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In a short note W. LEDERliiANN [1] proved the 

Theorem 1. If f is an integral quadratic form ~n n variables with 
odd determinant D, then 

( 1) f(w, w) - D+-r-sgn D (mod 4), 

for every integral vector w, which satisfies f(x, x) = j(x, w) (mod 2) for all 
integral vectors x. Here -r is the signature o.f .f and sgn D = D !D!-1 . 

As a special case he found that if f is unimodular we have 

(2) f(w, w) -r (mod 4), 

this was a corollary of topological investigations of F. HIRZEBRUCH and 
H. HoPF [2]. Now it may be readily verified that f(w, w) is an invariant 
mod 8, since from f(x, w) - f(x, t) ·(mod 2) we find t = w + 2z, with an 
integral vector z and f(t, t) = f(w, w) + 4f(w, z) + 4f(z, z) f(w,w) (mod 8). 

From the theory of the transformation of theta functions [3] one 
finds if f is definite positive and unimodular that 

(3) f(w, w) - n (mod 8). 

And now one can ask for a suitable generalization of (1) modulo 8. 
We define a gaussian sum by 

( 4) G = I e"ij(x+!w,,+twl' 

ccEM1/M 

here M is the lattice of all integral vectors and M' is the dual one with 
respect to f, that is to say M' consists of all vectors z such that f(z, a) is 
integral for all a EM. Using classical theorems on Fourier expansions 
one finds 

G = IDI I I e"if(t+tw.t-i-!w) e-2nij(t,1/) dt, 
1/EM T 

where T is a fundamental domain of .Ll1. 

G = IDI ! I e"ij(t-y+tw.t-vHwl dt, 
veM T 

G = IDI I eni/(Z,Z) dz. 



here the integration must be extended for all coordinates of z from - = 
to =. Transforming f in a diagonal form one can easily calculate this 
integral. \Vc find then 

(5) 

On the other hand we find 

G ~- e!nif(W,W! I e''ii(x,;c) e;rif(X,U; 

xeJ1'/Jl 

and since D is odd we may replace x by 2y and thm; 

Now we write 

( 6) 

and we have proved: 

Theorem 2. 

G -.:-:: e±nii{w,u·J 2: e4:ti.iW.v). 

ueJJ'/JJ 

Go = I c4-..,illv.v, 

YEJ.Vi'.rJi 

\V e consider some special cases. First let D = ± 1, then Go= l and hence 

(7) f(w, w) ':= T (mod 8). 

Further, one can easily calculate G~ (e.g. by transforming f in a diagonal 
form modulo D) 

G~ = (;;D IDI 
and thus we obtain 

(8) f(w, w) -- !D!--r-r- 1 (mod 4). 

Since IDI +r-1- D-;-n-1- D+r-sgn D (mod 4) this is equivalent 
with theorem l. 

Theorem 2 gives a relation between certain local invariants off; f(w, w) 

mod 8 is an invariant for the place 2, which can be described as a character 
of the local Witt group which has on the form ax2 , with odd a the value 
ei"i" and which equals 1 on the even forms with odd determinant. 

If piD we can write f at the place pas If= 1 /i pa, xr and this prime gives 
as contribution to the expression G0 1 IDit a factor (we use the multiplicity 
properties of gaussian sums) 

rpp(f) = }] (;~) e*"iip''Hi. 

\iV e can express rpp in a simple way in the local invariants of f. \Vith every 
p-adic form f, there are two forms fo and /1 over the field with p elements, 
such that the Witt class of f is determined by the form fri + pfr where 
fri and ff are p-adic forms, which give by restriction modulo p the forms 
fo and /1 (vid [4]). 



The Witt group of the field with p elements consists of four elements. 
If p = 3 (mod 4) the Witt group is a cyclic group, if p = 1 (mod4) this 
group is the direct product of two cyclic groups of order two. Let cp(/1) 
be the character of this group which equals ei"i(r-u for /l(x, x) ~~x2 and 
in the second case also - et"i(r-ll for sx2, where sis a non-square modulo p. 

Now it can be readily verified that rpp(f) = sp(f1). Thus we have proved 

Theorem 3. 
clni(f(v;. ,.. . _ .• IT rpp(f) _ 

pfD 

where rpp(f) = Ep(ft) 1:s a character of thP fYitt group over the p-adic field. 

This is an example of a relation between the local invariants of quadratic 
forms. Another example is given by EICHLER [5]. It may be an interesting 
question to ask for other relations of this type. 
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