Topic 16 – Electrophysiology: conduction – A

April 25th, Friday 2014

0290

Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system

Alina Scridon (1), Clément Gallet (1), Bruno Chapuis (1), Valérie Oréa (1), Elodie Morel (2), Claude Julien (1), Philippe Chevalier (1)
(1) EA4612 Neurocardiologie, Lyon, France – (2) Hôpital Cardiologique Louis Pradel, Rhymologie, Bron, France

Aims: Experimental models of unprovoked atrial tachyarrhythmias (AT) in conscious, ambulatory animals are lacking. We hypothesized that the aging, spontaneously hypertensive rat (SHR) may provide such a model.

Method: Baseline ECG recordings were acquired with radiotelemetry in eight young (14-wk-old) and eight aging (55-wk-old) SHRs and in two groups of four age-matched Wistar-Kyoto (WKY) rats. Quantification of AT and heart rate variability (HRV) analysis were performed based on 24-h ECG recordings in unrestrained rats. All animals were submitted to an emotional stress protocol (air-jet). In SHRs, carbamylcholine injections were also performed.

Results: Spontaneous AT episodes were observed in all eight aging SHRs (median, 91.5; range, 4-444 episodes/24 h), but not in young SHRs or WKY rats. HRV analysis demonstrated significantly decreased low frequency components in aging SHRs compared with age-matched WKY rats (P<0.01) and decreased low/high frequency ratios in both young (P<0.01) and aging (P=0.01) SHRs compared with normotensive controls. In aging SHRs, emotional stress significantly reduced the number of arrhythmic events, whereas carbamylcholine triggered AT and significantly increased atrial electrical instability.

Conclusion: This study reports the occurrence of unprovoked episodes of atrial arrhythmia in hypertensive rats, and their increased incidence with aging. Our results suggest that autonomic imbalance with relative vagal hyperactivity may be responsible for the increased atrial arrhythmogenesis observed in this model. We also provide evidence that, in this model, the sympathetic-vagal imbalance preceded the occurrence of arrhythmia. These results indicate that aging SHRs may provide valuable insight into the understanding of atrial arrhythmias.

0252

Bradycardia and arrhythmia caused by cardiac-specific suppression of the “funny” (If) current are rescued by Girk

Pietro Mesirca (1), Jacqueline Alig (2), Laurine Marger (1), Angelo G Torrente (1), Laure Marger (1), Anne Laure Leoni (2), François Briez (2), Stéphane Evain (2), Joel Nargeot (1), Joerg Striessnig (3), Kevin Wickman (4), Flavien Charpentier (2), Matteo E Mangoni (1)
(1) IGF CNRS, Montpellier, France – (2) Université de Nantes, l’Institut du thorax, Nantes, France – (3) Université de Caen, Laboratoire de physiologie animale, Caen, France – (4) Université Innsbruck, Innsbruck, Austria – (5) Experimental Pharmacology, Minneapolis, États-Unis

Objectives: We aimed to test if genetic inactivation of the cardiac IKACh current could improve the phenotype of mice lacking If-type Cav1.3 Ca2+ channels (Cav1.3-/-), a mouse model recapitulating the sino-atrial node dysfunction and supraventricular arrhythmias typical of the “sick sinus” syndrome (SSS) in humans.

Methods: We crossed IKACh-deficient mice (Kir3.4-/-), with Cav1.3-/- mice present several characteristics of the SSS, including bradycardia associated with atrial fibrillation or flutter, as well as type I and II atrioventricular conduction blocks. IKACH is involved in autonomic regulation of heart rate and in the triggering of atrial fibrillation by the parasympathetic nervous system, but its role in establishing the symptoms of SSS is unknown.

Results: Genetic inactivation of IKACH in Cav1.3-/-/Kir3.4-/- mice significantly improved the mean heart rate of Cav1.3-/- mice and completely abolished atrioventricular conduction blocks. Atrial fibrillation and flutter that were typical of Cav1.3-/- mice could not be observed or triggered in Cav1.3-/-/Kir3.4-/- mice.

Conclusion: Inactivation of IKACH effectively improved SSS in Cav1.3-/- mice. Our study indicates that SSS patients can benefit from IKACH suppression by gene therapy or selective pharmacologic inhibitors.

0222

The TRPM4 channel modulates mammalian sinus rhythm

Thomas Hof
Université de Caen, Laboratoire de physiologie animale, Caen, France

Background: The transient receptor potential melastatin 4 (TRPM4) channel produces a Ca2+-activated non-selective monovalent cationic current that was detected in several cardiac preparations, including mouse sinoatrial node isolated cells. TRPM4 is known to participate in spontaneous electrical activities such as in neurons or in cardiac ventricular preparations submitted.