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SUMMARY

Human social exchange is often characterized by
conflicts of interest requiring strategic behavior for
their resolution. To investigate the development of
the cognitive and neural mechanisms underlying
strategic behavior, we studied children’s decisions
while they played two types of economic exchange
games with differing demands of strategic behavior.
We show an increase of strategic behavior with
age, which could not be explained by age-related
changes in social preferences but instead by devel-
opmental differences in impulsivity and associated
brain functions of the left dorsolateral prefrontal
cortex (DLPFC). Furthermore, observed differences
in cortical thickness of lDLPFC were predictive of
differences in impulsivity and strategic behavior
irrespective of age. We conclude that egoistic
behavior in younger children is not caused by a
lack of understanding right or wrong, but by the
inability to implement behavioral control when temp-
ted to act selfishly; a function relying on brain regions
maturing only late in ontogeny.

INTRODUCTION

Throughout centuries and across cultures, humans have

engaged in social exchange of goods ranging from food to

money (Henrich et al., 2001). Such bargaining situations often

produce a conflict of interest of the exchanging parties where

both parties aim to maximize their own outcomes and reach

mutually satisfactory results (Güth et al., 1982). These conflicts

emerge early in life. Think of, for example, a child with multiples

of a trading card who wants to swap for a much-desired item

missing from his/her collection. The child is required to engage

in behavioral control in order to make an acceptable offer and

get what he/she wants. Therefore successful bargaining requires

strategic behavior (Camerer, 2003). Visibly selfish and antisocial

acts typically lead to retaliation and preclude the possibility of

future prosocial exchange (Axelrod and Hamilton, 1981; Fehr

and Gächter, 2000), further highlighting the importance of
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behaving in ways that satisfy one’s own needs while being

acceptable to others. Strategic social behavior, therefore,

ensures sustained goodwill for present and future interactions.

So far, descriptions of the emergence and development of

other-regarding preferences in humans indicate significant

changes during childhood (Beneson et al., 2007; Harbaugh

et al., 2003; Murningham and Saxon, 1998). Typically, behavior

shifts from a more self-oriented way of sharing resources to

a tendency to increasingly take the payoffs of others into

account. For instance, it has been shown that inequity aversion

increases between the ages of 3–8 years (Fehr et al., 2008).

Similarly, sharing increases over the course of childhood (Bene-

son et al., 2007). Some evidence for rudimentary strategic

considerations in children comes from studies reporting

increases in sharing under threat of punishment compared to

no threat of punishment (Harbaugh et al., 2003; Murningham

and Saxon, 1998). To date, however, there are neither reports

of age-related changes in the degree of strategic behavior

through development nor explanatory accounts of the under-

lying cognitive or neuronal mechanisms of such age-related

differences in social behavior.

To fill this gap, we conducted two behavioral experiments and

one functional and structural imaging (MRI) study comparing

children of different ages engaged in two different economic

exchange games: the Ultimatum Game and the Dictator Game

(henceforth UG and DG). In the UG, two anonymous individuals,

a proposer and a responder, need to negotiate the division of a

set amount of money between them. The proposer can offer

a split of the sum, which the responder can accept or reject. In

case of acceptance, the money is divided between the players

as proposed. However, if the responder rejects, neither player

obtains anything (Figure 1A). Thus, the proposer needs to be

able to consider the sanctioning threat and exercise increased

behavioral control in order to act strategically when making the

offer. The DG is different in that the responder can only accept.

Therefore, the proposer’s offers purely reflect generosity and

fairness preferences. Moreover, given that the behavior cannot

be punished, less behavioral control is necessary to be able to

maximize one’s own outcome. The difference in offer size

between UG and DG thus provides an elegant measure of

strategic behavior.

The developmentally determined differences in maturational

time course of different areas of the human brain can be used

to make predictions about the possible neural mechanisms
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Figure 1. Behavioral Data of Proposer and Responder Decisions over Both Studies

(A) Study 1 (behavioral) design. Participants were assigned to play either as proposer or responder in a one-shot DG and UG.

(B) There was an increase in strategic behavior with age (r = 0.3, p = 0.009; r (Spearman’s rho) = 0.256, p < 0.027).

(C) Rejection rates across subject groups. Older children rejected unfair offers of 1/6 MU more often than younger children (c2 = 9.0; p = 0.01).

(D) Study 2 (behavioral and fMRI) design. Participants were scanned in the role of the proposer. Each trial was preceded by a jitter followed by a decision-cue after

which subjects had 10 s to decide how they wanted to share the six MUs by shifting a red bar to the desired distribution.

(E) There was an increase in strategic behavior with age (r = 0.502, p = 0.006; r = 0.514, p = 0.005).

(F) There was an increase in strategic behavior with better performance on a measure of impulse control (SSRT; r = �0.578, p = 0.001).

See also Figures S1 and S2 and Table S1.
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that may underlie the emergence of different cognitive functions

and associated behaviors during ontogeny. For example,

evidence from structural MRI data suggests that, in particular,

lateral prefrontal cortices are among the brain regions taking

longest to fully mature, developing well into early adulthood

(Gogtay et al., 2004; Giedd et al., 1999; Shaw et al., 2008; Sowell

et al., 2003, 2004). Interestingly, functional MRI (fMRI) studies in

adults have revealed that dorsolateral portions of the prefrontal

cortex (DLPFC) are functionally implicated in cognitive control

(Miller and Cohen, 2001), more specifically in self-control (Hare

et al., 2009), as well as in bringing about norm-related behavior

(Sanfey et al., 2003) and in making strategic decisions (Spitzer

et al., 2007). Importantly, it has been shown that temporarily

disrupting the function of right DLPFC by means of repetitive

transcranial magnetic stimulation (rTMS) increases the willing-

ness to accept unfair offers, but leaves fairness judgments

unchanged (Knoch et al., 2006). Similarly, disruption of left

DLPFC during intertemporal choice leads to more impulsive

behavior as indicated by increased choices of immediate

rewards over larger delayed rewards, while valuation judgments

of the same rewards remain stable (Figner et al., 2010). This

suggests that DLPFC plays a key role in the implementation of

self-control and might also be crucial for possible age-related

changes in strategic social behavior.

We specifically aimed to test the hypothesis that late maturing

cortical areas such as DLPFC are critical for age-related differ-
ences in the implementation of fair behavior when this requires

the control of prepotent, predominantly selfish impulses.

Assuming that such strategic behavior resembles the ability to

forgo the impulse of keeping all resources to oneself in order

to make an acceptable offer to the other, this should also be

linked to more general impulse control abilities. To be able to

test for such a relationship, we made use of a well-established

measure of impulse control and response inhibition, the stop-

signal reaction time task (SSRT, Logan et al., 1997). Moreover,

alternative explanations for age-related changes in social

behavior were also tested for, including the possibility of age-

related differences in the knowledge of what constitutes fairness

(beliefs in what the other will do or should have done), social

abilities (such as simulating the actions of another), empathic

concern and perspective taking, as well as risk preferences

and general intelligence.

A further hypothesis we set out to test was whether individual

differences in brain structure would be predictive of individual

differences in strategic behavior and impulse control irrespective

of any age-related changes that might occur in those regions.

Extensive literature has shown a link between individual differ-

ences in brain structure and performance on a broad range of

cognitive and motor tasks, providing evidence both for the

effects of behavioral training on brain structure (Draganski

et al., 2004), as well as predispositional effects of brain structure

on behavior (Thompson et al., 2001). To date, however, there are
Neuron 73, 1040–1051, March 8, 2012 ª2012 Elsevier Inc. 1041
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no studies reporting a relationship between individual differ-

ences in brain structure and individual differences in social

decision making.

To realize these goals, we first conducted one purely behav-

ioral study in a large sample of children (Study 1: n = 146; age

range: 6.9–14.4 years; mean: 10.4 years) and another behavioral

study combined with fMRI in a smaller sample of children

(Study 2: n = 28; age range: 6.9–13.1 years; mean age: 9.8 years).

In each of these studies, every participant made decisions in

both the DG and UG.

The present study’s focus was on behavioral changes in

strategic social behavior and associated behavioral and neural

mechanisms during childhood. Given ethical and methodolog-

ical constraints on MRI studies of very young children, as well

as the pronounced nonlinear changes in brain structure and

function throughout adolescence (Shaw et al., 2008; Uhlhaas

et al., 2009), the lower age bound was fixed at 6 years and the

upper age bound at 13 years, the latter constituting the end of

late childhood and the onset of adolescence.

In Study 1, children were assigned either the role of the

proposer (n = 75; age range: 6.9–14.3; mean age: 10.3) or of

the responder (n = 71; age range: 7.0–14.4; mean age: 10.6)

and played both games, which were counterbalanced across

subjects (Figure 1A). In Study 2, only proposer decisions were

investigated in children when playing both games (Figure 1D).

To test whether the same neural structures relevant for bringing

about age-related changes in strategic behavior in childhood

continue to play a role in adulthood, we additionally studied

the proposer’s decisions by means of fMRI in a group of adults

(n = 14; age range: 20.7–35.1 years; mean age: 24.1). These

will be reported alongside the child data.

RESULTS

Kolmogorov-Smirnov tests did not indicate any deviation from

normality in the age distribution of the child sample (Kolmo-

gorov-Smirnov Z = 0.923; p = 0.361), justifying a unified paramet-

rical statistical framework for all current analyses. To further

cross-validate the presently reported age effects, we also used

nonparametric Spearman rank order correlations, which will

also be reported wherever necessary using Spearman’s r.

Behavioral Data
Proposers were given six monetary units (MUs), which could be

exchanged for gifts at the end of the experiment. Analyzing the

proposer behavior in Study 1 and 2 consistently revealed that

offers were larger in the UG than in the DG (Study 1: t74 = 5.52,

p < 0.001; Study 2: t27 = 8.84, p < 0.001, Figures S1A and S2A

available online). In both studies, age did not correlate with offers

in the DG, but with offers in the UG (Study 1: r = 0.672, p < 0.001;

r = 0.693, p < 0.001; Study 2: r = 0.728, p < 0.001; r = 0.715, p <

0.001). More importantly, in both studies age correlated posi-

tively with strategic behavior (i.e., the difference in offer size

between UG and DG; Study 1: r = 0.3, p = 0.009; r = 0.256,

p < 0.027; Figure 1B; Study 2: r = 0.502, p = 0.006; r = 0.514,

p = 0.005; Figure 1E). Analysis of reaction times (RTs) in Study

2 showed that reactions in the UG (mean ± SE = 1,254 ±

100 ms) took longer than in the DG (1,004 ± 72 ms; t27 = 3.39,
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p = 0.002), but that neither RTs in the DG nor UG, nor the differ-

ence between them was correlated with age. These results

extend previous findings of age-related changes in social

exchange behavior (Harbaugh et al., 2003; Murningham and

Saxon, 1998) and demonstrate an increase in strategic social

behavior with age during childhood reliably observed in two

independent studies.

Further analyses support the hypothesis that age-related

changes are based on the development of behavioral control

abilities rather than social norm understanding and social abili-

ties. Indeed, when performing a median-split on age in Study 1

to analyze the responder behavior, we observed that younger

children were more willing to accept unfair offers of one MU

than older children (c2
1 = 9.0, p = 0.01; Figure 1C). Astonishingly,

these age-related differences in rejection behavior occurred

despite comparable fairness judgments across age; that is,

children of different ages showing already an equal under-

standing of which offer was fair and which not (see Figure S1C).

Responders were also asked to rate how they had felt when

seeing the offer on three scales asking for happiness, sadness,

and anger ranging from ‘‘very’’ to ‘‘not at all.’’ Again, there

were no differences in rated emotions on any of the three scales

between the two age groups, neither when accepting offers

(happiness: F[1,52] = 1.05; p = 0.309; sadness: F[1,52] = 3.23;

p = 0.078; anger: F[1,52] = 0.09; p = 0.766; Figure S1D)

and more importantly nor when rejecting offers (happiness:

F[1,10] = 2.03; p = 0.185; sadness: F[1,10] = 0.47; p = 0.509;

anger: F[1,10] = 0.00; p = 0.987; Figure S1E).

Another indicator for age-related differences in behavioral

control were findings fromStudy 2, where the degree of strategic

behavior was correlated with behavioral control as measured by

SSRT scores (r = �0.578, p = 0.001; Figure 1F) as well as age

(r = �0.558, p = 0.002; r = �0.563; p = 0.002).

Importantly, strategic behavior in both studies was unrelated

to performance on measures of perspective taking, empathic

concern, risk taking, or general intelligence (see Experimental

Procedures for details on the measures and Tables S1) and no

age differences could be found on fairness judgments (Figures

S1B and S2B), proposers’ beliefs about the responders’ deci-

sion (Figure S2C), or what proposers indicated they would

have done in the role of responder (Figure S2D). Thus, in two

independent studies, we show that the degree of strategic

behavior increases with age and demonstrate that this is linked

to age-related differences in the ability to implement behavioral

control and not to developmental differences in social prefer-

ences, knowledge about social norms or beliefs about the

others, social skills such as cognitive or affective perspective

taking, risk preferences, or general cognitive abilities.

Analysis of the proposer behavior in adults revealed that offers

were larger in the UG than in the DG (t13 = 7.75, p < 0.001, Fig-

ure S2E), showing that adults also demonstrate strategic

behavior.

MRI Data
In the analyses of the imaging data of Study 2, we opted for

a region of interest (ROI) approach (Kriegeskorte et al., 2009).

We conducted a coordinate-based meta-analysis on six

previous studies (Hare et al., 2009; Sanfey et al., 2003; Spitzer



Figure 2. Analysis of Functional Activity in ROIs over Left and Right DLPFC

(A) With increasing age, there was an increase in activation in lDLPFC when making offers in UG compared to DG (r = 0.609, p = 0.001; r = 0.632; p = 0.001).

(B) The more strategically subjects behaved, the greater the increase in activation in lDLPFC when making offers in UG compared to DG (r = 0.456, p = 0.015).

(C) The better subjects were at impulse control, the stronger the activation in lDLPFC associated to strategic behavior (r = �0.484, p = 0.009).

(D) There was no link between age and activation in rDLPFC when making offers in UG compared to DG.

(E) The more strategically subjects behaved, the greater the increase in activation in rDLPFC when making offers in UG compared to DG (r = 0.5, p = 0.007).

(F) There was no link between impulse control and activation in rDLPFC when making offers in UG compared to DG.

See also Tables S1–S5.
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et al., 2007; Güroglu et al., 2010, 2011; Tabibnia et al., 2008, for

details see Experimental Procedures) to focus on brain regions

that have consistently been shown to play a role in behavioral

control in economic and social decision making. We identified

two ROIs, one in left DLPFC (lDLPFC: x =�40, y = 44, z = 18; Fig-

ure 2A) and one in right DLPFC (rDLPFC: x = 39, y = 37, z = 27;

Figure 2D) as the focus of subsequent analyses. In addition to

the reported ROI analysis, we also performed whole-brain anal-

yses reported in Tables S2–S5. Whereas we limit discussion of

the findings to results significant at corrected thresholds, for

the sake of completeness, we also report results at uncorrected

thresholds (p < 0.001) in the tables, but without heeding these

any further. Bonferroni corrections for comparison across

multiple ROIs were also applied (with two ROIs, the new a-level

is at 0.025).

Functional Data

Functional activity was averaged over all voxels for each ROI.

There were no significant differences in activity between deci-

sions made during the UG and the DG in either lDLPFC or

rDLPFC (main contrast of UG-DG: Table S2). Activity in lDLPFC

was positively correlated with age (r = 0.609, p = 0.001; r =

0.632; p = 0.001; Figure 2A), strategic behavior (r = 0.456,

p = 0.015; Figure 2B), and negatively with SSRT scores (r =

�0.484, p = 0.009; Figure 2C). Activity in rDLPFC on the other

hand was positively correlated with strategic behavior only

(r = 0.5, p = 0.007; Figure 2D), and not with age (r = 0.114, p =

0.564; r = 0.143, p = 0.467; Figure 2E) or with SSRT scores

(r = �0.118, p = 0.338; Figure 2F). When correcting for age,
activity in lDLPFC no longer correlated with strategic behavior

(r = 0.219, p = 0.271) nor with SSRT scores (r = �0.22, p =

0.27), whereas activity in rDLPFC still correlated positively with

strategic behavior (r = 0.516, p = 0.006) but not with SSRT scores

(r = �0.151, p = 0.453). Findings from these ROI analyses

converged with results obtained from whole-brain analyses

identifying peaks in lDLPFC when correlating activity in the

contrast UG-DG with age, as well as strategic behavior and

performance on the SSRT and in rDLPFC when correlating

activity in the contrast UG-DG with strategic behavior (correla-

tion of activity in contrast UG-DG with age, strategic behavior,

performance on SSRT: Tables S3–S5). This convergence of find-

ings between the ROI and the whole-brain analyses suggests

that the selected independent ROIs, mostly based on adult

studies, are well suited for capturing meaningful age effects in

a sample of children.

The same analysis in adults revealed that individual differ-

ences in strategic behavior were correlated with activity in

lDLPFC (r = 0.607, p = 0.021; Figure 4A) and rDLPFC (r =

0.669, p = 0.009; Figure 4C), which, in turn, also converged

with findings from whole-brain analyses (main contrast of UG-

DG and correlation of activity in contrast UG-DG with strategic

behavior: Tables S2 and S4). Even though there were no

differences in our predefined ROIS of left and right DLPFC

when computing the contrast UG-DG, other regions of bilateral

DLPFC were still preferentially engaged (Table S2), thus repli-

cating previous findings, at least in the adult sample (Spitzer

et al., 2007).
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Figure 3. Analyses of Cortical Thickness in ROIs over Left and Right DLPFC for the Sample of Children
(A) There was no decrease in cortical thickness in lDLPFC with age.

(B) When correcting for age-related cortical thickness effects, there was an increase in thickness in lDLPFC with increasing strategic behavior (r = 0.528,

p = 0.007).

(C) When correcting for age-related cortical thickness effects, there was an increase in thickness in lDLPFC with increasing impulse control (r =�0.63, p = 0.001).

(D) There was no decrease in cortical thickness in rDLPFC with age.

(E) When correcting for age-related cortical thickness effects, there was no significant increase in thickness in rDLPFC with increasing strategic behavior.

(F) There was no association between age-corrected cortical thickness in rDLPFC and impulse control.

See Figure S3.
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Structural Data (Cortical Thickness)

In addition, we analyzed cortical thickness as a measure of brain

structure in each individual (see Experimental Procedures

for details). Performing a whole-brain assessment of cortical

thickness in children, we observed widespread thinning with

increased age in bilateral prefrontal, cingulate, supramarginal,

paracentral, and medial occipital regions (family-wise error

[FWE] < 0.05, Figure S3). Although there was a small negative

relationship between age and cortical thickness in our ROIs,

effects failed to reach significance (p > 0.3 in both lDLPFC and

rDLPFC; Figures 3A and 3D). Given that studies on structural

brain development typically include samples of a greater age

range (Gogtay et al., 2004; Sowell et al., 2003), we also looked

at age-related cortical thinning over the entire range of children

and adults in our two ROIs. Indeed, this revealed significant

thinning in both lDLPFC (r = �0.385, p = 0.014; r = �0.412,

p = 0.008;) and rDLPFC (r = �0.428, p = 0.006; r = �0.322,

p = 0.043; Figure S4), confirming previous results (Gogtay

et al., 2004; Sowell et al., 2003, 2004).

We also assessed whether cortical thickness predicts indi-

vidual differences in strategic behavior and impulse control,

irrespective of any age-related cortical thinning. After statistically

controlling for age effects, we found that thickness in lDLPFC

correlated positively with both strategic behavior (r = 0.528,

p = 0.007; Figure 3B) and negatively with SSRT scores (r =

�0.630, p = 0.001; Figure 3C). Considering age-corrected

cortical thickness of rDLPFC, on the other hand, we neither

observed correlations with strategic behavior (r = 0.347, p =
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0.089; Figure 3D) nor with SSRT scores (r = �0.049, p = 0.816;

Figure 3E). This latter finding suggests that greater thickness of

lDLPFC is related to both increased strategic behavior and

impulse control, irrespective of age.

In the sample of adults, analysis of the cortical thickness

revealed no correlation with age in either lDLPFC or rDLPFC

(p > 0.3). Interestingly, like in the sample of children, analysis of

an age-corrected relationship between cortical thickness and

individual differences in strategic behavior in the sample of

adults revealed a significant positive correlation in lDLPFC (r =

0.663, p = 0.014; Figures 4B) but not in rDLPFC (r = 0.159; p =

0.587; Figure 4D). These data provide a striking convergence

with the age-corrected cortical thickness in the children,

showing that greater thickness in lDLPFC is linked to increased

strategic behavior.

Commonality Analysis
In a final integrative step, using commonality analyses we as-

sessed the relative shared and unique predictive contributions

of age and impulsivity, as well as functional and structural data

of both left and right DLPFC to explain individual differences in

strategic behavior in our child sample (Figure 5; Table S7). This

analysis represents a synthesis in that we took all predictors of

interest and tested for shared and unique variance components

of these predictors to account for individual differences in stra-

tegic behavior. The analyses were performed separately for

lDLPFC and rDLPFC (for details see Experimental Procedures;

Figure S4). When including lDLPFC, we found that individual



Figure 4. Analyses Functional Activation and Cortical Thickness in ROIs over Left and Right DLPFC for the Sample of Adults

(A) The more strategically subjects behaved, the greater the increase in activation in lDLPFC when making offers in UG compared to DG (r = 0.607, p = 0.021).

(B) There was an increase in cortical thickness in lDLPFC with increasing strategic behavior (r = 0.663, p = 0.014).

(C) The more strategically subjects behaved, the greater the increase in activation in rDLPFC when making offers in UG compared to DG (r = 0.669, p = 0.009).

(D) There was no increase in cortical thickness in rDLPFC with increasing strategic behavior.

See also Tables S1–S5.
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differences in strategic behavior were best explained by the

shared variance component of age, impulsivity and functional

activity in lDLPFC (20.58%, Figure 5A, and see also Figures 1E

and 2A–2C), as well as by the shared variance component of

impulsivity and cortical thickness in lDLPFC (12.12%, Figure 5A,

and see also Figures 3B and 3C). Considering rDLPFC, strategic

behavior was optimally predicted by the shared variance

between age and impulsivity (15.82%, Figure 5B), as well as

the unique variance of impulsivity alone (12.19%, Figure 5B).

This means that the shared variance of age, impulsivity and func-

tional activation of lDLPFC constitutes a significant contributor to

explaining individual differences in observed strategic behavior

in children aged 6–13 years. In addition to this age-related

component, further variance can be explained by individual

differences in impulsivity and associated differences in cortical

thickness of lDLPFC.

Reproducibility Analysis with an Additional Measure
of Strategic Behavior
To demonstrate the robustness of our effects, we obtained an

additional measure for strategic behavior, by calculating the

difference between the proposer’s offers in the UG and their
beliefs about the smallest acceptable offer for the responder.

Making greater offers than one believes the other to find mini-

mally acceptable constitutes another instance of strategic social

behavior, in that one attempts to increase the probability of offer

acceptance.

Behavioral Data

There was a high correlation between the two measures of stra-

tegic behavior in both children (r = 0.79, p = 0.0001) as well as

adults (r = 0.622, p = 0.017). In addition, we could replicate the

correlation between strategic behavior and age (r = 0.498, p =

0.007; r = 0.477; p = 0.01) as well as behavioral control as

measured by SSRT scores (r = �0.46, p = 0.014).

Functional Brain Data

By using this additional measure of strategic behavior in the

sample of children, we could further replicate significant correla-

tions with activity in lDLPFC (r = 0.435, p = 0.021) but not with

activity in rDLPFC (r = 0.31, p = 0.1). In the sample of adults,

correlations were marginally significant with activity in lDLPFC

(r = 0.519, p = 0.057) as well as rDLPFC (r = 0505, p = 0.065).

Whole-brain correlations of the functional data with this measure

of strategic behavior revealed peaks almost exclusively in

lDLPFC and rDLPFC (Table S6).
Neuron 73, 1040–1051, March 8, 2012 ª2012 Elsevier Inc. 1045



Figure 5. Commonality Analysis of Four Predictors

The four predictors were age, impulsivity, functional activity (function), and cortical thickness (structure) for either right or left DLPFC in explaining variance

in strategic behavior. For full details on the variance explained by each of the 15 components making up significant as well as nonsignificant contributors,

see Table S7.

(A) When including the lDLPFC, the total explained variance of strategic behavior was 54.19%. The shared variance of age, impulsivity, and function (20.58%) and

the shared variance of impulsivity and structure (12.12%) were significant predictors of strategic behavior.

(B) When including the rDLPFC, the total explained variance of strategic behavior was 57.01%. The unique variance of impulsivity (12.19%) and the shared

variance of age and impulsivity (15.82%) were significant predictors of strategic behavior.

See also Figure S4.
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Structural Brain Data

In the sample of children, there were marginally significant

correlations with age-corrected cortical thickness in lDLPFC

(r = 0.41, p = 0.042) and none in rDLPFC (r = 0.275, p = 0.184).

For the adults, however, the correlations were not significant in

lDLPFC (r = 0.342, p = 0.253) or in rDLPFC (r = 0.222, p = 0.465).

DISCUSSION

The goal of the present studywas to investigate the development

of strategic social behavior during childhood and the specific

cognitive and neural mechanisms which give rise to observed

age-related changes. Given the importance of late-maturing

brain regions such as DLPFC in implementing fair behavior (San-

fey et al., 2003; Knoch et al., 2006; Spitzer et al., 2007), we

hypothesized that these areas would also be critically involved

in bringing about increased social strategic behavior as a function

of improved impulse control with increasing age. We used two

game-theoretical-based paradigms derived from economics

that differed only in their demands for strategic behavior. In both

games, proposers could decide on how to split their endowment

with the responders, but in one game (the Ultimatum Game, UG)

they could incur punishment in the form of the responder reject-
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ing the offer, and in the other game (the Dictator Game, DG) no

such punishment option was available to the responder.

We observed that when rejection of the offers was possible,

proposers were willing to share more than when it was not

possible, indicating strategic behavior to avoid punishment.

More importantly, however, strategic behavior, operationalized

as the difference between offers in UG versus DG, increased

with age, which was shown and replicated in two independent

studies. Crucially, we also observed age-related increases in

performance on an impulse control measure (Logan, 1994),

which, in turn, also correlated with the degree of strategic

behavior. No age differences could be found on other relevant

tasks included in an extensive battery of tests, such as social

preferences of fairness, beliefs, and simulations of the

responder’s behavior or risk preferences. Furthermore, indi-

vidual differences in strategic behavior did not show any signifi-

cant correlations with specific social skills such as empathy or

theory of mind, or general cognitive skills such as fluid intelli-

gence. These findings provide strong behavioral evidence in

support of the hypothesis that there is an observed age-related

increase in strategic social behavior in social exchange tasks

during childhood that arises out of improved behavioral control

abilities.
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Further support for this hypothesis is provided by analysis of

the responder behavior in Study 1. Younger children were

more willing to accept unfair offers than older children, despite

comparable ratings of how fair and unfair these offers were

considered. Thus, even though fairness norms of the younger

children are comparable to those of older children, acting on

them when confronted with valuable and, therefore, tempting

options seems more difficult for younger children. This finding

is particularly striking, in the light of the evident discrepancy

between what younger children say they would do in case of

a poor offer (over 85% reject) and how they actually behave

(only 12.5% reject). That there were also no differences in

emotional experience between the two age groups when seeing

offers that were subsequently rejected (as shown by comparable

ratings on scales measuring anger, sadness, and happiness)

indicates that children of all ages cared equally about the offers

made. This also speaks against the possible hypothesis that

younger children might in fact be better at regulating emotional

responses to unfair offers (i.e., anger), in turn, leading to

increased acceptance. These data stand in contrast to the inter-

pretation offered by Sanfey et al. (2003), arguing for a role of

experienced emotion in producing responder behavior. Rather

our findings imply that the difficulty of younger children to imple-

ment fairness norms in the face of strong incentives against

doing so can best be accounted for by poorer impulse and

behavioral control. This provides again support for the hypoth-

esis that both age-related changes in proposer and responder

behavior can be best explained by developmental improvements

in control abilities during childhood.

Our fMRI data analysis focused on changes in ROIs in lDLPFC

and rDLPFC that were derived from a meta-analysis of previous

fMRI studies assessing self- and behavioral control in decision

making (Hare et al., 2009; Sanfey et al., 2003; Spitzer et al.,

2007; Güroglu et al., 2010, 2011; Tabibnia et al., 2008). In our

sample of children, functional activity of both lDLPFC and

rDLPFC correlated positively with strategic behavior. In addition,

both lDLPFC and rDLPFC were also correlated with strategic

behavior in the sample of adults, which suggests that these

structures continue to be important in implementing this

behavior well into adulthood. However, only lDLPFC was signif-

icantly correlated with age and impulse control abilities in the

child sample. Particularly this last finding suggests that age-

related changes with regards to the functional implementation

of strategic behavior occur selectively in left and not right

DLPFC, which, in turn, is also linked to individual differences in

impulse control. Importantly, however, while there is evidence

that right DLPFC is involved in strategic behavior, this does not

appear to change as a function of age or impulse control.

We also analyzed brain structural markers as predictors for

differences in strategic behavior using the measurement of

cortical thickness. These measures allow for the study of gray

matter variations across thousands of vertices on the folded

cortical surface (Fischl and Dale, 2000). They may thus offer

a more direct and biologically meaningful marker of brain struc-

ture than the technique of voxel-basedmorphometry, whichmay

often be confounded by sources of registration error and partial

volume effect (Ashburner and Friston, 2001; Bookstein, 2001). In

our sample of children, whole-brain cortical thickness analysis
revealed marked and multilobar age-related thinning, encom-

passing large clusters in bilateral prefrontal, cingulate, supra-

marginal, paracentral, and medial occipital regions. Findings

were consistent across several surface based smoothing kernels

chosen, indicating high degrees of robustness of effects across

different spatial scales. Even though cortical thickness in our cir-

cumscribed ROIs of lDLPFC and rDLPFC, did not show such

marked age effects when testing only within the narrow age

range of the child sample, the inclusion of the adult sample

into the analysis indeed revealed age-related thinning in our

ROIs over lDLPFC and rDLPFC replicating previous results

which were usually based on samples covering a large and argu-

ably more densely sampled age-range (Gogtay et al., 2004;

Shaw et al., 2008; Sowell et al., 2003, 2004). Our relatively narrow

age-range as well as comparably small sample of children are

likely also among the reasons why age-related cortical thinning

in our ROIs was not associated with strategic behavior. In addi-

tion, collecting a greater range of structural parameters,

providing for instance indicators for the development of white

matter, might help to find a structural brain basis for the age-

related changes observed in strategic behavior.

We performed a separate regression analyses focusing on the

relationship between cortical thickness of lDLPFC and rDLPFC

and strategic behavior independent of age. After statistically

controlling for age effects prior to analysis, we observed positive

correlations between cortical thickness of lDLPFC, but again not

rDLPFC, with both strategic behavior and impulse control in the

sample of children. Importantly, the association of increased

age-corrected cortical thickness of lDLPFC and greater strategic

behavior was replicated in the sample of adults, providing

a striking convergence of brain-behavior correlations. These

results may reflect cortical plasticity dependent on individual

differences in the daily practice of behavioral control functions,

which are required for social strategic behavior. Similarly,

previous studies demonstrated an association between the

degree of changes in brain structure and the acquisition of

specific skills, as shown in the domains of motor training (Dra-

ganski et al., 2004), spatial navigation (Maguire et al., 2000),

language acquisition (Mechelli et al., 2004), and memory

capacity (Engvig et al., 2010). The present findings extend

previous data in the domain of social decision making and

constitute a crucial role for individual differences in cortical thick-

ness in explaining variations observed in the extent of strategic

behavior in children as well as in adults. The range of possible

cellular processes, which could explain the presently observed

increase in cortical thickness with increased strategic behavior

and impulse control include synaptogenesis, dendritic branch-

ing, and dendritic spine density, as well as neurogenesis or an

increase of glial cells (Gross, 2000; Markham and Greenough,

2004). However, the use of noninvasive neuroimaging tech-

niques such as MRI in awake humans cannot tell us which of

these possible neurobiological mechanisms may underlie

observed effects. Animal studies using similar paradigms will

be needed to understand the exact neurobiological mechanisms

underlying neuronal plasticity in the domain of social decision

making.

Alternatively, the observed association between cortical

thickness in areas known to be crucial for impulse control and
Neuron 73, 1040–1051, March 8, 2012 ª2012 Elsevier Inc. 1047
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individual differences in the capacity for strategic behavior could

also reflect differential effects of genes on cortical structure

(Lenroot et al., 2009), which, in turn, predispose toward greater

impulse control and strategic social behavior. This interpretation

is supported by previous findings reporting that cortical thick-

ness in late developing regions, such as the prefrontal and

temporal neocortical regions is highly heritable, especially at

later maturational stages (Lenroot et al., 2009). Longitudinal

developmental and training studies, allowing a reliable assess-

ment of subject-specific effects, could help to further clarify

the origin of this effect. Nevertheless, these findings constitute

the first evidence of an association between measures of indi-

vidual differences in cortical thickness in prefrontal regions and

decision making in the context of social exchange in children

and adults.

Interestingly, wewere able to replicatemost of the key findings

with an additional measure for strategic behavior, as made up of

the increase in offer size during theUGcompared to one’s beliefs

about the smallest offer acceptable for the responder. This

suggests a considerable robustness of the present findings

across different measures testing for effects of strategic

behavior.

Given that several predictor variables had been shown to

account for variance in strategic behavior, we conducted

a commonality analysis to test for the predictor variables’ unique

and shared contributions in explaining the observed variance in

strategic behavior. This analysis is, therefore, an important

integrative and synthesizing step that brings together age and

measures of impulse control, as well as brain structure and func-

tion.We observed that age-related changes in strategic behavior

could best be explained by individual differences in a cognitive

process related to impulse control and are subserved by func-

tions of the lDLPFC. In addition to these linear age-dependent

changes, cortical thickness of the very same region of lDLPFC

also accounts for age-independent components in strategic

behavior, which are again associated to measures of impulsivity.

The fact that age-dependent functional activation and age-

independent cortical thickness of lDLPFC in children, as well

as age-independent cortical thickness of lDLPFC in adults,

account for strategic behavior provides a striking convergence

on the crucial role of lDLPFC in implementing this behavior.

As indicated by the commonality analysis, age-related cortical

thinning in our ROIs was not related to the observed age-related

changes in functional activation. Even though the direct link

between structural and functional neural correlates is still poorly

understood (Poldrack, 2010), especially from a developmental

perspective (although for first attempts, see Lu et al., 2009),

this suggests, that other age-dependent aspects of brain matu-

ration, not included in the present study,might be responsible for

the observed age-related changes. Several studies have shown

that white matter structure changes substantially through devel-

opment (Lebel and Beaulieu, 2011; Giedd et al., 1999) as a func-

tion of increases in axonal diameter and increasing myelination

(Lebel and Beaulieu, 2011; Benes et al., 1994). It has been

argued that these changes can help to establish interregional

cortical processing (Salami et al., 2003), which can, in turn, influ-

ence functional activation in specific cortical regions (Fornari

et al., 2007; Hagmann et al., 2010). Future work should focus
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on including a wide range of functional and structural imaging

methods capable of tracking all facets of age-dependent

changes in the brain, thereby enabling the mapping of develop-

mentally determined biological substrates of observed changes

in functional activation and associated changes in behavior and

cognition.

The present study reports age-related inter-hemispheric

differences in functional involvement of DLPFC during strategic

behavior in the presently tested age range. Whereas both left

and right DLPFC are equally involved in bringing about strategic

behavior, left DLPFC seems to require further age-dependent

specification and thus accounts for most of the variance in

age-related differences observed in strategic behavior. This

finding is also echoed in other studies on the development of

social behavior, such as reciprocal fairness during late childhood

into early adulthood (Güroglu et al., 2011) and the development

of response inhibition, where both adults and children recruited

right, but only adults additionally recruited left prefrontal cortical

areas (Bunge et al., 2002). The present data are consistent with

evidence of differential functional specification of individual

cortical regions in spite of comparable structural maturation

(Johnson, 2000; Chiron et al., 1997). We would probably expect

that if it were possible to test even younger children with func-

tional as well as structural MRI techniques, results might have

even revealed age-related differences in functional recruitment

of rDLPFC.

The hemispheric difference reported in the present paper with

regards to age-specific involvement is striking in so far as recent

studies report an exclusively causal role for rDLPFC and not

lDLPFC in bringing about behavioral control as responder in

the UG in adults (Knoch et al., 2006). However, there is now

also evidence of specific left lateral involvement of DLPFC

when implementing behavioral control in economic decisions

(Hare et al., 2009; Figner et al., 2010), suggesting that hemi-

spheric differences in the context of decision making cannot

easily be reconciled within a single explanatory framework.

More work will have to be carried out, using a range of different

tasks requiring behavioral control within the same set of subjects

and of a large age range in order to test for the stability of such

reports, as well as a possible functional specialization of right

and left DLPFC in social decision making.

The present developmental approach focused on changes

observed in behavior and brain during childhood. In addition,

we also tested a small sample of adults to see whether patterns

of behavior-brain correlations continue to hold later in life. This

was the case both for an association between strategic behavior

and functional activity as well as cortical thickness and suggests

that we could report age-related changes in cortical areas that

continue to be relevant for the implementation of the same

behavior in adulthood. A life-span approach testing throughout

childhood and adolescence into adulthood, however, was

beyond the scope of the present paper. Future investigations

should attempt to adopt this approach and, in fact, there are

currently several promising attempts to do so already (Güroglu

et al., 2011; Burnett et al., 2011).

In the present paper, we demonstrated an age-related

increase in strategic decision making between ages 6 and

13 years and showed that these age-related changes in
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bargaining behavior can best be accounted for by age-related

differences in impulse control abilities and underlying functional

activity of left but not right DLPFC. These data are comple-

mented by the evident inability of younger children to reject

unfair offers even though they are aware of the unfairness of

the offer and agree that such unfair behavior should, in principle,

be rejected. Thus, the difficulty that younger children experience

in comparable social situations can be explained by poor behav-

ioral control rather than by a lack of social norm understanding,

differences in fairness- or risk preferences, and other social

abilities such as mentalizing or empathic abilities, or general

intelligence.

More generally, our findings suggest that the primary reason

for egoistic or antisocial behavior in normally developing children

may not result from ignorance of what is right or wrong, but more

from an inability to implement this behavior when in a concrete

situation with strong self-serving incentives. This inability seems

to have its root in the late maturation of the prefrontal cortices,

subserving the capacity for impulse and behavioral control.

These findings represent a critical advance in our understanding

of the development of social behavior with far-reaching implica-

tions for educational policy and research and highlight the impor-

tance of helping children act on what they already seem to know,

as well as training the regulation of impulse and self-control.

Such interventions could set the foundation in ontogeny for

increased prosociality and altruism in the future.
EXPERIMENTAL PROCEDURES

Study 1 (Behavioral)

One hundred forty-six children (69 males, 77 females) from a school outside of

Zurich (Schule Kaltbrunn, Kanton St. Gallen) participated in the study.

Seventy-five were assigned the role of the proposer (34 males) and 71 the

role of the responder (35 males). Children underwent a series of tasks,

including the Dictator Game and the Ultimatum Game (DG and UG) either as

proposer or as responder, a risk game (the Devils game; Slovic, 1966) as

well as completing an empathy questionnaire for children (Litvack-Miller

et al., 1997). For details see Supplemental Information.

Study 2 (Behavioral and MRIl)

Participants

Children. Thirty-one children participated in the MRI experiment. Three had to

be excluded due to excessive head movement or difficulty in understanding

the task, leaving 28 subjects to be studied (14 female; range, 6.9–13.1;

mean, 9.8).

Adults. Fourteen adults also took part in anMRI experiment (7 female; range:

20.7–35.01; mean, 24.1), with an identical setup as that of the children.

All subjects or the subject’s parents gave informed consent and the study

was approved by the ethics committees of the University of Zurich and of

the Canton of Zurich (E68/2008).

Procedure

Scanning was performed within one single session, beginning with the struc-

tural scan, followed by the functional scan and ending with a postimaging

questionnaire. The following description of the imaging procedure and analysis

was identical for children and adults.

The study was carried out at the Laboratory for Social and Neural Systems

Research. There were two sessions. Children came in the company of their

parents and partook in a structural scan, as well as extensive behavioral tests

in the first session and in the functional scan and some postimaging questions

in the second session. At most, seven days passed between the two scanning

sessions for any of the children. The following will report the behavioral and the

imaging parts separately.
Behavioral Part. An extended battery of behavioral tests was carried out

following the structural scan in the first session for children. This included

the stop-signal-reaction-time task (SSRT; Logan et al., 1997), the Colored

Progressive Matrices (CPM, Raven et al., 2003), a risk game (the Devil’s

Game; Slovic, 1966), and an empathy questionnaire (Davis, 1980; Litvack-

Miller et al., 1997). After the functional session, all subjects answered ques-

tions on a postimaging questionnaire. For specific details on all tasks, please

see Supplemental Information.

Experimental Paradigm during the Functional Imaging Session. Subjects

played 20 trials of both DG andUG,whichwere presented in blocks of ten trials

for each game. Game order was counterbalanced across subjects (for more

details see Supplemental Information).

Imaging Part

MRI Acquisition. Brain images were acquired on a 3 Tesla Philips Intera

Whole-body Scanner (Philips Medical Systems, Best, The Netherlands) at

the Laboratory for Social and Neural Systems Research located at the Univer-

sity Hospital Zurich, equipped with an 8-channel Philips SENSitivity Encoded

(SENSE) head coil. Structural image acquisition entailed 301 T1-weighted

transversal images with a slice thickness of 1.2 mm reconstructed to

0.6 mm (TR, 7.6 ms; TE, 3.6 ms, flip angle, 3�, field of view [FOV], 250 mm;

matrix size, 228 3 227). For the functional imaging, a SENSE T2*-weighted

echo-planar imaging (EPI) sequence was used. Thirty axial slices were

acquired covering the whole brain with a slice thickness of 3 mm and an inter-

slice gap of 0.5 mm (TR, 1,568 ms; TE, 30 ms, flip angle = 90�, FOV = 240 mm;

matrix size, 128 3 128). A total of 624 volumes were acquired over four runs

with 156 volumes in each run. Each run began with five ‘‘dummy’’ volumes

that were discarded from further analysis.

Functional Image Processing and Analysis. Images were analyzed using

SPM5 (Wellcome Department of Imaging Neuroscience, London, UK) on the

basis of an event-related model (Josephs et al., 1997). To correct for head

movements, functional volumes were realigned to the first volume (Friston

et al., 1995a), spatially normalized to a standard template with a resampled

voxel size of 3 3 3 3 3 mm and smoothed using a Gaussian kernel with

a full width at half maximum (FWHM) of 10 mm. Following previous studies

which looked at BOLD response in children and comparing this to that of

adults, we normalized all images to the same adult brain template (Burgund

et al., 2002; Kang et al., 2003), a method shown to be valid for pediatric

imaging. A high-pass temporal filter with cutoff of 128 s was applied to remove

low-frequency drifts from the data.

Statistical analysis was carried out according to the general linear model

(Friston et al., 1995b, see Supplemental Information for details). Regressors

were defined separately for decisions made in UG and DG, and for null trials.

Results at the whole-brain level are reported at p < 0.001 uncorrected unless

indicated otherwise (see Tables S2–S6). Where applicable, we corrected for

multiple comparisons to ensure FWE of maximally 0.05 using random field

theory.

ROI Analyses. We obtained ROIs by performing a coordinate-based analysis

using theActivationLikelihoodEstimation (ALE) approach (Eickhoff et al., 2009).

Thiswas achievedby focusing thedata analysis on regions that are consistently

implicated in behavioral control in the context of social and economic decision

making. To this end, we took studies investigating behavioral control in the

context of social andeconomic decisionmaking. This entailed five studies look-

ingat behavior in thecontextof economicexchangegamesand taking thecoor-

dinates of peak activations when contrasting conditions with higher behavioral

control with those of lower behavioral control (i.e., rejection versus acceptance

as the responder in the UG; Sanfey et al., 2003; Güroglu et al., 2010, 2011;

Tabibnia et al., 2008); giving under sanctioning threat versus no sanctioning

threat; Spitzer et al., 2007). In addition, we included one further study that

explicitly looked at behavioral control in the context of economic decision

making by looking at choices of foods in dieters and nondieters (Hare et al.,

2009). The six studies contained a total of 60 foci. These foci were analyzed

using the GingerALE software (version 2.0.1, http://www.brainmap.org/ale/).

The algorithm takes account of the sample size of each contrast and uses

random effects analysis (Eickhoff et al., 2009). The resulting map was thresh-

holded at p = 0.05 (with a minimum of 450 mm3 cluster extent) corrected for

multiple comparisons by means of the false discovery rate approach. Data

was subsequently extracted using the Marsbar toolbox (Brett et al., 2009).
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Cortical Thickness. FreeSurfer was used to generate models of the cortical

surface from the T1-weighted images and to measure cortical thickness

(Version 4.5.0; http://surfer.nmr.mgh.harvard.edu). The processing steps

have been described in detail elsewhere (Han et al., 2006; Fischl and Dale,

2000). For whole-brain analysis, thickness data were smoothed using

a surface-based 20 mm FWHM Gaussian kernel prior to statistical analysis.

For ROI-based thickness analysis, we intersected coregistered volumetric

labels with cortical surface models to generate surface-based labels, in which

unsmoothed mean thickness was measured.

Statistical analyses of cortical thickness data were performed using

the SurfStat (http://www.math.mcgill.ca/keith/surfstat) toolbox for Matlab

(R2007a, The Mathworks, Natick, MA) (Worsley et al., 2009). We first tested

for age-related cortical thinning across the entire cortical surface. Findings

from this analysis were controlled at FWE < 0.05 using random field theory

for nonisotropic images (Worsley et al., 1999; see Figure S3). Correcting for

age effects, we also correlated strategic behavior and impulsivity with cortical

thickness at each vertex, which did not survive stringent statistical thresholds.

All findings were reproducible at different surface-based blurring kernels,

ranging from 10 to 30 mm FWHM. In a separate analysis, we fitted the same

linear models on mean cortical thickness in the predefined ROI.

Commonality Analysis. Commonality analyses were performed to assess

unique and shared variance contributions of our experimental variables in

the prediction of strategic behavior (Nimon et al., 2008). Each analysis included

four predictor variables: age (1); impulsivity as measured by scores on the

SSRT (2); functional activation of DLPFC in the contrast UG-DG (3); and

cortical thickness of the DLPFC (4). The last two variables were gathered by

means of the ROI analyses and performed for left and right DLPFC separately.

We chose to conduct two commonality analyses, one including function and

structure of lDLPFC and another including function and structure of rDLPFC.

Restricting the analysis to one DLPFC region at a time was justified by the

fact that the output of the shared variance contributors increases exponentially

with the number of predictor variables. Indeed, performing the analysis on six

predictor variables would have yielded 61 contributors in total, rendering

a meaningful analysis virtually impossible. In addition, patterns of left and right

DLPFC structure and function differed considerably regarding their correlation

with age, impulsivity and strategic behavior. As a result, we chose to perform

the analyses separately (for details see Supplemental Information).
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