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This work presents a systematic approach to evaluate the physio-mechanical properties of bean pod ash
particles (BPAp) reinforced recycled polyethylene (RLDPE) polymer based composites. The bean pod ash
particles of 75 um with a weight percentage of 0, 5, 10, 15, 20, 25, 30 (wt%) and recycled polyethylene
(RLDPE) were prepared. The surface morphology, physical and the mechanical properties of the compos-
ites were examined. The results showed that the fair distribution of the bean pod ash particles in the

’;eyw"rd;: b vartic] microstructure of the polymer composites is the major factor responsible for the improvement in the
Psfmn? eor ash particles mechanical properties. The bean pod ash particles added to the RLDPE polymer increased the percentage
Mo}rlphology of water absorption and improved its rigidity, modulus and hardness values of the composites. The ten-

sile and flexural strengths increased to a maximum of 20.1 and 39.0 N/mm? at 20 wt% BPAp respectively.

Physical and mechanical properties . - . o | -
Based on the results obtained in this study, it is recommended that the composites can be used in the

production of indoor and outdoor applications.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Polymer composite materials are being used in a wide range of
structural applications in aerospace, construction and automotive
industries due to their lightweight nature, high specific stiffness
and strength [1]. A variety of materials are being used ranging from
lower performance of glass fibre/polyester used in small sail boats
and domestic products, to high performance of carbon fibre epoxy
systems used in military aircraft and spacecraft [2,3].

In recent years there is a perceived shortage of wood fibre for
composite products due to competition for fibre by pulp mills,
reduced harvest and diminished log quality. Also, there is pressure
from environmentalists to reduce forest use and regulatory legisla-
tion pending on the disposal of agro-fibres [4,5]. The use of ligno-
cellulosic natural fibres/particles as fillers or reinforcements has
been gaining acceptance in polymer applications in the past few
years [2,3]. The natural fillers can be obtained from several sources,
both from forestry and agricultural resources. Waste from agricul-
ture delivers renewable, abundant, natural materials that serve as
fillers for polymers, with the benefit of lower cost and improved
mechanical properties.
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Many researches have been reported on natural fillers rein-
forced thermoplastic composites, which have successfully proved
their applicability in various fields [4]. Thermoplastics such as
polyethylene (PE), polypropylene (PP) and polyvinylchloride
(PVC) have been compounded with natural fillers such as wood,
hemp, cotton, coir pineapple leaf, oil palm and banana to prepare
composites [4-7].

Shibata et al. [8] studied the biodegradable composites rein-
forced with bagasse fibre before and after alkali treatments.
Mechanical properties of the composites made from alkali treated
fibres were superior to the untreated fibres. Approximately 13%
improvement in tensile strength, 14% in flexural strength and
30% in impact strength had been found respectively. In alkali trea-
ted fibres the aspect ratio of the fibres contributed to the enhance-
ment of the mechanical properties of the composites.

Corbiere-Nicollier et al. [9] reported that kraft pulped banana
fibre composite has good flexural strength. In addition, short
banana fibre reinforced polyester composite was studied by Pothan
et al. [10]; the study concentrated on the effect of fibre length and
fibre content. The maximum tensile strength was observed at
30 mm fibre length while maximum impact strength was observed
at 40 mm fibre length. Incorporation of 40% untreated fibres pro-
vides a 20% increase in the tensile strength and a 34% increase in
impact strength.
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Luo and Netravali [11] studied the tensile and flexural proper-
ties of the green composites with different pineapple fibre contents
and compared them with the virgin resin. Sreekala et al. [12] per-
formed one of the pioneering studies on the mechanical perfor-
mance of treated oil palm fibre-reinforced composites. They
studied the tensile stress-strain behaviour of composites having
40% by weight fibre loading.

Ichazo et al. [13] found, that adding silane treated wood flour to
PP produced a sustained increase in the tensile modulus and ten-
sile strength of the composite. Mohanty et al. [14] studied the
influence of different surface modifications of jute on the perfor-
mance of the biocomposites. More than 40% improvement in the
tensile strength occurred as a result of reinforcement with alkali
treated jute. Jute fibre content also affected the biocomposite per-
formance and about 30% by weight of jute showed optimum prop-
erties of the biocomposites.

Agunsoye et al. [15] reported on the effect of particulate cow
bone additions on the mechanical properties and tribological
behaviour of cow bone reinforced polyethylene. They observed
that the tensile strength and the hardness values of the composite
increased with an increase in wt% of cow bone particles while the
impact strength and rigidity decreased. Also the addition of the
particulate cow bone had the most significant effect on the wear
behaviour of the composite while, the interactions between load
and time had no significant effect.

Beans pod is a waste by product of agricultural processing of
bean seeds. Across the globe, much research efforts in recent times
are geared towards possible ways of recycling wastes for reuse to
keep the environment clean and safe [16]. Bean plant (Parkia
Biglobosa), is the material resource required for the production of
bean pod ash (BPA). The harvested fruits are ripped open while the
yellowish pulp and seeds are removed from the pods. Pods make
up 39% of the weight of the fruits while the mealy yellowish pulp
and seeds make up 61%. The pod ash is used for soap making and
for dying the traditional indigo clothes [17].

Despite the availability of these studies, no investigation has
been conducted on the application of the bean pod ash particles
(BPAp) in polymer composite materials. This paper therefore
reports for the first time the potential of using bean pod ash parti-
cles in reinforcing polymer composites. Based on the above-men-
tioned situation, the study described in this work intends to
investigate physio-mechanical properties of RLDPE composites
reinforced with bean pod ash particles.

Method

The uncrushed bean pods were alkali treated using 2.5% NaOH
solution. After treatment, bean pods were packed in a graphite cru-
cible and fired in a control atmosphere muffle electric furnace at a
temperature of 1300 °C for 5 h to form carbonized bean pod ash
particles (BPAp). The particle size analysis of the BPAp was carried
out in accordance with ASTM-60. 100 g of the BPAp was placed on
a set of sieves arranged in descending order of fineness and shaken
for 15 min which is the recommended time to achieve complete
classification. The weight retained on 75 pm was used in this
research [18].

The RLDPE matrix and the BPAp were pre-dried prior to com-
pounding. The mixture was compounded using a co-rotating twin
extruder (APV Baker Ltd. England, Model: MP19PC) with an L/D
ratio of the screw of 25:1. Mixing speed of 60 rpm and 140 °C
was maintained for all the compositions [18].

Metal moulds were used in the production of the composite
samples. The compounded material was placed in a 350 mm x
350 mm rectangular mould and pressed to a thickness of 4 mm
with a pressure of 10 MPa and a temperature of 160 °C. At the

end of the press cycle the composites were removed from the press
for cooling. BPAp varied from 5 to 30 wt% with a 5 wt% interval.

A scanning electron microscope (SEM) JEOL JSM-6480LV was
used to examine the surface morphology of the BPAp and the com-
posite samples. Samples were washed, cleaned thoroughly, air-
dried and were coated with 100 A thick platinum in a JEOL sputter
ion coater and observed in SEM at 10 kV [7].

Test samples were cut from the composites for the physical and
mechanical test according to the recommended standards. Prior to
the test, all the samples were conditioned at a temperature of
23 £2 °C and relative humidity of 65% according to ATM D618-08
[18].

Density was measured using the gravimetric method g/cm® by
Geopyc 1360, Micromeritics Germany. A known inner volume of
glass cylinder was taken which is directly connected to the pre-
cious balance for measurement. The glass cylinder was equipped
with two automatic sensors which control the cylinder full or
empty. Composite samples were dried at 80 °C for 48 h before
measurement. The dry sample mass was taken while the glass cyl-
inder was full. The density was calculated by dividing the dry mass
of each sample by the known volume of glass cylinder [4].

Water absorption test was performed according to IS: 2380
(PART XVI) standard. Test specimens of 75 mm x 50 mm and
thickness 4 mm were prepared for the water absorption test. This
test covers the method of determination of water absorption of
composites from lignocellulosic materials. The specimens were
immersed in water for 24 h. The water absorption of composites
was measured by the weight gain of the material at regular inter-
vals. The percent of water absorption is expressed as the ratio of
increase in the mass of the specimen to the initial mass.

The hardness values of the ‘cast’ specimens were determined
using the Rockwell hardness tester on “B” scale (Frank Well test
Rockwell Hardness Tester, model 38506) with a 1.56 mm steel ball
indenter, minor load of 10 kg, and major load of 100 kg and a hard-
ness value of 101.2HRB as the standard block [19].

The tensile test was performed according to ASTM D638 stan-
dard using a Universal Testing Machine at a crosshead speed of
5 mm/min. Six specimens for each sample were tested and the ten-
sile strength and tensile modulus were expressed as [19]:

Tensile strength (MPa) = bﬂh (1)
Tensile modulus (MPa) :% (2)

The flexural test was performed according to ASTM D790 using the
Universal Testing Machine at a constant rate of 2 mm/min. Six test
specimens with span to thickness ratio of 16 (L/h = 16) were used.
The flexural strength and flexural modulus were calculated using
the following equations [19].

3PL
2bH?

3

Flexural strength =

3)

Flexural modulus = mL3
4bh

(4)

where P =maximum load applied on test specimen (N), L = support
span (mm), b = width of specimen tested (mm), m = slope of tangent
to the initial straight line portion of load deflection curve (N/mm),
¢ =strain and o = stress.

The impact test was performed according to ASTM D256 stan-
dard using the impact testing machine. The test method deter-
mines the charpy impact strength of the polymer composites.
Charpy type test in which the specimen is held as a cantilever
beam (usually vertical) and is broken by a blow delivered at a fixed
distance from the edge of the specimen clamp was adopted. Eight
specimens for each sample having a size of 63.5 mm by 10 mm and
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4 mm thickness were prepared and tested. The V notch was made
at a distance of 31.75 mm from the top at a depth of 2.0 mm.
Impact strength was calculated by [20]:

Impact strength :% (k]/m?) (5)

where ] = Energy absorbed (k]), A = Area of cross section of the spec-
imen below the notch (m?).

Results and discussion

Fig. 1 showed SEM/EDS of BPAp, from the SEM it was observed
that the BPA particles are roundish with some angular in shape and
a small amount of particles are longitudinal in shape. The BPAp
surface morphology plays a vital role in the case of composite
materials. External surface features of particles such as contours,
defects and damage and surface layer were not observed in the
SEM. The particles surface layers play an important role in wetta-
bility and surface tension [20].

The EDS spectra of BPAp (Fig. 1) show that the particles
exhibited spectra containing carbon, oxygen and a small amount
of silicon, potassium, calcium, phosphorous, magnesium and
aluminium. The relative atomic percent of the atoms were
obtained from the peak area and corrected with an appropriate
sensitivity factor. The BPAp showed a higher proportion of carbon
atom. The higher proportion of carbon in the particles can be
attributed to the presence of carbon in the BPAp.

Morphological analyses of the composites using SEM clearly
showed a difference in the morphology of the RLDPE matrix and
the composites (Figs. 2-5). The microstructure showed that when
the BPAp was added to the RLDPE matrix, morphological change
in the microstructure occurred. The microstructure of the RLDPE
matrix revealed chains of amorphous structure (Fig. 2).

The morphology of bean pod ash particle composite shows a
smooth spherical surface having more surface area for interaction.
There is good dispersion of BPAp in the polymer matrix. Particles-
matrix interface plays an important role in composite properties. A
strong particles-matrix interface bond is critical for high mechan-
ical properties of composites [19]. Pulling out of the particles from
the matrix, delamination between the particles and the polymer
matrix was not observed in the study. All the composites contain
polymer fibrils attached to the BPAp an indication of improved
adhesion between the phases. The RLDPE-BPAp based composite
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particles pull-out as well as holes resulting from particles delami-
nation were not observed. Observations of improved adhesion are
consistent with the mechanical performance improvement
reported below. As the BPAp was increased beyond 20 wt% there
was some agglomeration, sedimentation and cluster of the parti-
cles (see Fig. 5).

Density is one of the most important physical properties of a
material. The density of reinforced composites is presented in
Fig. 6. The results revealed that the presence of bean pod ash par-
ticulates slightly decreased the density of the polymer composites.

The decrease in density can be related to the fact that the BPAp
is light in weight and occupies a substantial amount of space.
Hence, it can be said that with an increase of percentage of BPAp
the material becomes light in weight. For example, the density of
the reinforced RLDPE particle composites decreased from 0.95 g/
cm?® at 0 wt% BPAp addition to 0.76 g/cm> at 30 wt% BPAp. Hence,
composites with lower weight can be produced with BPAp. This
work is in line with the earlier works carried out by Abdullah
[20] and Patricio et al. [21].

In Fig. 7, it can be seen that % of water absorption slightly
increased with increasing wt% BPAp. Composites with higher BPAp
loading showed more water absorption. This is due to the higher
content of filler loading in the composites that absorbed more
water. As the filler loading increased, there is the difficulty of
achieving a homogeneous dispersion of filler which resulted in
agglomeration filler. The agglomeration of the filler in composites
increased the water absorption of the composites. The water
absorption in case of BPAp is minimum compared to other agro
based composite material [1,4,18]. This may be attributed to lower
void spaces in composites arising due to fair bonding between par-
ticles and matrix. Water absorption is an important property to
select appropriate materials for outdoor application. The water
absorption results obtained in this work are within the recom-
mended standard for general purpose applications [12,14].

The mechanical properties of particulate-polymer composites
depend strongly on the particle-matrix interface adhesion,
stress-strain behaviour of the filler or the matrix, and volume of
particle loading. The results of hardness values are showed in
Fig. 8. It can be seen that with increase in wt% BPAp in the matrix
the hardness values of the composites increased.

The increments in hardness values were attributed to an
increase in the percentage of the hard BPAp in the RLDPE matrix.
Also the differences in coefficient of thermal expansion (CTE)
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Fig. 1. SEM/EDS of the bean pod ash particles.
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Fig. 2. SEM of the microstructure of the RLDPE matrix.
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between the BPAp and RLDPE matrix resulted in elastic and plastic
incompatibility between the matrix and the particles [18]. For
example the hardness values of 3.5HRB and 8.9HRB were obtained
for the RLDPE matrix and 30 wt% BPAp respectively. In comparison
with the unreinforced RLDPE matrix, a substantial improvement in
hardness values was obtained in the reinforced polymer matrix.
This is in line with the earlier researches of [8,12].

The tensile stress-strain curves for unfilled RLDPE matrix and
composite materials containing 5, 10, 15, 20, 25 and 30 wt% of
BPAp are shown in Fig. 9. A remarkable difference can be seen in
the stress-strain behaviour, due to addition of BPAp in the RLDPE
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—

Fig. 3. SEM of the microstructure of the RLDPE with 10 wt% BPHAp.

matrix. The RLDPE matrix has a large area under the stress—strain
curve than the composite materials.

Figs. 10-13 show the variation of tensile modulus, flexural
modulus, tensile and flexural strengths with wt% BPAp.

There is a significant increment in both the tensile modulus and
flexural modulus as the BPAp loading increased. The increase of
tensile modulus from 256 N/mm? for the RLDPE matrix to 789 N/
mm? at 30 wt% BPAp and flexural modulus from 1.2 KN/mm? for
the RLDPE matrix to 6.8 KN/mm? at 30 wt% BPAp may be attrib-
uted to the fair distribution of BPAp in the RLDPE matrix which
efficiently hinders chain movement during deformation leading
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Fig. 4. SEM of the microstructure of the RLDPE with 20 wt% BPAp.
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Fig. 5. SEM of the microstructure of the RLDPE with 30 wt% BPAp.

to high particle orientation. This mechanism will increase the stift- mobility in the RLDPE matrix due to the presence of BPAp. The
ness of the composites as well as the modulus. modulus of these composites increased with increasing BPAp load-

The increase in modulus of the BPAp-filled composites indicates ing. This suggests stress transfer across the polymer—particles
an increase in the rigidity of RLDPE related to the restriction of interface. BPAp in the matrix prevented movement in the area
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Fig. 8. Variation of hardness values with wt% of bean pod ash particles.

around each particle, contributing to an overall increase in the
modulus. The high modulus values also support the use of the
developed composites in general purpose applications [14].

The tensile strength increases from 8.2 N/mm? for the RLDPE
matrix to a maximum of 20.1 N/mm? at 20 wt% BPAp and a flexural
strength from 23.4 N/mm? for the RLDPE matrix to a maximum of
39.0 N/mm? at 20 wt% BPAp (Figs. 12 and 13). The increment may
be due to the platy structure of the BPAp filler providing good rein-
forcement [15,18].

The high values of strength observed in this work may be due to
the fair distribution of the BPAp in the RLDPE matrix resulting in
strong particle-RLDPE matrix interaction. The particles dispersion
improved the particle-RLDPE matrix interaction and consequently
increases the ability of the BPAp to restrain gross deformation of
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Fig. 9. Variation of tensile stress—strain curves with wt% of bean pod ash particles.

900

— 800

£

£ 700

Z 600

2]

3 500

=]

8 400

=

3 300

@ 200 -

)

= 100 |
0 |

0 5 10 15 20 25 30

wt% Bean pod ash particles

Fig. 10. Variation of tensile modulus with wt% of bean pod ash particles.

4
3
2
1
0 A
0 5 10 15 20 25 30

wt% Bean pod ash particles

Flexural Modulus(KN/mm?2)

Fig. 11. Variation of flexural modulus with wt% of bean pod ash particles.

25

20

15
10
0 -
0 5 10 15 20 25 30

wt% Bean pod ash particles

Tensile Strength(N/mm?)
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Fig. 13. Variation of flexural strength with wt% of bean pod ash particles.

the RLDPE matrix. The decrease in both the tensile and flexural
strengths as the BPAp particles increased beyond 20wt% is due to
the interference of particles in the mobility or deformability of
the matrix. This interference was created through the physical
interaction and immobilisation of the polymer matrix in the pres-
ence of mechanical restraints, thereby reducing the strength [9,10].

At a high filler loading, the composite will not be able to with-
stand greater loads, the formation of the microfiller (agglomera-
tion) is found due to the difficulties in achieving a homogeneous
dispersion of the filler at high filler loading and BPAp agglomerate
and remain confined in the polymer matrix (see Fig. 5). At the par-
ticles/matrix boundary region, stress concentrates around the rein-
forcement particle. Consequently, the particles-matrix interaction
weakens up thus, leading to debonding at the boundary region at
higher BPAp loading. These observations are in agreement with
the low strength values reported for these materials at higher BPAp
loading.

The impact energy of a composite is influenced by many factors,
including the toughness properties of the reinforcement, the nature
of interfacial region and frictional work involved in pulling out the
particles from the matrix. The nature of the interface region is of
extreme importance in determining the toughness of the compos-
ite. The Charpy impact test is a standardized high strain-rate test
which determines the amount of energy absorbed by a material
during fracture. This absorbed energy is a measure of a given mate-
rial’s toughness and acts as a tool to study brittle-ductile transition.
Fig. 14 showed the effect of filler loading on the impact energy of
RLDPE and RLDPE-BPAp filled composites. It can be seen that the
impact energy for the composites slightly decreases with increasing
filler loading. Increased filler loading in the RLDPE matrix resulted
in the stiffening and hardening of the composite. This reduced its
resilience and toughness, and led to lower impact energy.
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Fig. 14. Variation of impact energy with wt% of bean pod ash particles.

However, the decrease in impact energy for an increase in filler
content, may be attributed to the weak interfacial interaction
between the filler and matrix material for higher filler content,
similar behaviour of the composite specimens was also observed
by Joseph et al. [1] and Godwin et al. [3]. As the loading of BPA par-
ticles increases, the ability of the composites to absorb impact
energy decreases since there is lower ratio of the RLDPE matrix
to particles. However, the results obtained are within the standard
level for bio-composites for general purpose applications [14].

Conclusions

In this present work, physio-mechanical properties of RLDPE
bio-composites reinforced with bean pod ash particles have been
investigated. From the results and discussion presented, the fol-
lowing conclusions are made;

1. This work showed that successful production of RLDPE and the
bean pod ash particle composite by compounding and compres-
sive moulding was realizable.

2. The fair distribution of the bean pod ash particles in the micro-
structure of the polymer composites is the major factor respon-
sible for the improvement in the mechanical properties.

3. The bean pod ash particles added to the RLDPE polymer
increased the percentage of water absorption and improved
its rigidity, modulus and hardness values of the composites.

4. The tensile and flexural strengths increased to a maximum of
20.1 and 39.0 N/mm? at 20 wt% BPAp respectively.

5. Based on the results obtained in this study, it is recommended
that the composites can be used in the production of indoor and
outdoor applications.
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