AN INVARIANT OF QUADRATIC FORMS MOD 8 BY:
 F. VAN DER BLIJ

(Communicated by Prof. H. Freudenthal at the meeting of April 25, 1959)

In a short note W. Ledermann [1] proved the
Theorem l. If f is an integral quadratic form in n variables with odd determinant D, then

$$
\begin{equation*}
f(w, w) \equiv D+\tau-\operatorname{sgn} D(\bmod 4) \tag{1}
\end{equation*}
$$

for every integral vector w, which satisfies $f(x, x) \equiv f(x, w)(\bmod 2)$ for all integral vectors x. Here τ is the signature of f and $\operatorname{sgn} D=D|D|^{-1}$.

As a special case he found that if f is unimodular we have

$$
\begin{equation*}
f(w, w) \equiv \tau(\bmod 4) \tag{2}
\end{equation*}
$$

this was a corollary of topological investigations of F. Hirzebruch and H. Hopf [2]. Now it may be readily verified that $f(w, w)$ is an invariant $\bmod 8$, since from $f(x, w) \equiv f(x, t) \cdot(\bmod 2)$ we find $t=w+2 z$, with an integral vector z and $f(t, t)=f(w, w)+4 f(w, z)+4 f(z, z) \equiv f(w, w)(\bmod 8)$.

From the theory of the transformation of theta functions [3] one finds if f is definite positive and unimodular that

$$
\begin{equation*}
f(w, w) \equiv n(\bmod 8) \tag{3}
\end{equation*}
$$

And now one can ask for a suitable generalization of (1) modulo 8.
We define a gaussian sum by

$$
\begin{equation*}
G=\sum_{x \in M^{\prime} / M} e^{\pi i j\left(x+\frac{1}{3} w, x+\frac{1}{2} w\right)}, \tag{4}
\end{equation*}
$$

here M is the lattice of all integral vectors and M^{\prime} is the dual one with respect to f, that is to say M^{\prime} consists of all vectors z such that $f(z, a)$ is integral for all $a \in M$. Using classical theorems on Fourier expansions one finds

$$
G=|D| \sum_{y \in M} \int_{T} e^{\pi i f\left(t+\frac{1}{2} w, t+\frac{1}{2} w\right)} e^{-2 \pi i f(t, y)} d t,
$$

where T is a fundamental domain of M.

$$
\begin{gathered}
G=|D| \sum_{\nu \in M} \int_{T} e^{\pi i j\left(t-y+\frac{1}{2} u, t-y+\frac{1}{2} w\right)} d t, \\
G=|D| \int e^{\pi i f(x, z)} d z .
\end{gathered}
$$

here the integration must be extended for all coordinates of z from $-\infty$ to ∞. Transforming f in a diagonal form one can easily calculate this integral. We find then

$$
\begin{equation*}
G=\left.D\right|^{\frac{1}{2}} e^{\pi i \tau / 4} . \tag{5}
\end{equation*}
$$

On the other hand we find

$$
G=e^{\frac{t \pi i f(w, w)}{}} \sum_{x \in M^{\prime} / M} e^{\pi i j(x, x)} e^{\pi i f(x, u i}
$$

and since D is odd we may replace x by $2 y$ and thus

$$
G==e^{\frac{k}{x \pi i}(w, w)} \sum_{y \in M^{\prime} ; M} e^{4 \pi i i^{\prime}(y, y)} .
$$

Now we write

$$
\begin{equation*}
G_{0}=\sum_{y \in M^{\prime} / M} e^{4 \pi i f(y, y)} \tag{6}
\end{equation*}
$$

and we have proved:
Theorem 2.

$$
e^{\frac{\downarrow \pi i l f(w, w)-\tau)}{}=|D|^{\frac{1}{2}} G_{0}^{-1} . . . ~}
$$

We consider some special cases. First let $D= \pm 1$, then $G_{0}=1$ and hence

$$
\begin{equation*}
f(w, w) \equiv \tau(\bmod 8) \tag{7}
\end{equation*}
$$

Further, one can easily calculate G_{0}^{2} (e.g. by transforming f in a diagonal form modulo D)

$$
G_{0}^{2}=\left(\frac{-1}{|D|}\right)|D|
$$

and thus we obtain

$$
\begin{equation*}
f(w, w) \equiv|D|+\tau-1(\bmod 4) \tag{8}
\end{equation*}
$$

Since $|D|+\tau-1 \equiv D+n-1 \equiv D+\tau-\operatorname{sgn} D(\bmod 4)$ this is equivalent with theorem 1.

Theorem 2 gives a relation between certain local invariants of $f ; f(w, w)$ $\bmod 8$ is an invariant for the place 2 , which can be described as a character of the local Witt group which has on the form αx^{2}, with odd α the value $e^{\ddagger \pi i \alpha}$ and which equals 1 on the even forms with odd determinant.

If $p \mid D$ we can write f at the place p as $\sum_{i=1}^{n} f_{i} p^{\alpha_{i}} x_{i}^{2}$ and this prime gives as contribution to the expression $G_{0}^{-1}|D|^{\frac{1}{2}}$ a factor (we use the multiplicity properties of gaussian sums)

$$
\varphi_{p}(f)=\prod_{i=1}^{n}\left(\frac{f_{i}}{p^{\alpha_{i}}}\right) e^{\left.\frac{\pi \pi i i p}{\alpha_{i-1}}\right)}
$$

We can express φ_{p} in a simple way in the local invariants of f. With every p-adic form f, there are two forms f_{0} and f_{1} over the field with p elements, such that the Witt class of f is determined by the form $f_{0}^{*}+p f_{1}^{*}$ where f_{0}^{*} and f_{1}^{*} are p-adic forms, which give by restriction modulo p the forms f_{0} and $f_{1}(\operatorname{vid}[4])$.

The Witt group of the field with p elements consists of four elements. If $p \equiv 3(\bmod 4)$ the Witt group is a cyclic group, if $p: \equiv 1(\bmod 4)$ this group is the direct product of two cyclic groups of order two. Let $\varepsilon_{p}\left(f_{1}\right)$ be the character of this group which equals $e^{\frac{7 \pi}{z \pi}(p-1)}$ for $f_{1}(x, x)=x^{2}$ and in the second case also $-e^{\frac{\imath}{2} \pi i(p-1)}$ for εx^{2}, where ε is a non-square modulo p.

Now it can be readily verified that $\varphi_{p}(f)=\varepsilon_{p}\left(f_{1}\right)$. Thus we have proved
Theorem 3.
where $\varphi_{p}(f)=\varepsilon_{p}\left(f_{1}\right)$ is a character of the Witt group over the p-adic field.
This is an example of a relation between the local invariants of quadratic forms. Another example is given by Eichler [5]. It may be an interesting question to ask for other relations of this type.

> Mathematical Institute of the University of Utrecht.

REFERENCES

1. Ledermann, W., An arithmetical property of quadratic forms. Commentarii Mathematici Helvetici 33, 34-37 (1959).
2. Hirzebruch, F. und H. Hopf, Felder von Flächenelementen in 4 dimensionalen Mannigfaltigkeiten. Math. Ann. 136 (156-172) (1958).
3. Blij, F. van der en J. H. van Lint, On some special theta functions. Proc. Kon. Ak. Amsterdam A 61 Ind. Math. 20, 508-513 (1958).
4. Springer, T. A., Quadratic forms over fields with a discrete valuation. I, II Proc. Kon. Ak. Amsterdam A 58, 59, Ind. Math. 17, 18, 352-362, 238-246 (1955, 1956).
5. Eichler, M., Quadratische Formen und Orthogonale Gruppen. Berlin 1952, 162.
