

Discrete Mathematics 131 (1994) 195-204

DISCRETE MATHEMATICS

An inversion relation of multinomial type

Daniel Moak^a, Konrad Heuvers^{a,*}, K.P.S. Bhaskara Rao^b, Karen Collins^c

^aMichigan Technological University, Houghton, MI 49931, USA ^bIndian Statistical Institute, Bangalore 560059, India, ^cWesleyan University, Middletown, CT 06457-6035, USA

Received 4 June 1991; revised 8 July 1992

Abstract

Recently Heuvers, Cummings, and Rao proved that if Ψ and Φ are functions satisfying the relation

$$\Psi(x_1,\ldots,x_n) = \sum_{|s|=n} \binom{n}{s} \Phi(x_1^{s_1},\ldots,x_n^{s_n})$$

then there exist unique numbers c_s such that

$$\Phi(x_1,\ldots,x_n) = \sum_{|s|=n} c_s \Psi(x_1^{s_1},\ldots,x_n^{s_n})$$

In this paper, an explicit expression for c_s is established.

1. Introduction

The following inversion theorem of multinomial type was proved in 1988 by Heuvers, Cummings, and Bhaskara Rao [3, Theorem 3]. It was a major tool in the recent characterization of determinant and permanent functions by the Binet–Cauchy theorem [4–6].

Theorem 1.1. Let **K** be a field of characteristic zero, let X be a nonempty set, and let V be a vector space over **K**. Let $\Phi, \Psi: X^n \to V$ be functions satisfying

$$\Psi(x_1, ..., x_n) = \sum_{|s|=n} {n \choose s} \Phi(x_1^{s_1}, ..., x_n^{s_n})$$
(1)

0012-365X/94/\$07.00 © 1994—Elsevier Science B.V. All rights reserved SSDI 0012-365X (92)00538-D

^{*} Corresponding author.

for all $(x_1, \ldots, x_n) \in X^n$, where

$$(x_1^{s_1},\ldots,x_n^{s_n})=(\underbrace{x_1,\ldots,x_1}_{s_1},\ldots,\underbrace{x_n,\ldots,x_n}_{s_n}).$$

Then

$$\Phi(x_1, ..., x_n) = \sum_{|s|=n} c_s \,\Psi(x_1^{s_1}, ..., x_n^{s_n}) \tag{2}$$

for fixed constants c_s depending only on the $\binom{n}{s}$.

An important example where this theorem applies is when $\Phi(x_1, ..., x_n) = x_1 x_2 \cdots x_n$ and $\Psi(x_1, ..., x_n) = (x_1 + \cdots + x_n)^n$.

For the proof of the theorem the existence of unique coefficients c_s was established but their values were not determined. In an attempt to investigate them we used a computer algebra system to calculate the c_s for $2 \le n \le 6$. As a result we were led to the conjecture

$$c_{s} = \frac{(-1)^{n-d}}{s_{i_{1}} \cdots s_{i_{d}} n^{n-d} \langle n \rangle_{d}},$$
(3)

where s_{i_1}, \ldots, s_{i_d} are the nonzero components of s and $\langle n \rangle_d = n!/(n-d)!$. The goal of this paper is to prove (3) for $2 \leq n$.

2. Notation

Let $Z_+ = \{0, 1, 2, ...\}$ be the set of nonnegative integers. If $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{Z}_+^n$ Let $|\alpha| = \alpha_1 + \cdots + \alpha_n$. If $\alpha, \beta \in \mathbb{Z}_+^n$ let $\beta^{\alpha} = \beta_1^{\alpha_1} \cdots \beta_n^{\alpha_n}$. If $s = (s_1, ..., s_n) \in \mathbb{Z}_+^n$ and |s| = n let $s! = s_1! \cdots s_n!$. Then $\binom{n}{s}$ is the multinomial coefficient

$$\frac{n!}{s_1!\cdots s_n!} = \frac{n!}{s!}$$

If $x = (x_1, ..., x_n)$ is an *n*-tuple of indeterminates let $|x| = x_1 + \cdots + x_n$, and if we have $1 \le p \le q \le n$ then let $x' = (x_1, ..., x_q)$ and $x'' = (x_1, ..., x_p)$. Also we let $\varepsilon = (1, ..., 1) \in \mathbb{Z}_+^n$ be the *n*-tuple all of whose components are 1.

An order will be introduced on \mathbb{Z}_{+}^{n} . We will say $\alpha \prec \beta$ if $\alpha_{i} < \beta_{i}$ for all i = 1, ..., n. The symbols \leq , >, and \geq have the obvious interpretations. Let $\Omega_{q,n}$ be the set of multi-indices with q terms and sums equal to n, i.e. $\Omega_{q,n} = \{\alpha' \in \mathbb{Z}_{+}^{q} : |\alpha'| = n\}$. Also let $\Omega_{q,n}^{+} = \{\alpha' \in \Omega_{q,n}: \alpha_{i} > 0, i = 1, ..., q\}$.

In order to simplify our notation we will adopt a formal 'product' notation for repeated adjacent identical terms inside *n*-tuples. Thus

$$(\underbrace{x_1,\ldots,x_1}_{s_1},\ldots,\underbrace{x_n,\ldots,x_n}_{s_n})$$

196

will be denoted by $(x_1^{s_1}, ..., x_n^{s_n})$ or (x^s) , where s_i the number of times that x_i appears together inside the *n*-tuple. If $s_i = 0$ then x_i does not appear.

We define $H_m(n)$ by

$$H_m(n) = \sum_{s \in \Omega_{m,n}^+} \frac{1}{s_1 s_2 \cdots s_m} \,. \tag{4}$$

For $p \in \mathbb{Z}_+$ and one indeterminate x, the *p*th degree falling factorial polynomial $\langle x \rangle_p$ is defined by $\langle x \rangle_p = 1$ if p = 0 and $\langle x \rangle_p = \prod_{i=1}^p (x-i+1)$ if $p \ge 1$. For $\alpha' \in \mathbb{Z}_+^q$ with $|\alpha'| = n$ and $x' = (x_1, ..., x_q)$ the *n*th degree polynomial $\langle x' \rangle_{\alpha'}$ is defined by $\langle x' \rangle_{\alpha'} = \langle x_1 \rangle_{\alpha_1} \cdots \langle x_q \rangle_{\alpha_q}$ [11, p. 113; 4, pp. 200–203].

Remark. The notation for falling factorials is not fixed yet. Often the notation $(x)_p$ is used to denote falling factorials (e.g. see [10, p. 3; 1, p. 6]). However, the Pochammer symbols $(x)_p$, or rising factorials, are defined by $(x)_p=1$ if p=0 and $(x)_p=\prod_{i=1}^p (x+i-1)$ if $p \ge 1$. This is the established notation in the study of hypergeometric functions (e.g. see [9, p. 22; 7, pp. 8, 9]). We use the notation $\langle x \rangle_p$ for falling factorials to avoid confusion with the Pochammer symbols.

3. Some preliminary results

If $\Phi(x_1, x_2, ..., x_n) = x_1 x_2 \cdots x_n$ and $\Psi(x_1, x_2, ..., x_n) = (x_1 + x_2 + \cdots + x_n)^n$ then it immediately follows from (2) that the c_s are the unique coefficients satisfying

$$x_1 x_2 \cdots x_n = \sum_{|s|=n} c_s (s_1 x_1 + s_2 x_2 + \dots + s_n x_n)^n.$$
⁽⁵⁾

Taking n partial derivatives on both sides and comparing coefficients we obtain the following result.

Proposition 3.1. The c_s are the unique numbers satisfying

$$\mathbf{l} = n! \sum_{|s|=n} c_s s_1 s_2 \cdots s_n \tag{6}$$

and

$$0 = \sum_{|s|=n} c_s s^t, \quad t \in \Omega_{n,n} - \{\varepsilon\}.$$
(7)

The left-hand side of (5) is symmetric in x_1, \ldots, x_n . Consequently, we have the following corollary.

Corollary 3.2. c_s is a symmetric function of s_1, s_2, \ldots, s_n .

In order to establish the main theorem we also need the following tool.

Proposition 3.3. If n is a strictly positive integer and α is any complex number then

$$\sum_{m=1}^{n} \frac{(-\alpha)^m}{m!} H_m(n) = (-1)^n \binom{\alpha}{n}.$$
(8)

Proof. Start with the identity $(1-x)^{\alpha} = e^{\alpha \ln(1-x)}$, then expand $(1-x)^{\alpha}$, $\ln(1-x)$, and e^{x} into their Maclaurin series. The result is

$$\sum_{i=0}^{\infty} {\alpha \choose i} (-1)^i x^i = \sum_{m=0}^{\infty} \frac{1}{m!} \left(-\alpha \sum_{j=1}^{\infty} \frac{x^j}{j} \right)^m.$$
(9)

Expanding out the right side, we obtain

$$\sum_{i=0}^{\infty} {\binom{\alpha}{i}} (-1)^{i} x^{i} = \sum_{\substack{m \ge 0\\ j_{1} \ge 1 \cdots j_{m} \ge 1}} \frac{(-\alpha)^{m} x^{j_{1} + \cdots + j_{m}}}{m! j_{1} \cdots j_{m}}.$$
(10)

Now compare the coefficients of x^n on both sides of (10). The result is (8). \Box

Another generating function identity is also needed.

Proposition 3.4. Let q be a strictly positive integer, n be a nonnegative integer, and $a' = (a_1, ..., a_q) \in \mathbb{Z}_+^q$. Then

$$\sum_{s'\in\Omega_{q,n}} \langle s' \rangle_{a'} = a'! \binom{n+q-1}{|a'|+q-1}.$$
(11)

Proof. Consider the identity

$$\frac{x^{a_1}a_1!}{(1-x)^{a_1+1}}\frac{x^{a_2}a_2!}{(1-x)^{a_2+1}}\cdots\frac{x^{a_q}a_q!}{(1-x)^{a_q+1}}=a'!\frac{x^{|a'|}}{(1-x)^{|a'|+q}}.$$
(12)

Represent each fraction in (12) with its series expansion. The result is

$$\left(\sum_{s_1=0}^{\infty} \langle s_1 \rangle_{a_1} x^{s_1}\right) \left(\sum_{s_2=0}^{\infty} \langle s_2 \rangle_{a_2} x^{s_2}\right) \cdots \left(\sum_{s_q=0}^{\infty} \langle s_q \rangle_{a_q} x^{s_q}\right)$$
$$= \frac{a'!}{(|a'|+q-1)!} x^{1-q} \sum_{k=0}^{\infty} \langle k \rangle_{|a'|+q-1} x^k.$$
(13)

Now compare the coefficients of x^n on both sides of (13). The result is (11). \Box

We also need the following change of basis result.

Proposition 3.5. Let $\alpha' \in \Omega_{q,n}$ and let $x_1, x_2, ..., x_q$ be q indeterminates. Then there exist coefficients $\mathscr{S}(\beta', \alpha'), \beta' \leq \alpha'$, such that

$$x^{\prime \alpha'} = \sum_{\beta' \leqslant \alpha'} \mathscr{S}(\beta', \alpha') \langle x' \rangle_{\beta'}.$$
(14)

Moreover, if $\alpha' \in \Omega_{q,n}^+$ then

$$x^{\prime \alpha'} = \sum_{e' \leqslant \beta' \leqslant \alpha'} \mathscr{S}(\beta', \alpha') \langle x' \rangle_{\beta'}.$$
(15)

Proof. A proof of (14) can be found in [8, Lemma 2]. Also, we have from [8],

$$\mathscr{S}(\beta',\alpha') = \prod_{i=1}^{q} S(\beta_i,\alpha_i), \quad \alpha',\beta' \in \Omega_{q,n},$$
(16)

where $S(\beta_i, \alpha_i)$ are the ordinary Stirling numbers of the second kind defined by

$$x^{m} = \sum_{k=0}^{m} S(k,m) \langle x \rangle_{k}.$$
⁽¹⁷⁾

Upon setting x = 0 it becomes clear that S(0, m) = 0 for m > 0. If $\alpha' \in \Omega_{q,n}^+$, then it follows from (16) that $\mathscr{S}(\beta', \alpha') = 0$ if any component of β' is zero. This proves (15). \Box

Finally two binomial coefficient identities will be needed:

$$\sum_{k=0}^{n-m} \binom{x+k}{k} \binom{n-k}{m} = \binom{x+n+1}{n-m}, \quad n \ge m,$$
(18)

where *n*, *m* are nonnegative integers and *x* is any complex number. This follows from Gould [2, (3.2)] together with the symmetry relation $\binom{n}{k} = \binom{n}{n-k}$.

We also need the following identity from Gould [2, (3.49)]:

$$\sum_{k=0}^{n} \binom{n}{k} \binom{x-k}{m} (-1)^{k} = \binom{x-n}{m-n},$$
(19)

where n, m are nonnegative integers and x is any complex number.

4. The main result

Theorem 4.1. Let the coefficients c_s be defined by (5). Then

$$c_s = \frac{1}{s_{i_1} s_{i_2} \cdots s_{i_d} \langle n \rangle_d (-n)^{n-d}},\tag{20}$$

where $s_{i_1}, s_{i_2}, \ldots, s_{i_d}$ are the nonzero entries of s.

Proof. By Proposition 3.1 it suffices to show that if c_s is given by (20) then (6) and (7) both hold. The only nonzero term in (6) is the term where $s = \varepsilon = (1, 1, ..., 1)$, so (6) clearly holds for the c_s given by (20).

We now need to prove (7), so we assume that $t \in \Omega_{n,n}$ and that $t \neq \varepsilon$. Due to the symmetry of the c_s , it suffices to show that (7) holds if $t = (t_1, \ldots, t_n)$, where $t_1 \ge t_2 \ge \cdots \ge t_n$. Clearly $t_1 > 1$ and $t_n = 0$. Accordingly, we let t_1, t_2, \ldots, t_q be the nonzero

199

components of t, and we also assume that $t_1 > 1$, $t_2 > 1$, ..., $t_p > 1$. It is clear that the nonzero terms in the sum (7) occur where the first q components of s are strictly positive. Now let $s' = (s_1, ..., s_q)$, $t' = (t_1, ..., t_q)$, $\varepsilon' = (1^q)$, and $\tau' = (t_1 - 1, ..., t_q - 1) = t' - \varepsilon'$. Also let $s'' = (s_1, ..., s_p)$, $t'' = (t_1, ..., t_p)$, $\varepsilon'' = (1^p)$, and $\tau'' = t'' - \varepsilon'' = (t_1 - 1, ..., t_p - 1)$. We now have

$$\sum_{|s|=n} c_s s^t = \sum_{j=q}^n \sum_{\substack{s \in \Omega_{n,n} \\ s' \in \Omega_{q,j}^+}} c_s s^{'t'}.$$
(21)

Our goal is to show that the sum on the right is zero. To simplify the notation in what follows, we will always assume that $s \in \Omega_{n,n}$ without explicitly stating it all the time.

Now let $s_{i_1}, s_{i_2}, \ldots, s_{i_c}$ be the nonzero entries among the last n-q entries of s. Then we obtain the following for the right-hand side of (21):

$$\sum_{s'\in\Omega_{q,n}^{+}} s'^{\tau'} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} + \sum_{j=q}^{n-1} \sum_{s'\in\Omega_{q,j}^{+}} \sum_{c=1}^{n-j} s'^{\tau'} \frac{(-1)^{n-c-q}}{n^{n-c-q}\langle n\rangle_{c+q}} \sum_{\substack{\{i_{1},\ldots,i_{c}\} \subseteq \{q+1,\ldots,n\}\\(s_{i_{1}},\ldots,s_{i_{c}})\in\Omega_{c,n-j}^{+}}} \frac{1}{s_{i_{1}}\cdots s_{i_{c}}} .$$
(22)

For each choice $i_1, i_2, ..., i_c$ out of the set $\{q+1, ..., n\}$ we have

$$\sum_{(s_{i_1},\ldots,s_{i_l})\in\mathcal{Q}^+_{c_{n-j}}} \frac{1}{s_{i_1}\cdots s_{i_c}} = H_c(n-j).$$

Therefore (22) becomes

$$\sum_{s'\in\Omega_{q,n}^{+}} s'^{\tau'} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} + \sum_{j=q}^{n-1} \sum_{s'\in\Omega_{q,j}^{+}} \sum_{c=1}^{n-j} s'^{\tau'} \frac{(-1)^{n-c-q}}{n^{n-c-q}\langle n\rangle_{c+q}} \binom{n-q}{c} H_{c}(n-j).$$
(23)

This can be rewritten as

$$\sum_{s'\in\Omega_{q,n}^{+}} s'^{\tau'} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} + \sum_{j=q}^{n-1} \sum_{s'\in\Omega_{q,j}^{+}} s'^{\tau'} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} \sum_{c=1}^{n-j} \frac{(-n)^{c}}{c!} H_{c}(n-j).$$
(24)

Now we use Proposition 3.3 to obtain

$$\sum_{s'\in\Omega_{q,n}^{+}} s'^{\tau'} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} + \sum_{j=q}^{n-1} \sum_{s'\in\Omega_{q,j}^{+}} s'^{\tau'} \frac{(-1)^{2n-q-j}}{n^{n-q}\langle n\rangle_{q}} \binom{n}{n-j}.$$
(25)

Now the right-hand side of (21) becomes

$$\frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_q}\sum_{i=0}^{n-q}\binom{n}{i}(-1)^i\sum_{s'\in\Omega_{q,n-i}^*}s'^{\tau'}.$$
(26)

Clearly it suffices to show that

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{s' \in \Omega_{q,n-i}^{+}} s'^{\tau'} = 0.$$
⁽²⁷⁾

At this point we consider two cases.

4.1. Case q>p

Here we have $t_1 > 1$, $t_2 > 1$, ..., $t_p > 1$, $t_{p+1} = \cdots = t_q = 1$, and $t_{q+1} = \cdots = t_n = 0$. Let $\tilde{s} = (s_{p+1}, \dots, s_q)$. Then we can write the sum in (27) as

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{k=p}^{n+p-i-q} \left(\sum_{\hat{s} \in \Omega_{p,k}^{+}} s^{\prime\prime\tau'} \right) \left(\sum_{\hat{s}^{\prime\prime} \in \Omega_{q-p,n-i-k}^{+}} 1 \right).$$
(28)

So (28) becomes

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{k=p}^{n+p-i-q} \binom{n-i-k-1}{q-p-1} \sum_{s'' \in \Omega_{p,k}^{*}} s''^{\tau''}.$$
(29)

Since $\tau'' \ge e''$, $s''\tau'' = 0$ whenever one of the components of s'' is zero. Hence

$$\sum_{s''\in\Omega_{p,k}^+}s''^{\tau''}=\sum_{s''\in\Omega_{p,k}}s''^{\tau''}.$$

Moreover, if k < p and $s'' \in \Omega_{p,k}$ then at least one component of s'' is zero which implies that $s''^{\tau''} = 0$. So the k sum can start at 0 rather than at p. Hence (29) can be rewritten as

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{k=0}^{n+p-i-q} \binom{n-i-k-1}{q-p-1} \sum_{s'' \in \Omega_{p,k}} s''^{\tau''}.$$
(30)

Then we can use Proposition 3.5 on $s''^{\tau''}$ to express (30) as

$$\sum_{e'' \leqslant \alpha'' \leqslant \tau''} \mathscr{S}(\alpha'',\tau'') \sum_{i=0}^{n-q} \binom{n}{i} (-1)^i \sum_{k=0}^{n+p-i-q} \binom{n-i-k-1}{q-p-1} \sum_{s'' \in \Omega_{p,k}} \langle s'' \rangle_{\alpha''}.$$
 (31)

Our goal is to show that the above sum is zero. It suffices to show that

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{k=0}^{n+p-i-q} \binom{n-i-k-1}{q-p-1} \sum_{s'' \in \Omega_{p,k}} \langle s'' \rangle_{\alpha''} = 0 \quad \text{for } e'' \leq \alpha'' \leq \tau''.$$
(32)

Apply Proposition 3.4 on the sum in (32) and the result is

$$\alpha''! \sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{k=0}^{n+p-i-q} \binom{n-i-k-1}{q-p-1} \binom{k+p-1}{|\alpha''|+p-1}.$$
(33)

201

Next we will show that the sum in (33) is zero. Setting m=n+p-q-i-k it becomes

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{m=0}^{n+p-i-q} \binom{q-p+m-1}{q-p-1} \binom{n+2p-q-i-m-1}{|\alpha''|+p-1} = \sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{m=0}^{n+p-i-q} \binom{q-p+m-1}{m} \binom{n+2p-q-i-m-1}{|\alpha''|+p-1}.$$
(34)

Notice that if $m > n + p - q - i - |\alpha''|$ then $\binom{n+2p-q-i-m-1}{|\alpha'|+p-1} = 0$. Hence we can adjust the upper index of the inner sum to obtain

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{m=0}^{n+p-i-q-|\alpha'|} \binom{q-p+m-1}{m} \binom{n+2p-q-i-m-1}{|\alpha''|+p-1}.$$
(35)

Next use the binomial coefficient identity (18) to obtain

$$\sum_{i=0}^{n-q} \binom{n}{i} \binom{n+p-i-1}{n+p-i-q-|\alpha''|} (-1)^{i} = \sum_{i=0}^{n-q} \binom{n}{i} \binom{n+p-i-1}{q+|\alpha''|-1} (-1)^{i}.$$
 (36)

Since $\alpha'' \ge e''$, $|\alpha''| \ge p$, thus $\binom{n+p-i-1}{q+|\alpha'|-1} = 0$ for i > n-q. Hence we can extend the upper limit of the sum to *n*, so (36) becomes

$$\sum_{i=0}^{n} \binom{n}{i} \binom{n+p-i-1}{q+|\alpha''|-1} (-1)^{i}.$$
(37)

Use the binomial coefficient identity (19) on (37) to obtain

$$\binom{p-1}{q+|\alpha''|-n-1}.$$
(38)

Here $|\alpha''| \le |\tau''| = |t''| - |e''| = |t'| - (q-p) - p = n-q$. So $q + |\alpha''| - n - 1 \le -1$ and hence the above expression is zero.

4.2. Case q = p

Here the sum in (27) becomes

$$\sum_{i=0}^{n-q} \binom{n}{i} (-1)^{i} \sum_{s' \in \Omega_{q,n-1}^{*}} s^{\tau \tau'}.$$
(39)

Here q = p implies that all the components of t' are greater than one. Thus all components of τ' are strictly positive. So if any component of s' is zero, then $s'^{\tau'} = 0$. Thus

$$\sum_{s'\in\Omega_{q,n-i}^+}s'^{\tau'}=\sum_{s'\in\Omega_{q,n-i}}s'^{\tau'},\quad i=0,\,1,\ldots,n-q.$$

Also if i > n-q and $s' \in \Omega_{q,n-i}$ then at least one component of s' is zero which gives $s'^{\tau} = 0$. Hence the upper index of the *i* sum can be extended to *n*. Hence (39) becomes

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^{i} \sum_{s' \in \Omega_{q,n-i}} s'^{\tau'}.$$
(40)

Use Proposition 3.5 on (40) to obtain

$$\sum_{\alpha' \preccurlyeq \tau'} \mathscr{S}(\alpha', \tau') \sum_{i=0}^{n} \binom{n}{i} (-1)^{i} \sum_{s' \in \Omega_{q,n-i}} \langle s' \rangle_{\alpha'}.$$
(41)

We want to show that the above sum is zero and it suffices to show that

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^{i} \sum_{s' \in \Omega_{q,n-i}} \langle s' \rangle_{\alpha'} = 0 \quad \text{for } \alpha' \leq \tau'.$$
(42)

Using Proposition 3.4 the sum in (42) becomes

$$\alpha'! \sum_{i=0}^{n} \binom{n}{i} \binom{n+q-i-1}{|\alpha'|+q-1} (-1)^{i}.$$
(43)

We will now show that the sum in (43) is zero. When the binomial coefficient identity (19) is used on the above sum we obtain

$$\binom{q-1}{|\alpha'|+q-n-1}.$$
(44)

Here $\alpha' \leq \tau'$ implies that $|\alpha'| \leq |\tau'| = |t'| - |e'| = n - q$. Hence $|\alpha'| + q - n - 1 \leq -1$, so the above expression is zero. Therefore

$$\sum_{|s|=n} c_s s^t = 0 \tag{45}$$

in the case q = p as well. \Box

Acknowledgement

This work was supported in part by a Visiting Mathematicians Award from the Department of Mathematical Sciences at Michigan Technological University.

References

- [1] L. Comtet, Advanced Combinatorics (Reidel, Dordrecht, 1974).
- [2] H.W. Gould, Combinatorial Identities (Morgantown Printing and Binding Co., 1972).
- [3] K.J. Heuvers, L.J. Cummings and K.P.S. Bhaskara Rao, A characterization of the permanent function by the Binet-Cauchy theorem, Linear Algebra Appl. 101 (1988) 49-72.
- [4] K.J. Heuvers and D.S. Moak, The Binet-Cauchy functional equation and non-singular multi-indexed matrices, Linear Algebra Appl. 140 (1990) 197-215.

- [5] K.J. Heuvers and D.S. Moak, The Binet-Pexider functional equation for rectangular matrices, Aequationes Math. 40 (1990) 136-146.
- [6] K.J. Heuvers and D.S. Moak, The solution of the Binet-Cauchy functional equation for square matrices, Discrete Math. 88 (1991) 21-32.
- [7] Y.L. Luke, The Special Functions and their Approximations, Vol. 1 (Academic Press, New York, 1969).
- [8] D.S. Moak, Combinatorial multinomial matrices and multinomial Stirling numbers, Proc. Amer. Math. Soc. 1 (1990) 1-8.
- [9] E.D. Rainville, Speical Functions (Macmillan, New York, 1960).
- [10] J. Riordan, An Introduction to Combinatorial Analysis (Wiley, New York, 1958).
- [11] R. Shelton, K.J. Heuvers and D.S. Moak, Multinomial matrices, Discrete Math. 61 (1990) 107-114.