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Abstract 

The Urban Forest Effects (UFORE) model, a computer model designed to use tree allometric, air pollution and meteorological 
data to statistically estimate urban forest characteristics and various urban forest functions, was applied to the main park in the 
city of Florence, Italy (Cascine Park), in 1985 and 2004, in order to study how the natural and man-made evolution of the park 
affected its ability to control air quality. Plant data were for both the years, while climate and pollutant data were for year 2004 
only, in order to remove the variability due to changes in the atmospheric variables. The results show that the forest growth 
compensated the losses due to cuttings and damages by extreme climatic events, so that the overall amount of pollutants removed 
from the air did not change from 1985 to 2004 (72.4-69.0 kg/ha). In contrast, the amount of carbon storing and biogenic volatile 
organic compound emission decreased over time, because of a reduction in the number of large trees and of isoprene-emitting 
individuals, but the results were very variable plot by plot. The species were ranked according to their ability of controlling air 
quality. These data can be used as a decision tool for establishing cuttings and new plantings in urban planning and their effects 
on air quality under Mediterranean climate conditions. 
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1. Introduction 

Urbanization is a spreading phenomenon in almost all the world [1,2]. Urban environments are often characterized 
by higher mean temperatures, concentrations of greenhouse gases and atmospheric pollutants compared with 
surrounding rural areas [2]. In contrast, ozone (O3) concentrations are typically higher in suburban and rural areas 
than in the cities, due to the nature of O3 formation process [3], although the thresholds for protection of people and 
vegetation may be exceeded in urban air too [4].  

The role of urban vegetation in controlling air pollution is considered one of the major benefits that urban green 
can provide [5]. Urban forests are of topical importance as deposition of gaseous pollutants is typically greater in 
woodlands than in shorter vegetation [6]. Dry deposition (including stomatal uptake and non-stomatal deposition 
upon plant surfaces) is a major mechanism by which plants remove pollutants from the air [7]. In contrast, emission 
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of biogenic volatile organic compounds (BVOCs) can contribute to O3 and aerosol formation [8]. Although the 
amount of BVOCs in major urban areas is often negligible when compared to anthropogenic sources, they are 2–3 
times more reactive than a weighted average of hydrocarbons from gasoline combustion [9], thus increasing their 
contribution to pollutant formation. BVOCs include the isoprenoids (isoprene and monoterpenes as well as 
sesquiterpenes and homoterpenes) and minor compounds such as alkanes, alkenes, carbonyls, alcohols, esters, 
ethers, and acids. Isoprenoids protect plant membranes against oxidative stressors, including O3 [10]. Tree and shrub 
species have been classified on the base of hourly emission rates of isoprene and monoterpene, thus identifying low 
O3-forming potential species [11,12].  

The Urban Forest Effects (UFORE) model is a computer model designed to use tree allometric, air pollution and 
meteorological data to statistically estimate urban forest characteristics and various urban forest functions [13,14]. 
UFORE has been used all over the world [e.g. 15,16,17,18] including a few studies in Mediterranean-type climate 
(Fuenlabrada, Spain [19]; Santiago, Chile [20]; Porta Venezia gardens in Milan, Italy [21]; a tramway under 
construction in Florence, Italy [3]) where O3 levels are of most concern. Ozone pollution, in fact, is pronounced in 
regions with strong photochemical activity, such as Mediterranean-type climates [22]. 

The aim of this study was to study how the natural and man-made evolution of an urban park in the city of 
Florence, Italy, affected the forest ability to control air quality. Two years were compared (1985 and 2004) by 
applying the UFORE model. 

2. Materials and methods 

Florence (43°47’N, 11°15’E; 50 m a.s.l.) is a city of central Italy, with around 350,000 inhabitants over 102 km2. 
Cascine park is the largest green area in Florence and covers 118 ha, out of which 39 ha are a semi-natural forest. 
The park is 2 km far from the city centre. The climate is classified between the Mediterranean and the humid 
subtropical climates [23], with 912 mm as average annual precipitation and 14.7°C as annual mean temperature. The 
soil is alluvial sediments. The management is carried out by the Florence municipality with the main aim of 
maintaining a natural structure and safety for customers.  
 

Table 1. 24-h average of hourly concentrations of carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2) 
particulate matter with diameter lower than 10 m (PM10) and sulphur dioxide (SO2) in the year 2004. Monitoring 

stations are referred to by different letters. 
Pollutant Station Average 
CO [ppm] a,b,c,d,e,f 0.403 
O3 [ppb] a,e,f,g 23.2 

NO2 [ppb] a,b,c,d,e,f, g 22.5 
PM10 [ g/m3] a,b,c,d 34.6 

SO2 [ppb] c,d,h 1.2 
aBoboli, bViale Gramsci, cvia Bassi, dvia delle Mosse, evia di Novoli, fvia di Scandicci, gSettignano, hScandicci. 

 
 

The plant data (plant species, diameter at breast height, total tree height, height to base of live crown, crown 
width, percent canopy missing, crown dieback percent, crown light exposure) were obtained from two full-tree 
inventories that were carried out in 1985 [24] and 2004 [25] by applying the same survey methodology in eight plots 
i.e. over 5.5 ha. The meteorological data for Florence were obtained from the WMO database 
[www.climateprogress.org]. The pollution data were obtained from the local air quality network 
[www.arpat.toscana.it/aria/], that includes eight stations distributed all over the Florence city area (but not in the 
Cascine park). Averages are summarized in Table 1. As air quality monitoring in Florence started in 1992, only data 
for 2004 were used, which allowed us to remove the variability due to changes in the atmospheric variables over 
time. The modules B, C and D of UFORE were run by the iTree software (v3.0). The following variables were 
calculated per each tree and year: ground cover; leaf surface and biomass; carbon storage i.e. the total carbon stored 
into a tree; carbon sequestration i.e. the annual carbon uptake; removal of carbon monoxide (CO), O3, nitrogen 
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dioxide (NO2), particulate matter with diameter lower than 10 m (PM10) and sulphur dioxide (SO2); emission of 
isoprene, monoterpenes and other BVOCs.  

Comparisons between the two years were carried out by applying a t-test with 0.05 as level of significance. 
Differences between species were tested by unequal-N Tukey post-hoc and Kruskal-Wallis non-parametric multiple 
comparison tests for normal and not-normal distribution variables, respectively. Normality was checked by 
Kolmogorov–Smirnov D test (p<0.05). Only species with more than 10 individuals were included in this test. 

3. Results  

Over time, the forest showed a significant growth in mean diameter (+19%), leaf surface (+74%) and leaf 
biomass (+64%) (Table 2). The mean tree height, in contrast, showed a tendency to decrease (-12%, p=0.082) 
because of wind throws of the highest trees due to a severe wind storm in 2003. The mean number of trees also 
showed a tendency to decrease (-37%, p=0.062) because of cuttings and damages by drought and the wind storm. 
The total number of trees in the eight plots decreased from 1396 to 885. The increase in ground cover (+13%) was 
not significant because of elevated variability between plots. 

 
Table 2. Average (standard error in parenthesis) of the structural variables in 1985 and 2004. The level of 

significance p shows the significance of the differences between the two years (t-test, N=8 plots). 
Variable 1985 2004 p 

Diameter at breast height (cm/tree) 
27.22 
(0.62) 

32.31 
(1.23) 

0.003 

Height (m/tree) 
14.89 
(0.82) 

13.10 
(0.49) 

0.082 

Ground cover (m²/tree) 
13.31 
(0.74) 

15.02 
(1.10) 

0.216 

Leaf surface (m²/tree) 
53.85 
(4.31) 

93.66 
(11.40) 

0.006 

Leaf biomass (kg/tree) 
3.45 

(0.27) 
5.67 

(0.68) 
0.009 

Number of trees 
174.50 
(25.78) 

110.63 
(18.07) 

0.062 

 
 

The average carbon storage per tree was similar in 1985 and 2004, but the reduction in the number of trees over 
time implied a 43% decrease in the carbon store of the whole forest (Table 2). Also the annual carbon sequestration 
per tree was similar in the two years, with a 34% decrease in the total amount sequestered in 2004 relative to 1985. 
Although the removal of pollutants per tree increased over time, the total amounts slightly decreased, still because of 
the reduction in the number of trees, so that the total amount of pollutants removed from the air in the eight plots 
showed just a small 5% reduction from 1985 to 2004. Shifts in the species composition implied similar isoprene and 
monoterpene emission per tree in the two years, and a 53% and 10% reduction in the total emission of isoprene and 
monoterpenes, respectively, in 2004 relative to 1985. In particular, the wind storm of 2003 caused throws of many 
trees of Quercus robur and Populus alba, that are highly emitting species. In contrast, the reduction of the number 
of trees compensated the increase in the average emission of other BVOC per tree, so that the total emission of other 
BVOC was just 2% lower in 2004 than in 1985. All these changes in BVOC emission resulted in a not significant 
variation per tree and in a 38% reduction of the total emissions from 1985 to 2004. 

The most effective species in carbon uptake and sequestration were Populus alba and Quercus robur (Table 4). 
Pinus pinea, Aesculus hippocastanum and Populus alba were the most effective species in removing CO, O3, NO2 
and SO2 from the air, while A. hippocastanum was the most effective as filter for PM10. Therefore, P. pinea, A. 
hippocastanum and P. alba were the best species for the removal of total pollutants. However, P. alba was a strong 
emitter of isoprene, followed by Quercus robur and Q. ilex. Pinus pinea was a strong emitter of monoterpenes, 
followed by A. hippocastanum and Gingko biloba. P. pinea, A. hippocastanum, P. alba and Ligustrum lucidum 
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emitted elevated amounts of other BVOC. The species emitting negligible amounts of isoprene were L. lucidum, G. 
biloba, C. betulus and Tilia species. L. lucidum and Tilia also emitted very low amounts of monoterpenes. 
Therefore, the species that showed a high potential of ozone formation were P. pinea, A. hippocastanum, Q. robur, 
G. biloba, Q. ilex, and mainly P. alba, while Fraxinus ornus and Carpinus betulus showed the lowest emission of 
total BVOCs. 
 
Table 3. Average (standard error in parenthesis) and total amount of the functional variables in 1985 and 2004. The 

level of significance p shows the significance of the differences between the two years (t-test, N=8 plots). 

Variable 
Average 

1985 
Average 

2004 
p 

Total 
1985 

Total 
2004 

Carbon storage (kg) 
370.8 
(25.5) 

354.6 
(22.4) 

0.640 532,007 303,173 

Carbon sequestration (kg/year) 
9.10 

(0.30) 
9.79 

(0.45) 
0.221 12,726 8,346 

CO removal (g) 
0.03 

(<0.01) 
0.05 

(0.01) 
0.009 41.5 40.6 

O3 removal (g) 
73.6 
(5.7) 

121.0 
(14.4) 

0.009 99,225 96,968 

NO2 removal (g) 
47.8 
(3.7) 

78.6 
(9.4) 

0.009 64,493 63,027 

PM10 removal (g) 
164.6 
(11.6) 

256.5 
(28.1) 

0.009 223,838 208,767 

SO2 removal (g) 
8.03 

(0.63) 
13.21 
(1.57) 

0.009 10,837 10,590 

Total removal of pollutants (g) 
294.0 
(21.6) 

469.4 
(53.3) 

0.009 398,435 379,393 

Isoprene emission (g) 
41.4 
(6.1) 

32.5 
(6.2) 

0.323 58,374 27,200 

Monoterpene emission (g) 
3.41 

(0.42) 
5.20 

(0.96) 
0.109 4,381 3,939 

Emission of other VOC (g) 
16.3 
(1.3) 

26.8 
(3.2) 

0.009 22,023 21,506 

Total VOC emission (g) 
61.2 
(7.1) 

64.5 
(7.3) 

0.746 84,779 52,646 

 

4. Discussion and conclusions 

Pollution removal varies among cities depending on the amount of tree cover (increased tree cover leading to 
greater total removal), pollution concentration (increased concentration leading to greater downward flux and total 
removal), length of the in-leaf season (increased growing season length leading to greater total removal), amount of 
precipitation (increased precipitation leading to reduced total removal via dry deposition), and other meteorological 
variables that affect tree transpiration and deposition velocities (factors leading to increased deposition velocities 
would lead to greater downward flux and total removal) [16]. In the Cascine park of Florence, the forest growth in 
20 years compensated the losses due to cuttings and damages by extreme climatic events, so that the overall amount 
of pollutants removed from the air did not change from 1985 to 2004 (72.4-69.0 kg/ha). In contrast, the amount of 
carbon storage and biogenic volatile organic compound emission decreased over time (-43% and -38%, 
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respectively), because of a reduction in the number of trees and of isoprene-emitting individuals, but the results were 
very variable plot by plot. However, the carbon storage was still very high in 2004, being 55.1 t/ha. In the USA, 
urban forests have been estimated to store 25.1 t/ha of carbon, while extra-urban forests store 53.5 t/ha [26]. Among 
the pollutants here investigated, the highest removal was for PM10, followed by O3, NO2, SO2 and finally CO. In the 
US, urban forests were estimated to remove about 711,000 metric ton ($3.8 billion value) of air pollution per year, 
and the amount of pollution removed was typically greatest for O3, followed by PM10, NO2, SO2 and CO [16]..  

 
Table 4. Average of plant carbon storage (C in kg) and sequestration (CS in kg/year), removal of CO, O3, NO2, 

PM10, SO2 and total removal (Total, in g), emission of isoprene (IS), monoterpenes (MT), other volatile organic 
compounds (OVOC) and total VOC (TVOC) in g, for the species with more than 10 individuals. Different letters 

show significant differences among species in each column (p<0.05).  

Species C CS CO O3 NO2 PM10 SO2 Total IS MT OVOC TVOC 

Acer campestre L. 
 

47.2 
cd 

1.77 
cd 

<0.001 
bcd 

4.8 
bd 

3.14 
bcd 

12.5 
bc 

0.53 
cd 

21.0 
bcd 

0.012 
bc 

0.977 
ad 

1.07 
cd 

2.06 
bcde 

Acer pseudoplatanus L. 69.3 
cd 

2.85 
cd 

0.010 
abcd 

28.1 
abcd 

18.3 
abcd 

62.1 
abc 

3.07 
abcd 

112 
abcd 

0.073 
abc 

5.686 
ad 

6.22 
abcd 

12.0 
abcde 

Acer sp. 
 

7.2 
abcd 

0.29 
abcd 

<0.001 
abcd 

1.8 
abcd 

1.15 
abcd 

4.21 
abcd 

0.19 
abcd 

7.32 
abcd 

<0.001 
abc 

0.360 
abcd 

0.39 
abcd 

0.75 
abcde 

Aesculus hippocastanum L. 149 
abcd 

4.15 
abcd 

0.040 
a 

97.7 
a 

63.5 
a 

182 
a 

10.7 
ac 

354 
a 

0.252 
ab 

19.77 
a 

21.61 
a 

41.6 
ab 

Broussonetia papyrifera (L.)Vent 39.8 
bcd 

2.14 
bcd 

0.010 
abcd 

21.9 
abcd 

14.2 
abcd 

65.7 
abc 

2.39 
abcd 

104 
abcd 

6.510 
abc 

0.557 
abcd 

4.85 
abcd 

11.9 
abcde 

Carpinus betulus L. 
 

5.8 
abcd 

0.7 
abcd 

<0.001 
bcd 

1.1 
bcd 

0.69 
bcd 

2.62 
bd 

0.11 
bcd 

4.49 
de 

<0.001 
abc 

0.213 
abcd 

0.23 
bcd 

0.45 
bcde 

Celtis australis L. 
 

12.1 
cd 

0.49 
cd 

0.003 
abcd 

12.8 
ac 

8.34 
ac 

27.6 
ad 

1.40 
ab 

50.1 
ae 

0.034 
ab 

0.325 
ad 

2.84 
a 

3.19 
abcd 

Fraxinus angustifolia Vahl. 18.7 
d 

1.36 
d 

0.002 
bcd 

8.9 
bd 

5.77 
bcd 

17.0 
bcd 

0.97 
bcd 

32.6 
bcd 

0.023 
bc 

0.111 
cd 

1.96 
cd 

2.10 
cde 

Fraxinus ornus L. 
 

9.5 
d 

0.65 
d 

<0.001 
d 

2.8 
d 

1.84 
d 

4.99 
cd 

0.31 
d 

9.98 
d 

0.006 
c 

0.036 
cd 

0.63 
d 

0.67 
e 

Ginkgo biloba L. 
 

231 
abcd 

8.31 
abcd 

0.020 
bcd 

44.8 
abcd 

29.1 
abcd 

147 
ab 

4.89 
abcd 

226 
abcd 

<0.001 
bc 

17.00 
abc 

9.91 
bcd 

26.9 
bcde 

Laurus nobilis L. 
 

50.8 
cd 

2.64 
cd 

0.004 
d 

10.9 
d 

7.09 
d 

21.2 
bc 

1.19 
abcd 

40.4 
cd 

0.030 
bc 

0.153 
ce 

2.65 
cd 

2.83 
de 

Ligustrum lucidum Ait. 27.4 
d 

2.42 
d 

0.020 
abcd 

50.1 
abcd 

32.6 
abcd 

80.6 
abc 

5.48 
abcd 

169 
abcd 

<0.001 
ab 

<0.001 
c 

12.16 
abcd 

12.2 
bcde 

Pinus pinea L. 
 

333 
abcd 

6.63 
bcd 

0.050 
ab 

112 
ab 

73.0 
ab 

164 
abc 

12.3 
ab 

362 
abc 

0.294 
ab 

46.72 
ab 

27.25 
ab 

74.3 
a 

Populus alba L. 
 

792 
ab 

14.2 
ab 

0.030 
ab 

78.5 
ab 

51.0 
ab 

128 
ab 

8.57 
ab 

266 
ab 

142 
a 

0.992 
cd 

17.37 
ab 

16.4 
ab 

Prunus laurocerasus L. 5.7 
cd 

1.1 
cd 

0.003 
bcd 

7.9 
bcd 

5.15 
bcd 

19.7 
bc 

0.87 
bcd 

33.6 
be 

0.020 
abc 

0.110 
cd 

1.92 
bcd 

2.05 
bcde 

Quercus ilex L. 
 

50.9 
abc 

1.64 
abc 

0.003 
abc 

11.6 
abcd 

7.53 
abcd 

19.9 
bd 

1.27 
abcd 

40.2 
abcd 

20.95 
a 

0.292 
bcd 

2.56 
abcd 

23.8 
a 

Quercus robur L. 
 

353 
a 

5.02 
a 

0.009 
ab 

18.8 
ab 

12.2 
ab 

37.8 
ab 

2.05 
abcd 

70.9 
ab 

33.99 
a 

0.474 
abcd 

4.16 
abcd 

38.6 
a 

Robinia pseudacacia L. 31.8 
bcd 

1.50 
bcd 

<0.001 
d 

4.5 
d 

2.91 
d 

12.4 
bc 

0.49 
d 

20.3 
bcd 

8.10 
a 

0.114 
cd 

0.99 
d 

9.21 
abc 

Tilia sp. 
 

19.5 
bcd 

0.58 
bcd 

0.003 
ac 

11.4 
ac 

7.41 
ac 

31.0 
ad 

1.25 
ab 

51.1 
ae 

<0.001 
c 

<0.001 
cd 

2.52 
ab 

2.52 
bcde 

Ulmus sp. 
 

8.8 
bcd 

0.35 
bcd 

0.002 
abc 

7.5 
ac 

4.87 
ac 

14.7 
ad 

0.82 
ab 

27.9 
ae 

0.021 
ab 

0.096 
de 

1.66 
ab 

1.77 
bcde 
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The species of the Cascine park were ranked according to their ability of controlling air quality. While A. 

hippocastanum, P. alba and P. pinea were the best species for the removal of total pollutants, they showed a high 
potential of ozone formation, being among the strongest emitters of BVOCs. Species with intermediate ability of 
pollution removal and low ozone-forming potential, such as Tilia sp. and Celtis australis, may be more suitable for 
urban planning in Mediterranean environments. A weakness of UFORE is that the parameterisation of 
Mediterranean species is not appropriate. In fact, Quercus ilex, a Mediterranean evergreen tree, resulted to be a 
major emitter of isoprene, while it is known to emit monoterpenes [8].  

In conclusion, the management of the Cascine park forest over 20 years maintained an optimal efficiency of 
pollution removal and reduced the emission of ozone-forming organic compounds. Assuming that the results may be 
extended from our eight plots to the whole forested area, the Cascine park would at present remove 2.69 t/yr of 
pollutants from the air of Florence and emit 373 kg/yr of biogenic volatile organic compounds. 
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