

P

. (23)

The gravitino abundance from the Polonyi decay is estimated as

Y (z)
3/2 � 2

mz

ρz

s
. (24)

We will take into account those contributions to the gravitino 
abundance in the next section.

4. SUSY breaking scale inferred from BICEP2

The gravitino abundance is given by the sum of all the contri-
butions considered in the previous section:

Y3/2 = Y (th)
3/2 + Y (φ)

3/2 + Y (z)
3/2. (25)

Cosmological effects of the gravitino depend on its mass. If it is 
stable, the energy density of the gravitino should not exceed the 
observed dark matter abundance. If it is unstable and if its life-
time is longer than ∼1 s, the gravitino abundance is severely 
constrained by BBN. If its lifetime is much shorter than 1 s, the 
LSPs produced by the gravitino decay is constrained by the dark 
matter abundance. For concreteness, we assume the anomaly me-
diation for the mass spectrum of the gauginos for m3/2 > 100 TeV
and hence the Wino is the LSP.6 Also we assume the gauge media-
tion model for m3/2 � 100 GeV in which the NLSP mass is around 
1 TeV, so that the decay of NLSP is severely constrained by BBN if 
m3/2 � 1 GeV.

Fig. 1 shows the constraints from the gravitino overproduc-
tion on the (m3/2, mz) plane. In this figure we have taken TR =
109 GeV, for which thermal leptogenesis is possible [51]. Note that 
the spontaneous inflaton decay through the top Yukawa coupling 
leads to TR ∼ 108 GeV. This is considered to be the lower bound on 
the reheating temperature [30]. The green, purple and blue shaded 
regions are excluded by thermal production (Y (th)

3/2 ), non-thermal 

production by the inflaton decay (Y (φ)
3/2), and the Polonyi decay 

(Y (z)
3/2), respectively. We consider non-thermal production of grav-

itinos from inflaton decays only for m3/2 ≥ 1 GeV, since otherwise 

6 We assume the conservation of R-parity. If the R-parity is violated, the LSP 
can decay well before BBN and constraints can be significantly relaxed for m3/2 �
10 TeV.
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the mixing between φ and X becomes ineffective.7 The two black 
lines show typical values of mz . If the mass of z is generated ra-
diatively, Λ in (3) is written as Λ = (4π/λ2)Λdyn with Λdyn being 
the dynamical SUSY breaking scale, and λ the coupling constant 
between z and the strong dynamical sector.8 The upper line (a) 
corresponds to the strongly coupled case, λ = 4π and the lower 
line (b) corresponds to the weak coupling case λ = 1.

One can see clearly from the figure that there are only three 
allowed regions: (i) m3/2 � 16 eV, (ii) m3/2 ∼ 10–1000 TeV and 
(iii) m3/2 � 1013 GeV. Interestingly, the allowed region (ii) is con-
sistent with the pure gravity mediation scenario [53] / the minimal 
split SUSY [54,55], which naturally explains the 125 GeV Higgs 
boson observed at LHC [56]. If the SUSY breaking sector is truly 
strongly coupled, i.e. λ = 4π corresponding to the line labeled 
by (a), there are only two regions (i) and (iii). The second re-
gion (ii) is viable if the coupling of the SUSY breaking field z is 
perturbative, e.g. λ = 1 (the line labeled by (b)).

5. Conclusions

In this paper we revisited the gravitino overproduction prob-
lem in the chaotic inflationary Universe scenario, in light of recent 
BICEP2 result. Taking account of the non-thermal gravitino produc-
tion from the direct inflaton decay as well as thermal production, 
and also the effect of Polonyi coherent oscillation, we have shown 
that there are only three allowed regions of the gravitino mass: 
m3/2 � 16 eV, m3/2 � 10–1000 TeV and m3/2 � 1013 GeV. It is in-
teresting that, except for the trivial limits of ultra light and ultra 
heavy gravitino, the gravitino mass of ∼100 TeV appeared from 
these considerations, which fits the pure gravity mediation sce-
nario. Interestingly, the inflaton decays into the visible sector even 
without introducing ad hoc couplings, because there is generically 
a linear term of the inflaton in the Kähler potential. Therefore the 
inflaton generically decays into all the fields that appear in the su-
perpotential, and the reheating temperature is naturally as high 
as ∼109 GeV so that thermal leptogenesis successfully works. The 
non-thermal leptogenesis is also possible, if the right-handed neu-
trino mass is close to the inflaton mass [32].

The large tensor-to-scalar ratio observed by BICEP2 indicates 
a detectable level of stochastic gravitational wave background of 
the primordial origin around the frequency of ∼1 Hz, which can 
be detected by future space-based gravitational wave detectors. In 
particular, the observation of the shape of the gravitational wave 
spectrum enables us to determine the reheating temperature, if it 
is around ∼109 GeV [57,58].
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