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Arabidopsis ubiquitin-specific protease 6 (AtUBP6) interacts
with calmodulin
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Abstract Calmodulin (CaM), a key Ca2+ sensor in eukaryotes,
regulates diverse cellular processes by interacting with many pro-
teins. To identify Ca2+/CaM-mediated signaling components, we
screened an Arabidopsis expression library with horseradish per-
oxidase-conjugated Arabidopsis calmodulin2 (AtCaM2) and iso-
lated a homolog of the UBP6 deubiquitinating enzyme family
(AtUBP6) containing a Ca2+-dependent CaM-binding domain
(CaMBD). The CaM-binding activity of the AtUBP6 CaMBD
was confirmed by CaM mobility shift assay, phosphodiesterase
competition assay and site-directed mutagenesis. Furthermore,
expression of AtUBP6 restored canavanine resistance to the
Dubp6 yeast mutant. This is the first demonstration that Ca2+

signaling via CaM is involved in ubiquitin-mediated protein deg-
radation and/or stabilization in plants.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In eukaryotic organisms, Ca2+ is an important second mes-

senger that mediates stimulus response coupling to regulate di-

verse cellular functions triggered by external stimuli [1–3].

Four major families of proteins that sense changes in cytosolic

Ca2+ concentration ([Ca2+]cyt) have been identified in plants

[3,4]. Of these Ca2+ sensors, calmodulin (CaM) is highly con-

served among all eukaryotes and transduces various Ca2+-

mediated signals through the regulation of CaM-binding

proteins (CaMBPs) [4,5].

Plants control the level and activity of their constituent pro-

teins via selective synthesis and degradation. These processes
Abbreviations: CaM, calmodulin; AtCaM2, Arabidopsis calmodulin2;
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are specified and regulated by diverse cellular stimuli such as

cell division, development, biotic and abiotic stresses and hor-

mones [6–8]. Accumulating evidence indicates that the selective

breakdown of cellular proteins by the ubiquitin (Ub)–protea-

some pathway is an important regulatory mechanism in plants

[9–11].

Proteins for specific degradation by the Ub–proteasome

pathway are tagged by covalent attachment of Ubs via an

ATP-dependent cascade. The resulting Ub–protein conjugates

are then recognized by the proteasome and degraded to small

peptides and amino acids [12]. However, Ub itself is not de-

graded but is disassembled by a class of deubiquitinating en-

zymes (DUBs). DUBs help regulate the Ub–proteasome

pathway by generating free Ub moieties from their initial

translation products, recycling Ubs during breakdown of

the Ub–protein conjugates, and/or removing Ubs from spe-

cific targets and thus preventing their degradation by the

26S proteasome [13]. DUBs are classified into the Ub C-ter-

minal hydrolase (UCH) family or the Ub-specific protease

(UBP) family, on the basis of their structural features [13].

The Arabidopsis genome contains 32 DUB genes that can

be organized into 16 distinct subfamilies [11,14]. Six members

of the Arabidopsis UBP have been characterized genetically

and biochemically [15–18]. However, many aspects of their

biological function and regulation, including the nature of

their in vivo substrates and interacting partners, remain

poorly defined.

In this study, we isolated from Arabisopsis a CaM-binding

DUB, AtUBP6, which exhibits significant sequence identity

with yeast and human UBP6 family members. AtUBP6 con-

tains an Ub-like (UBL) domain, as well as highly conserved

Cys- and His-boxes that are essential for UBP6-type protease

activity. Furthermore, AtUBP6 restores growth resistance to

canavanine in yeast Dubp6 cells. We also demonstrate the

direct interaction of CaM and AtUBP6, and propose its

involvement in Ub-dependent protein degradation and/or

stabilization in plants.
2. Materials and methods

2.1. CaM-overlay screening and CaM-binding mapping
To isolate CaMBPs, horseradish peroxidase (HRP)-conjugated

Arabidopsis calmodulin2 (AtCaM2) was used as a probe to screen an
Arabidopsis cDNA expression library [19].
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Structure of AtUBP6 and sequence alignment of UBL and
putative CaMBD domain of UBP6 family. (A) Schematic diagram of
AtUBP6 structure. Locations of the UBL domain, putative CaMBD,
Cys- and His-boxes denoted Cys and His, respectively, are indicated.
The numbers indicate amino acid residues. (B) Alignment of the
Arabidopsis Ub and UBL domain of AtUBP6 with that of other UBP6
family members. (C) Alignment of a putative CaMBD of AtUBP6 with
that of other UBP6 family members. Asterisks (*) indicate the position
of the conserved hydrophobic residues. Dashes represent gaps that
were introduced to maximize alignment. GenBanke Accession Nos.:
AtUBQ1, J05507; AtUBP6, AF302660; AtUBP7, AF302661; yeast
UBP6, P43593; human USP14, P54578.
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To map the CaM-binding domain (CaMBD) of AtUBP6, nine var-
iant constructs (D0; 1M–482M, D1; 1M–373K, D2; 1M–296L, D3;
1M–202W, D4; 1M–105G, D5; 105G–136S, D6; 136S–169V, D7;
169V–202W and D8; 202W–482M) were prepared in a pGEX-2T vector
with BamHI and SmaI. To identify the critical residue(s) in the inter-
actions between CaM and AtUBP6, we introduced several point muta-
tions into the GST::AtUBP6 (D0) clones as described [20]. The
resulting crude recombinant proteins (1–5 lg) were assayed for
CaM-binding ability as described [19].

2.2. CaM mobility shift assay and phosphodiesterase competition assay

with a synthetic peptide
A peptide (172-SQFWMVLRKKYPQFSQLQNG-191) correspond-

ing to a stretch of 20-amino acids in the CaMBD of AtUBP6 was syn-
thesized commercially (Peptron, Korea). A CaM mobility shift assay
was performed with 303 pmol AtCaM2 and increasing concentrations
of this peptide in the presence or absence of Ca2+, as described previ-
ously [20].
Cyclic nucleotide phosphodiesterase (PDE) assays were performed

in an initial 500 ll reaction volume with increasing concentrations of
AtCaM2 (1–200 nM) in the presence (100 nM) or absence of peptide,
as described [20]. The dissociation constant (Kd) of AtCaM2 for the
peptide was calculated in either the presence (100 nM) or absence of
peptide, as described [21].

2.3. Complementation of a yeast Dubp6 mutantD
The yeast strains BY4741 wild-type and Dubp6 (Mat a; his3D1;

leu2D0; met15D0; ura3D0; YFR010w::kanMX4) were obtained from
Euroscarf (Frankfurt, Germany) and transformed with the vector
pYX (Novagen) harboring AtUBP6 or AtUBP6C113S. Canavanine
sensitivity assays were performed essentially as described [16] with
modifications. Transformed cells normalized by optical density were
harvested and resuspended in the S.D. medium without arginine. To
test for canavanine sensitivity, resuspended cells were incubated in li-
quid medium containing several different concentrations of canavanine
without arginine and their optical densities were measured at A600nm
after a 48–60-h incubation at 30 �C. To further confirm the results ob-
tained, 10-fold serial dilutions were spotted onto the S.D. plates lack-
ing arginine with or without 5 lM canavanine and incubated for 3–5
days at 30 �C.
3. Results

3.1. Isolation of Arabidopsis UBP6

To identify molecular components of Ca2+/CaM-mediated

signaling pathways, we screened an Arabidopsis cDNA expres-

sion library using HRP-conjugated AtCaM2 as a probe [19].

Fifty positive clones were obtained from about 5 · 105 recom-

binant phages. cDNA sequencing of the clones and compari-

sons to known sequences in GenBanke revealed that they

included several known plant CaMBPs [22,23], some previ-

ously unknown function of CaMBPs and several novel CaM-

BPs. Among the novel CaMBP clones, we identified two

cDNA clones that encode a full-length UBP, which had previ-

ously been suggested to be AtUBP6 (AF302660) [15]. Like

most other UBPs, AtUBP6 contains the conserved Cys- and

His-boxes that are essential for their activity (Fig. 1A) and

the Q, G, L and F domains that are of unknown function

[15]. AtUBP6 also contains an UBL domain that functions

as an N-terminal regulatory domain in other UBP6 family

members specifically yeast UBP6 and human USP14 (Fig.

1A and B) [24–26]. Interestingly, a putative CaMBD and its

hydrophobic residues of AtUBP6 were conserved in UBP6

family DUBs in Arabidopsis, yeast and human (Fig. 1C). These

results suggest that AtUBP6 is a member of the UBP6 DUB

family and may be the functional homolog of yeast UBP6

and/or mammalian USP14.
3.2. Mapping of the CaMBD in AtUBP6

Based on the structural characteristics of known CaMBDs, a

putative CaMBD was predicted to reside between the Cys- and

His-boxes of AtUBP6. To confirm and map this CaMBD, full-

length AtUBP6 (D0) and eight truncated proteins (D1–D8)

were expressed in Escherichia coli as glutathione S-transferase

(GST)-fusion proteins and a CaM-overlay assay was per-

formed (Fig. 2). Five recombinant proteins (D0–D3 and D7)

containing the putative CaMBD interacted with CaM::HRP

in a Ca2+-dependent manner, whereas GST and four proteins

lacking this region (D4–D6 and D8) did not (Fig. 2B). These

results demonstrated that CaM binds to the predicted AtUBP6

CaMBD in a Ca2+-dependent manner.

3.3. Characterization of the AtUBP6 CaMBD

While the CaM-binding sequence of the AtUBP6 CaMBD

(172Ser to 191Gly) does not constitute a classical CaM-binding

motif [27], it does form a basic, amphiphilic helical structure

whose hydrophobic residues are segregated from hydrophilic

residues along the helix (Fig. 3A). Thus, to further confirm

that CaM binds to the 20-amino acid stretch from 172Ser to
191Gly of AtUBP6, a peptide corresponding to this region

was synthesized and used for a CaM mobility shift assay under

non-denaturing conditions [21]. As predicted, the intensity of a

higher molecular mass band, representing the peptide-CaM

complex, was enhanced with increasing concentrations of the

synthetic peptide in the presence of Ca2+, whereas this higher

molecular weight complex was undetectable when EGTA

was substituted for Ca2+ (Fig. 3B).

We further analyzed the binding of the synthetic peptide to

CaM by performing a competition assay with PDE, a known

Ca2+/CaM-dependent enzyme. To determine Kd values of the

peptide for the activation of PDE by CaM, PDE activation

was monitored either in the presence (100 nM) or absence of

the peptide with increasing doses of CaM. The activation



Fig. 3. Analysis of CaM-binding using a synthetic peptide of AtUBP6
CaMBD. (A) The helical wheel projection of the CaMBD of AtUBP6.
The hydrophobic and basic amino acids are marked by (*) and (+),
respectively. (B) CaM mobility shift assay. AtCaM2 was mixed with
the peptide at the indicated molar ratios in the presence of 0.1 mM
CaCl2 (upper panel) or 2 mM EGTA (lower panel). Arrows indicate
the position of the free CaM and the peptide-CaM complex. (C)
Peptide inhibition of AtCaM2 stimulated PDE activity. PDE activity
was measured in the presence of varying concentrations of AtCaM2,
either in the presence or absence of a fixed concentration (100 nM) of
peptide (n = 3).

Fig. 2. Identification of a CaMBD in AtUBP6 CaMBD. (A) Nine
AtUBP6 fragments (D0–D8) were expressed as GST fusion proteins.
The CaM-binding abilities are shown in the right-hand column (+,
binds CaM; �, does not bind CaM). (B) CaM-binding analysis of
AtUBP6. The GST and GST-fusion proteins (D0–D8) were analyzed
by Coomassie Brilliant Blue staining, Western blotting with an anti-
GST antibody and CaM-overlay using CaM::HRP in the presence or
absence of Ca2+.
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curves shifted to the right in the presence of the peptide, indi-

cating that competition had occurred between PDE and the

peptide for binding to CaM (Fig. 3C). The concentrations of

AtCaM2 needed to achieve half-maximal activation of PDE

activity in the absence and presence of the 20-mer peptide were

11.2 and 72.1 nM, respectively, representing a 6.4-fold differ-

ence. The Kd value of the peptide for activation of PDE by At-

CaM2 was determined to be 7.2 nM. These results show that

the 20-mer peptide, representing residues 172Ser to 191Gly of

AtUBP6, is sufficient for Ca2+-dependent CaM-binding.

3.4. Critical residues within the CaM-binding motif

To identify the critical residues of the CaMBD in AtUBP6,

we used site-directed mutagenesis to introduce single amino

acid substitutions into the GST-fused AtUBP6 (D0). Within

CaMBD, hydrophobic residues important for CaM-binding

were separately replaced with Arg or Lys and denoted

F174R, W175R, L178K, F185R and L188K, respectively

(Fig. 4A). To determine the CaM-binding of these mutants,

they were subjected to a CaM-overlay assay. This revealed that

the W175R and L178K amino acid substitutions completely

abolished the Ca2+-dependent CaM-binding ability of

AtUBP6, while the F174R, F185R and L188K substitutions

were without effect (Fig. 4B). Thus, 175W and 178L are key res-

idues in the interaction of CaM with AtUBP6.
3.5. Complementation of AtUBP6 in a yeast mutant

To assess the enzymatic activity and substrate specificity of

AtUBP6, UBP activity assays were performed using AtUBQ1,

AtUBQ10, Ub–X-b-galactosidase (X = M or R) and Lys48-

linked poly-Ub chains in vitro and in vivo in E. coli. However,

it was not possible to demonstrate the activity of AtUBP6

using this approach (data not shown). Given that AtUBP6

exhibits significant sequence similarity to UBP6 enzymes and

contains domains that are conserved within UBP6 family

members, we changed our approach and attempted to comple-

ment a yeast Dubp6 strain with AtUBP6. To achieve this,

cDNA for either wild-type AtUBP6 or an inactive mutant,

AtUBP6C113S, in which the active site 113Cys residue was

changed to Ser, was introduced into the mutant yeast. Both

forms of AtUBP6 were individually expressed in wild-type

and Dubp6 cells using the constitutive yeast expression vector

pYX and tested for growth sensitivity to several different con-

centrations of canavanine in liquid S.D. media (Fig. 5A), and

afterwards on selected plates (Fig. 5B). The stable expressions



Fig. 4. Characterization of the CaMBD of AtUBP6. (A) Hydrophobic
and basic residues in the CaMBD are marked by (*) and (+),
respectively. AtUBP6 CaMBDWT is the wild-type CaMBD of full-
length AtUBP6 (D0) while F174R, W175R, L178K, F185R and
L188K are CaMBD mutants containing a single amino acid substi-
tution. (B) CaM-binding analysis of CaMBD mutants. The assay was
performed as described in Fig. 2B using wild-type and CaMBD
mutants of full-length AtUBP6 (D0). Fig. 5. Yeast complementation assay of AtUBP6. (A) Restoration of

canavanine resistance by AtUBP6 in liquid media. Yeast expressing the
pYX empty vector, AtUBP6 or AtUBP6C113S was grown in liquid
media (-Ura and -Arg) containing different concentrations of cana-
vanine. Circles (s and d), squares (h and j) and diamonds (r and
r) indicate the pYX empty vector, AtUBP6 and AtUBP6C113S,
respectively. Opened and filled symbols indicate wild-type and Dubp6
yeast strains, respectively. Values are the means of optical density and
the bars represent the S.D. (B) Confirmation of canavanine resistance
on the plate. Tenfold serial dilutions (5 ll) from wild-type and Dubp6
mutants expressing indicated plasmid were spotted onto plates (-Ura
and -Arg) with (+CAN) or without (�CAN) 5 lM canavanine and
incubated at 30 �C for 3–5 days.
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of UBPs were verified by fluorescence microscope as GFP-fu-

sion proteins (data not shown). Wild-type and Dubp6 cells

expressing AtUBP6 could grow at canavanine concentrations

in excess of 5 lM, but Dubp6 cells with the vector or expressing

the AtUBP6 inactive mutant could not. Thus, growth of the

Dubp6 yeast cells was restored by expressing AtUBP6, but

not by expressing the AtUBP6C113S construct or an empty

vector (Fig. 5) [16]. These results suggest that AtUBP6 pos-

sesses UBP function and may be the functional homolog of

yeast UBP6 in Arabidopsis.
4. Discussion

UBPs are important regulators in the selective proteolysis of

cellular proteins. Currently, however, the regulatory mecha-

nisms and functions of plant UBPs are not well defined. In this

report, we isolated a cDNA encoding a CaM-binding DUB,

AtUBP6, in Arabidopsis. AtUBP6 is clearly a member of the

UBP6 enzyme family, as it possesses Cys- and His-boxes that

are essential for UBP6 enzyme activity as well as an additional

conserved UBL domain, which is known to regulate deubiqui-

tinating activity by mediating the interaction between UBP6

DUBs and the proteasome [13,24,25].

To characterize AtUBP6 CaMBD, we mapped its location

by cDNA expression deletion mapping (Fig. 2) and con-

firmed its CaM-binding activity by the CaM mobility shift as-

say, the PDE competition assay and site-directed mutagenesis
(Figs. 3 and 4). Ca2+-dependent CaM-binding motifs have

been classified into two major groups, depending on which

one of the 1-8-14 and 1-5-10 motifs they possess [27].

Although the CaM-binding motif of AtUBP6 does not obey

the rule for these traditional motifs, it does form a basic,

amphiphilic helical structure in which hydrophobic residues

are segregated from hydrophilic residues along the helix

(Fig. 3A). Furthermore, the 175Trp residue, which plays a

critical role in the CaM-binding of many CaM target pro-

teins, is also found on the hydrophobic side of the helical

wheel (Fig. 3A) [28,29]. We identified key residues for

CaM-binding in the AtUBP6 CaMBD by introducing single

amino acid substitutions. In two mutants, W175R and

L178K, Ca2+-dependent CaM-binding ability was lost, indi-

cating that these residues are crucial for CaM-binding. Fur-

ther sequence analysis of UBPs revealed that CaMBDs and

key hydrophobic residues for CaM-binding are conserved in

members of the AtUBP6 family, including yeast UBP6 and
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human USP14 but not in other AtUBPs. Actually AtUBP7,

the other UBP6 family in Arabidopsis [15], interacts with

CaM (unpublished data). Although further investigation will

be required, there is a weak possibility that yeast UBP6 and

human USP14 may interact with CaM because they have Leu

instead of 175Trp at the hydrophobic position and a weak net

charge (+1 for yeast UBP6 and �1 for human USP14).

Therefore, we propose that the UBP6 family is a bona fide

CaM-binding UBP subfamily, at least in Arabidopsis.

AtUBP6 did not show deubiquitination activity in vitro or in

E. coli. One possibility is that AtUBP6 could be involved in the

specific deubiquitination of an unknown substrate to prevent

its degradation by ubiquitination. Another possibility is that

CaM and the other regulator could be essential for AtUBP6

activity. To understand the molecular function of AtUBP6,

we employed a yeast complementation assay. In this assay,

AtUBP6 restored canavanine resistance in the Dubp6 yeast mu-

tant (Fig. 5). These results confirmed that AtUBP6 is a mem-

ber of the UBP6 family and that, at least in yeast, AtUBP6 is a

functional UBP and probably the functional plant homolog of

UBP6 in yeast and USP14 in human [16].

Since our combined observations indicate that AtUBP6

interacts with CaM in a Ca2+-dependent manner and is able

to complement the Dubp6 mutation in yeast, we can propose

two possible mechanisms. First, the stability of CaM may be

regulated by UBPs because there are reports that CaM is

degraded in the proteasome [30,31]. However, when we

measured the amount of CaM by Western blot analysis in

wild-type and Dubp6 mutant cells, we could not detect any

difference in CaM protein levels between the two cell types

(data not shown). Second, Ca2+ signaling through CaM

may regulate the biochemical activity of UBPs at specific

developmental stages or under particular environmental con-

ditions and control the Ub–proteasome pathway. However,

major studies will be required to fully understand the func-

tion of CaM in the Ub–proteasome pathway and its contri-

bution to protein degradation and/or stabilization. To this

end, in depth investigations of the effects of CaM on

AtUBP6 activity, as well as proteomic analysis of its func-

tions and phenotypic analyses of overexpressing and

knock-out plants are underway.
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