
Testing Against Some Eventuality Properties

of Synchronous Software: A Case Study

L. du Bousquet F. Ouabdesselam J.-L. Richier1

Laboratoire LSR-IMAG
BP 72, 38402 St Martin d’Hères, France

N. Zuanon2 ,3

Actel
7 chemin des Prés, 38240 Meylan, France

Abstract

In this article, we study a tentative approach to the problem of software validation against some
eventuality properties in a synchronous context. This approach is based on an automated functional
testing tool whose various testing methods are well-adapted to statistical predictions. The main
results are drawn from a telephone feature validation benchmark for feature interaction detection.

1 Introduction

During the last decade, the growing interest in synchronous languages from
large companies has initiated significant contributions to the practical vali-
dation problem of synchronous software. Contrary to many other areas, and
thanks to the rigorous mathematical semantics of this approach, much of
current synchronous software testing theory and practice is not built on wish-
ful thinking: several specification-based testing methods have been designed,

1 Email: {lydie.du-bousquet,farid.ouabdesselam,jean-luc.richier}@imag.fr
2 Email: nicolas.zuanon@actel.com
3 This study was carried out while N. Zuanon’s PhD work was supported by a contract
between France Telecom R&D and the LSR laboratory.

Electronic Notes in Theoretical Computer Science 88 (2004) 105–121

1571-0661 © 2004 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2003.05.001
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82044886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

implemented and have shown to be effective at revealing errors [2,11,5,1,9].
Furthermore, all these methods allow to automate the test data generation
process.

In this context, our previous works on testing against properties written in
Lustre (viewed as a temporal logic) have mainly concerned safety constraints.
Indeed, testing to detect failures amounts to demonstrating safety property
violation on finite program executions, which is a manageable process.

This paper examines a proposal for testing against eventuality formulas
constructed with the “leads to” temporal operator [7]. These eventuality prop-
erties (of the form requested � served) mean that if a process has requested
a service then it is eventually served.

Tackling this problem with a testing approach is quite a challenge: a defini-
tive verdict on the violation of such a property formally requires infinite ex-
ecutions. We propose a probabilistic approach in which the decision that an
eventuality property is probably not met relies on some finite observations of
the program under test behaviors and a comparison of the time lapses neces-
sary to complete the property satisfaction. The proposal is exemplified on the
detection of telephone service interactions. This paper concerns the empiri-
cal and statistical study of a particular telephone network model. The ways
the results can be exploited to a more general approach to testing against
eventuality properties is beyond the scope of this paper.

Section 2 is devoted to the presentation of the case study context. In
section 3, we introduce the principle of our approach to test against eventuality
properties. Section 4 describes Lutess, our testing tool, and its adaptation to
test against eventuality properties. Section 5 briefly sets out the case study
results and section 6 concludes.

2 Case study

2.1 Context: validation of telephone features

In this study, we make use of the same context as in previous experiments
we have conducted on telephone service (feature) interaction detection [3]. A
feature is a modification of the Plain Old Telephone Service (POTS), which
is built on top of POTS.

The feature interaction problem

Incompatibility between features is referred to as feature interaction. Feature
interaction occurs when the behavior of a new feature modifies or inhibits the
behavior of one well-functioning existing feature and/or similarly when the

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121106

Telephony system executable specification

environment

Fig. 1. Executable model

pre-existing features prevent the new feature to behave as expected.

Applying a synchronous approach

To find feature interactions at a specification level, we modeled the whole tele-
phone network, the POTS and the features as a synchronous reactive system,
and ran this executable model. We produced several synchronous units which
correspond to the POTS alone, the POTS with one feature, and the POTS
with two features. All these programs were written in Lustre [4]. Their envi-
ronments are composed of 4 users (see Fig. 1). Details about those programs
can be found in [3].

In order to detect incompatibilities among features, we expressed the ser-
vice requirements as properties. They are stated also in Lustre. An interaction
between two features A and B is declared if feature A (resp. B) alone with
POTS satisfies its properties and if features A and B together with POTS
do not satisfy anymore the conjunction of A and B properties. This feature
interaction detection process has been carried out using a functional black-box
testing approach; it has been implemented with Lutess [2].

The relevance of the whole approach has been demonstrated during the
“First Feature Interaction Detection Contest” which was sponsored by the
Fifth Feature Interaction in Telecommunication and Software Conference, in
1998 [6,3]. The goal of the contest was to compare different automated tools
for detecting interactions from the feature requirements.

In this article, we use Chisel diagrams to describe the feature and the POTS
behaviors. Chisel is a language for defining requirements for communication
services [6]. Short descriptions of both the Chisel diagram principle and the
POTS specification are given in appendices.

2.2 Does one really need eventuality properties ?

The First Feature Interaction Detection Contest provided the requirements
for 12 features. We translated the requirements into executable specifications
(synchronous automata) and properties. All the properties we expressed then
were typically safety properties. For example, let us consider the Terminating
Call Screening (TCS) and the Call Number Delivery (CND) features. TCS

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 107

Onhook A 11

Dial A B 1

Announce A IncompleteCall 2

Busy B & Dialing A CCBSactive A & Idle A & Idle B

POTS A <- A B <- B 4

Idle B Busy B
Dial A CCBScode 4

Announce A CCBSactive 5
CCBSactive A <- true

Onhook A 6

Onhook A 3

7StartRinging A B

Offhook A 8

9CCBSactive A <- false Announce A CCBSRetry 10

Fig. 2. Call Completion to Busy Subscriber feature specification

allows a subscriber to screen calls based on the originating number. A typical
TCS safety property is that “a TCS subscriber never receives a call from a
number which is in his screening list”. CND enables the subscriber’s telephone
to receive and to display the number of the originating party on an incoming
call. A safety property one can expect is that “when a CND subscriber receives
a call, the number of the originating party is always displayed”.

Let us study now two new features: Call Completion to Busy Subscriber
(CCBS) and Return Call on Busy (RCB).

CCBS (see Fig. 2)

Let A be a CCBS subscriber. If user A tries to call user B when he is busy, user
A can choose to activate the feature (he has to dial the “CCBS-code”). Then,
as soon as both lines are idle, CCBS tries to establish the communication
between A and B; the CCBS invocation condition is Idle A and Idle B. A
CCBS invocation consists in several steps. First, user A’s line starts ringing.
When A off-hooks, if B is still idle, B’s line starts ringing. At this stage,
the CCBS invocation is considered as successful, and CCBS is automatically
deactivated. If B is busy, CCBS remains active and a new CCBS invocation
will be performed as soon as possible. For sake of simplification, we consider
that CCBS feature can not be activated twice without being deactivated in
between.

RCB (see Fig. 3)

Let B be a RCB subscriber. The feature automatically registers the incoming
call numbers when B is busy. It tries to establish the call as soon as possible,

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121108

2

RCactive B & Idle B & Idle A

Idle A Busy A

Announce B RCBRetryRCactive A <- false 5 6

POTS A <- B B <- A 4

RCactive B <- true

StartRinging B A 3

Offhook B 4

Onhook A 7

Dial A B

Busy B & Dialing A

1

POTS 15

Fig. 3. Return Call on Busy feature specification

that is when the condition Idle A and Idle B is fulfilled. RCB is similar
to CCBS, since they both share the same invocation condition, but RCB
activation is automatic (user B does not dial a code to activate the feature).

CCBS and RCB interaction: informal overview

In the executable specification, when CCBS (resp. RCB) is alone with POTS,
the feature seems to work correctly (for a single CCBS subscriber). The
elapsed time between the feature activation and a successful invocation can
be long, but it is always finite. This time is counted as the number of ticks
of the basic synchronous clock (equivalent to the number of execution cycles).
However, when the features are put together with POTS, the elapsed time
between the CCBS feature activation and a successful invocation “seems” to
be infinite 4 .

Indeed, let A be a CCBS subscriber and B a RCB subscriber. Let A call
B when B is busy. Let A activate the CCBS feature (RCB is automatically
activated). As soon as A and B are idle, both RCB and CCBS are invoked
simultaneously. Since B (resp. A) is always busy when CCBS (resp. RCB)
is in the Chisel diagram state number 8 (resp. 4), then the CCBS (resp.
RCB) feature invocation never succeeds. The interaction in our executable
specification appears in the form of a livelock.

Note that there is an interaction in our executable model because the
features are invoked simultaneously. This interaction may not occur under
different hypotheses (for instance if a priority between the features is set).
In real world, one can consider that CCBS and RCB interact if successful
invocations of CCBS (resp. RCB) are sometimes delayed.

4 The observations were done on finite but long traces (1 000 000 execution cycles).

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 109

CCBS and RCB interaction: formal detection

From CCBS and RCB requirements, it is possible to assert that both services
will be invoked “as soon as possible”. For instance, one can state the following
safety properties:

• CCBSactive(A) and Idle(A) and Idle(B) ⇒ StartRinging(A,B)

• RCBactive(B) and Idle(A) and Idle(B) ⇒ StartRinging(B,A)

But these safety properties are not the relevant ones to indicate that the
CCBS or RCB feature invocations will succeed in the end. Indeed, it is not
possible a priori to fix how long it will take between the activations and the
corresponding successful invocations.

Therefore, we need eventuality properties to mean that a feature will al-
ways lead to a successful invocation after it has been activated. The “leads
to” temporal operator [8] (�) was adequate for this example 5 .

For both CCBS and RCB features, one can write a property of the form:
“activation � successful invocation”. The CCBS feature is activated when the
event “Announce A IncompleteCall” occurs, and the successful invocation is
detected when the condition “Off A and StartAudibleRinging A” is observed.
This condition is sufficient because, in the POTS specification, the environ-
ment event “Off A” produces either the “DialTone A” or the “Talking A”
output event. Thus, we can state the following property:

Pccbs : Announce A IncompleteCall � (Off A and StartAudibleRinging A)

3 Testing against eventuality properties: principle

3.1 What is the problem ?

We recall that a synchronous program has a cyclic execution. This execution
can be observed on an execution trace. A trace is a sequence of pairs of the
program related input and output values. A sequence is time-ordered from
the first cycle up: each pair corresponds to one cycle number.

The truth value of any temporal property T to be satisfied by a program
P can only be evaluated on P behavior. In a functional black-box testing
approach, P behavior is represented by some execution traces. Usually the
purpose of the functional testing techniques is to reveal errors rather than to
prove that the system under test is correct.

Testing against a safety-like property 6 S can lie on a purely random or

5
p � q means that an event p should be followed by q in the future.

6 These include all invariant properties, and eventuality properties the future of which is
bounded by the occurrence of an event.

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121110

statistical generation of input data. It can also be based on input selection
of the data which have the highest probability of leading the program under
test into states where S can be violated. Testing against S is usually carried
out on finite traces. Indeed, as soon as S is violated, a definitive verdict can
be issued. This viewpoint is well-compatible with the main trait of safety-like
properties: they are used to mean “bad things which should not occur”. If
defaults are suspected, the primary goal is to detect them. On the opposite,
demonstrating that P meets S by testing requires infinite execution traces.
The verdict can be constructed on finite traces only if some hypotheses are
stated and verified on both the program behavior and the input generation
algorithm. The fair generation of all possible violation-prone inputs can be
such a guarantee.

Most eventuality properties are used to state that “something good will
occur”. Contrary to safety-like properties, these properties L can only be
evaluated on infinite traces. Therefore, testing against L with respect to finite
traces is a highly uncertain procedure. Let us take as an example, a formula
based on the “leads to” temporal operator. The formula p � q asserts anytime
p is true, q is true then or at some later time 7 .

On a finite trace, if the premise has been fulfilled, two cases are possible:

• the conclusion is also observed. This allows to conclude that the property
is only locally true; indeed, in the future, a new occurrence of p could not
be followed by an occurrence of q.

• the conclusion is still not established at the end of the trace. It is not possible
to know whether a longer trace would lead to the property satisfaction.

Thus, only a “partial” verdict of the property observance can be issued from
the analysis of finite traces. Our objective is to determine a predictive and
probabilistic verdict from both partial verdicts and levels of confidence in these
latter pieces of information.

3.2 Proposal

For several reasons, a simple probabilistic prediction process fits rather well
an eventuality property truthfulness evaluation based on the analysis of the
program under test execution traces.

• Firstly, as long as the left-hand side condition is not met, the verdict is clear:
the property is trivially true. Uncertainty appears only after the premise
has been observed: as long as the right-hand side condition is not met, the
verdict is unknown. However, the premise occurrence is an event which

7 “p � q is equivalent to �(p ⇒ �q)” (whenever p is true, p will eventually become true).

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 111

defines the origin of the sub-trace to be examined, and thus the starting
point of a statistical analysis.

• Secondly, a tentative and temporary verdict can be issued in various cir-
cumstances, by reference to controlled situations. For example, one can
predict the verdict with respect to some data which are provided by the
software requirements document or which result from the software previous
executions. At worst, one may assume that the very naive intuition that
the longer the delay to get the conclusion the lower the probability for that
conclusion to occur applies.

• Thirdly, these reference data are associated with some sort of “time to
service”, i.e. the elapsed time in between the premise and the conclusion
respective observances. This notion of “time to service” is directly inspired
from typical applications of the temporal expression request ⇒ � response
which links the requested and served states of a service.

Therefore, we propose to tentatively measure the confidence in the truth-
fulness of the eventuality property on the remaining trace of the program
under test execution which follows each premise occurrence 8 . This means of
determining the level of confidence could be complemented and strengthened
by pinpointing some additional conditions. These conditions would represent
intermediary constraints which would mark out the progression of the ser-
vice request towards its conclusion. In this case study, no such additional
conditions have been used.

The main problem then is to design a valid confidence index which would
define the probability that a partial verdict is correct. To this end, we regard
the “time to service” as a random variable which takes on its values over a
discrete set of time points (each point corresponds to a tick of the synchronous
clock). We also assume that, for each temporal property request ⇒ � response
to be evaluated, there exists a distribution law whose probability density func-
tion measures, at each instant during the testing process, the probability that
this property is true, i.e. the probability that the response is going to be
observed. This distribution law is a means to estimate the “time to service”
of a pending request.

By simplification, we consider this variable as a continuous one. The time
origin is the instant at which the request has been issued. Since the property
is trivially true as long as the request is not observed, the density is considered
as null over] −∞, 0[. On the opposite, in order to keep consistent with the
concept of liveness which says that “no situation is hopeless”, the density in-

8 A premise or a conclusion occurrence corresponds to the instant at which the premise or
conclusion condition becomes true.

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121112

tegration over [0,∞[is equal to 1. The distribution function F (t) =
∫

t

0
f(x)dx

gives the estimated truth value of the property at time t. Therefore, the prob-
ability that the property is true, at time t, when the response has not been
observed is measured by 1 − F (t) =

∫
+∞

t
f(x)dx.

Our last hypothesis is that this approach can be generalized from the
analysis of “request ⇒ � response” formula to the evaluation of “leads to”
properties. Indeed, we can consider that the confidence decreases as long as the
response is not observed, since it is expected that any new request occurrence
does not modify this phenomenon (this assumption has been validated by the
case study experiment).

Our goal is to get the data to construct such a distribution law in order
to read the value of the confidence index directly of the curve. Ideally, the
distribution law equation is provided using past experiences. Otherwise, the
distribution curve is built from experimental data; in our case study, it is
built from the validation of an isolated feature. This curve is used as a basis
to determine whether there is an interaction among several feature including
the validated one.

Thus, the whole approach, which is based on statistical predictions from
sampling, makes sense and is well-founded if several conditions hold:

(i) inputs which drive the program execution during testing are “represen-
tative” of the program uses,

(ii) these uses guarantee that each value from the program input space will
eventually be selected,

(iii) if appropriate samples are used for the test set, results on these samples
stand in for future program behaviors,

(iv) program executions guarantee that all program operations that are pos-
sible eventually will be executed.

The second and the fourth conditions are fairness requirements which have
to be met respectively by the test data generation process and the program
behavior. To be complete, this approach must also make precise the type of
fairness (strong or weak) to be implemented.

4 Using Lutess to test against eventuality properties

4.1 Lutess testing tool: an overview

Lutess [2,10] is the testing tool which we developed to validate reactive syn-
chronous software. It requires three elements: an environment description
written in Lustre (∆), a program under test (Σ) and an oracle (Ω) provid-

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 113

test

verdict
oracle

dynamically produced input data

program output

system underdescription
Environment

input data
generator

Communication link Object provided by the user

collector
trace

∆

Test harness

Σ

Ω

Fig. 4. Lutess

ing the program requirements (fig. 4). Lutess builds a random generator from
the environment description and constructs automatically a test harness which
links the generator, the program under test and the oracle. Lutess coordinates
their executions and records the sequences of input-output relations and the
associated oracle verdicts, thanks to the trace collector. Components are just
connected to one another and not linked into a single executable code.

The program under test and the oracle are both synchronous executable
programs, with boolean inputs and outputs. Optionally, they can be supplied
as Lustre programs.

The test is operated on a single action-reaction cycle, driven by the gener-
ator. The generator randomly selects an input vector for the program under
test and sends it to this latter. The program under test reacts with an output
vector and feeds back the generator with it. The generator proceeds by pro-
ducing a new input vector and the cycle is repeated. The oracle observes the
program inputs and outputs, and determines whether the software specifica-
tion is violated. The testing process is stopped when the user-defined length
of the test sequence is reached.

Basically, the Lutess generator selection algorithm chooses a valid 9 input
vector in an equally probable way. In each environment state, any valid input
vector has the same probability to be selected.

This method is not powerful enough when it comes to test systems in
a complex environment: the realistic behaviors might be a small part of all
possible behaviors with respect to the environment specification. For instance,
we noticed that the use of this method for the contest results in each user
dialing his own number as often as any other number. In reality, this behavior
is quite rare, though possible.

9 An input is valid if and only if it is complying with the environment description.

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121114

To overcome this drawback, Lutess offers various facilities to guide the
generation [2]. Several methods are proposed:

• a behavioral pattern-based guiding, which allows the user to define some
classes of scenarios; the selection algorithm will favor sequences of inputs
that match a scenario;

• an operational profile-based guiding, which allows the user to define input
statistical (partial) distribution; the selection algorithm will produce the
inputs according to the given distribution.

4.2 Testing against eventuality properties with Lutess

Let us examine how testing against the property: “premise � conclusion” can
be implemented.

To build the time distribution between premise and conclusion occurrences,
a “counting program” can be plugged-in in the place of the oracle (Ω). This
program returns an integer value which represents the number of instants in
between the premise and the conclusion occurrences (timetoserve). This
value is egal to zero most of the time. A local integer variable (tts) is used
as a counter, which is incremented at each cycle, between the occurrence of
the logical events premise and conclusion. The counter is reset to zero
when conclusion is true. A simplified Lustre node illustrating the counting
program built for CCBS validation 10 is given in figure 5.

Statistical predictions from sampling using Lutess is valid since the samples
are appropriate:

• each guiding technique offered by Lutess can be used to associate occur-
rence weights to the inputs; the operational-profile based technique allows
to represent a profile of actual or anticipated use of the software; therefore,
the samples which are produced are representative of these uses, even when
using random testing alone,

• the test data generation procedures integrated in Lutess guarantee that the
inputs are taken without bias and that each input is infinitely often se-
lected; even the scenario-based technique leaves room to random generation
of events which are not in the scenario and does not force the observance of
the conclusion of an eventuality property after the premise has occurred.

Lutess drives executions which are long enough not to prevent some behaviors
of continuously operating programs to take place.

10 We recall that here the CCBS feature can not be activated twice without being deactivated
in between.

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 115

node CountingPgm(input_0,..,input_n, outputs_0,..,outputs_m: bool)
returns (timetoserve: int);
var premise, conclusion: bool; tts: int;
let

premise = Announce_A_IncompleteCall ;
conclusion = Off_A and StartAudibleRinging_A;
tts= 0 -> if between(premise,conclusion) then (pre(tts)+1) else 0;
timetoserve = 0 -> if conclusion then (pre(tts)) else 0;

tel;

node between(inf,sup: bool) returns (btwn: bool);
let

btwn=false -> if inf then true else if sup then false else pre btwn;
tel;

Fig. 5. The counting program built for CCBS

5 Results of the case study

5.1 Discovering interaction using eventuality property

This first experiment has been conducted using only Lutess uniform (equally
likely) random test data generation. It was composed of three stages:

(i) Collecting relevant data by operating an executable specification of POTS
and CCBS:
• the number of premise occurrences
• the number of conclusion observances
• the elapsed time between each premise occurrence and its conclusion.

(ii) Collecting the same three categories of data by using an executable spec-
ification of POTS, CCBS and RCB.

(iii) Analyzing and comparing both data sets, in order to conclude about
feature interaction.

Figure 6 was elaborated from the analysis of several traces of CCBS alone.
The curve displays the distribution of the elapsed time between CCBS acti-
vations and their corresponding successful invocations. It allows to deduce a
MTTS 11 of approximately 42 cycles.

For CCBS and RCB together, six long traces were produced. For all those
traces, it was not possible to observe any successful invocation even after more
than 100 000 steps following the last activation of CCBS.

Comparing both results, one can conclude that the CCBS eventuality prop-
erty is not satisfied when CCBS is composed with POTS and RCB. Thus, there
is a feature interaction, which has been previously explained (see section 2.2).

11 Mean Time To Service; a notion named after the Mean Time Between Failure concept in
the reliability domain.

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121116

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350

CCBS alone

Fig. 6. Elapsed time distribution between CCBS activations and their corresponding successful
invocations

5.2 Statistical analysis

Several statistical inference test techniques have been applied to the observa-
tional material (Fig. 6). The elapsed time distribution does not correspond
to any known law (Exponential, Weibull, Poisson, Normal, ...).

The p-quantiles of the elapsed time distribution have been studied for
p=90%, 95%, 97.5%, and 99%, on the basis of 78 execution sequences. Using
the Anderson-Darling test, one concludes that the distribution of these em-
pirical p-quantiles is the normal law. So, the estimate of the expected time to
service ranges from 103 cycles (for p=90%) to 202 cycles (for p=99%). This
means that the probability that a request gets an answer after 202 execution
cycles is 1%.

6 Conclusion and perspectives

For software applications in continuous operation, some requirements may
take the form of a request should always be followed by a response. When the
response delay is not restricted, this kind of requirement can be expressed as
an eventuality property (request � response).

This paper has addressed the problem of validating synchronous appli-
cations against eventuality properties with a testing method. Our approach
consists in measuring statistically the response delay and determining the pre-
dictive verdict of the property satisfaction together with its associated confi-
dence index.

We have applied this approach to telephony feature specification valida-
tion, and more precisely to detect feature interaction between the Call Comple-
tion on Busy Subscriber (CCBS) and the Call Return on Busy (RCB) features.

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 117

We are currently trying to determine if the CCBS elapsed time distribution
follows a classical distribution law or a combination of such laws. In that
case, indeed, we could be more precise in the confidence index definition.
Furthermore, we could use this index as a stopping criterion: in the particular
case of software testing against an eventuality property, one may decide to
stop the test when this index has too small a value (0.01%, for instance).

References

[1] L. Arditi, A. Bouali, H. Boufaied, G. Clave, M. Hadj-Chaib, L. Leblanc, and R. de Simone.
Using Esterel and Formal Methods to Increase the Confidence in the Functional Validation of
a Commercial DSP. In ERCIM workshop on Formal Methods for Industrial Critical Systems,
Trento, Italy, 1999.

[2] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess: a specification-driven
testing environment for synchronous software. In 21st International Conference on Software
Engineering. ACM Press, May 1999.

[3] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Feature interaction detection
using synchronous approach and testing. Computer Networks and ISDN Systems, 11(4):419–
446, 2000.

[4] N. Halbwachs. Synchronous programming of reactive systems, a tutorial and commented
bibliography. In Tenth International Conference on Computer-Aided Verification (CAV),
Vancouver (B.C.), June 1998. LNCS 1427, Springer.

[5] L.J. Jagadeesan, A. Porter, C. Puchol, J.C. Ramming, and L. Votta. Specification-based
Testing of Reactive Software: Tools and Experiments. In 19th International Conference on
Software Engineering, 1997.

[6] K. Kimbler and L.G. Bouma, editors. Feature Interactions in Telecommunications Systems V.
IOS Press, 1998.

[7] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software
Engineering, 3(2):125–143, March 1977.

[8] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(2):872–923, May 1994.

[9] B. Marre and A. Arnould. Test Sequences Generation from Lustre Descriptions: GATeL. In
15th IEEE International Conference on Automated Software Engineering. IEEE, September
2000.

[10] F. Ouabdesselam and I. Parissis. Testing Synchronous Critical Software. In 5th International
Symposium on Software Reliability Engineering, USA, 1994.

[11] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testing of reactive systems.
In 19th IEEE Real-Time Systems Symposium (RTSS), 1998.

A Chisel diagrams and POTS

A Chisel diagram is a formalism used to present POTS and feature specifications during
the “feature interaction detection contest”, organised for the fifth Feature Interaction in
Telecommunication and Softare conference, in 1998 [6]. The POTS is presented Figure A.1.

A Chisel diagram is a directed acyclic graph. A diagram node (one of the rectangles)
contains a number, which uniquely identifies the node within the feature, and one or more
events and variable assignments. The nodes are connected by directed edges (arrows in

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121118

the diagrams). Multiple events in a node are separated by verticals bars (|||). A node
containing such multiple events is equivalent to the sequence diagram representing any
possible sequence of those same events (i.e. A|||B means {AB, BA}).

For the contest, the telephony system was mainly composed of a switch and sev-
eral telephone devices. A user can emit the following events: Off-hook, On-hook, Dial
user number or code. Those events are the system inputs. The system can produce the
following events: DialTone, Start AudibleRinging, Start Ringing, Stop AudibleRinging,
Stop Ringing, LineBusyTone, Disconnect.

A feature may use internal variables. For instance, the variable Busy A is true between
an Off-hook A event and the next On-hook A event; between a Start Ringing A B event and
the next Stop Ringing A B event, if no Off-hook A intervenes; or between a Start Ringing
A B event and the next On-hook A. All of the POTS event sequences start and end with
Busy A = False (Idle A = True).

B A trace analysis of CCBS alone with POTS

Figure B.1 presents an excerpt of a 10 000 steps trace for CCBS alone with POTS. It
was obtained with the random seed 72535. During the 10 000 steps, CCBS was activated
and sucessfully invoked 66 times. We choose to present the 26th activation of the trace.
The successful invocation appears 4 steps after the activation. It is the shorter time lapse
between an activation and a successful invocation in this trace. The longer time lapse is
241 and the MTTS value here is 45.

• Step 3030, C goes on the hook (input “On C”). All users are idle (phone state “Id”).

• Step 3035, A goes off the hook (input “Off C”). He hears the dialing tone (output “DT”).

• A dials C number (step 3036), but this one is busy (he goes off the hook step 3031). A
can activate the CCBS feature (output “Ann IC” = CCBS announce Incomplete Call).

• Step 3038, A dials the CCBS code (input “Dial A ccbs”). He receives a message from
CCBS annoucing the activation is OK (output “Ann AcOK”).

• A goes on the hook step 3039.

• Step 3040, A and C are both Idle, and CCBS starts invocation procedure: user A’s phone
starts ringing (input “StaR”).

• A goes of the hook at step 3042, while C is still idle. C’s phone starts ringing (input
StaR) while A’s phone starts audible ringing tone (input StaAur).

• Step 3042 the feature CCBS has been sucessfuly invoked. The delay between the activa-
tion and the invocation is displayed.

• Step 3043, C goes off the hook. Both audible ringing and ringing tones stop (outputs
“StoAur” and “StoR”). A and C are “talking” (phone states “Tk”).

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 119

11 Disconnect A B
8 Disconnect B A

 Busy B <- false
9 On-hook B /

6 Stop AudibleRinging A B |||

 Busy B <- false
10 On-hook B /

 Stop Ringing B A

13 On-hook A5 Off-hook B

4 Start AudibleRinging A B |||
Start Ringing B A / Busy B <- true

Busy BIdle B

 Stop Ringing B A /
14 Stop AudibleRinging A B |||

1 Off-hook A

2 DialTone A

3 Dial A B 17 On-hook A

15 LineBusyTone A

16 On-hook A

 Busy B <- false

7 On-hook A

12 On-hook A

Fig. A.1. POTS formal description (Chisel diagram)

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121120

step system system output phone state delay

input A B C D A B C D

3030 On C - - - - Id Id Id Id 0

3031 Off C - - DT - Id Id Di Id 0

3032 Dial C B - StaR StaAur - Id Rg Al Id 0

3033 Off B - StoR StoAur - Id Tk Tk Id 0

3034 - - - - - Id Tk Tk Id 0

3035 Off A DT - - - Di Tk Tk Id 0

3036 Dial A C Ann IC - - - Ex Tk Tk Id 0

3037 On C - Disc - - Ex Ex Id Id 0

3038 Dial A ccbs Ann AcOK - - - Ex Ex Id Id 0

3039 On A - - - - Id Ex Id Id 0

3040 Off D StaR - - DT Rg Ex Id Di 0

3041 On D - - - - Rg Ex Id Id 0

3042 Off A StaAur - StaR - Al Ex Rg Id 4

3043 Off C StoAur - StoR - Tk Ex Tk Id 0

Fig. B.1. A trace excerpt of CCBS alone with POTS executable specification

L. du Bousquet et al. / Electronic Notes in Theoretical Computer Science 88 (2004) 105–121 121

	Introduction
	Case study
	Context: validation of telephone features
	Does one really need eventuality properties ?

	Testing against eventuality properties: principle
	What is the problem ?
	Proposal

	Using Lutess to test against eventuality properties
	Lutess testing tool: an overview
	Testing against eventuality properties with Lutess

	Results of the case study
	Discovering interaction using eventuality property
	Statistical analysis

	Conclusion and perspectives
	References
	Chisel diagrams and POTS
	A trace analysis of CCBS alone with POTS

