## DISCRETE

MATHEMATICS

An inversion relation of multinomial type<br>Daniel Moak ${ }^{\text {a }}$, Konrad Heuvers ${ }^{\text {a,* }}$, K.P.S. Bhaskara Rao ${ }^{\text {b }}$, Karen Collins ${ }^{\text {c }}$<br>${ }^{2}$ Michigan Technological University, Houghton, MI 49931, USA<br>${ }^{\mathrm{b}}$ Indian Statistical Institute, Bangalore 560059, India,<br>${ }^{\text {c }}$ Wesleyan University, Middletown, CT 06457-6035, USA

Received 4 June 1991; revised 8 July 1992

## Abstract

Recently Heuvers, Cummings, and Rao proved that if $\Psi$ and $\Phi$ are functions satisfying the relation

$$
\Psi\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\mathrm{s}|=n}\binom{n}{s} \Phi\left(x_{1}^{s_{1}}, \ldots, x_{n}^{s_{n}}\right),
$$

then there exist unique numbers $c_{s}$ such that

$$
\Phi\left(x_{1}, \ldots, x_{n}\right)=\sum_{|\mathrm{s}|=n} c_{s} \Psi\left(x_{1}^{s_{1}}, \ldots, x_{n}^{s_{n}}\right) .
$$

In this paper, an explicit expression for $c_{s}$ is established.

## 1. Introduction

The following inversion theorem of multinomial type was proved in 1988 by Heuvers, Cummings, and Bhaskara Rao [3, Theorem 3]. It was a major tool in the recent characterization of determinant and permanent functions by the Binet-Cauchy theorem [4-6].

Theorem 1.1. Let $\boldsymbol{K}$ be a field of characteristic zero, let $X$ be a nonempty set, and let $V$ be a vector space over $K$. Let $\Phi, \Psi: X^{n} \rightarrow V$ be functions satisfying

$$
\begin{equation*}
\Psi\left(x_{1}, \ldots, x_{n}\right)=\sum_{|| |=n}\binom{n}{s} \Phi\left(x_{1}^{s_{1}}, \ldots, x_{n}^{s_{n}}\right) \tag{1}
\end{equation*}
$$

[^0]for all $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$, where
$$
\left(x_{1}^{s_{1}}, \ldots, x_{n}^{s_{n}}\right)=(\underbrace{x_{1}, \ldots, x_{1}}_{s_{1}}, \ldots, \underbrace{x_{n}, \ldots, x_{n}}_{s_{n}}) .
$$

Then

$$
\begin{equation*}
\Phi\left(x_{1}, \ldots, x_{n}\right)=\sum_{|s|=n} c_{s} \Psi\left(x_{1}^{s_{1}}, \ldots, x_{n}^{s_{n}}\right) \tag{2}
\end{equation*}
$$

for fixed constants $c_{s}$ depending only on the $\binom{n}{s}$.
An important example where this theorem applies is when $\Phi\left(x_{1}, \ldots, x_{n}\right)=$ $x_{1} x_{2} \cdots x_{n}$ and $\Psi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+\cdots+x_{n}\right)^{n}$.

For the proof of the theorem the existence of unique coefficients $c_{s}$ was established but their values were not determined. In an attempt to investigate them we used a computer algebra system to calculate the $c_{s}$ for $2 \leqslant n \leqslant 6$. As a result we were led to the conjecture

$$
\begin{equation*}
c_{s}=\frac{(-1)^{n-d}}{s_{i_{1}} \cdots s_{i_{d}} n^{n-d}\langle n\rangle_{d}}, \tag{3}
\end{equation*}
$$

where $s_{i_{1}}, \ldots, s_{i_{d}}$ are the nonzero components of $s$ and $\langle n\rangle_{d}=n!/(n-d)!$. The goal of this paper is to prove (3) for $2 \leqslant n$.

## 2. Notation

Let $\boldsymbol{Z}_{+}=\{0,1,2, \ldots\}$ be the set of nonnegative integers. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in Z_{+}^{n}$ Let $|x|=\alpha_{1}+\cdots+\alpha_{n}$. If $\alpha, \beta \in \boldsymbol{Z}_{+}^{n}$ let $\beta^{\alpha}=\beta_{1}^{\alpha_{1}} \cdots \beta_{n}^{\alpha_{n}}$. If $s=\left(s_{1}, \ldots, s_{n}\right) \in \boldsymbol{Z}_{+}^{n}$ and $|s|=n$ let $s!=s_{1}!\cdots s_{n}!$ Then $\binom{n}{s}$ is the multinomial coefficient

$$
\frac{n!}{s_{1}!\cdots s_{n}!}=\frac{n!}{s!} .
$$

If $x=\left(x_{1}, \ldots, x_{n}\right)$ is an $n$-tuple of indeterminates let $|x|=x_{1}+\cdots+x_{n}$, and if we have $1 \leqslant p \leqslant q \leqslant n$ then let $x^{\prime}=\left(x_{1}, \ldots, x_{q}\right)$ and $x^{\prime \prime}=\left(x_{1}, \ldots, x_{p}\right)$. Also we let $\varepsilon=(1, \ldots, 1) \in \boldsymbol{Z}_{+}^{n}$ be the $n$-tuple all of whose components are 1 .

An order will be introduced on $Z_{+}^{n}$. We will say $\alpha<\beta$ if $\alpha_{i}<\beta_{i}$ for all $i=1, \ldots, n$. The symbols $\leqslant, \succ$, and $\succcurlyeq$ have the obvious interpretations. Let $\Omega_{q, n}$ be the set of multi-indices with $q$ terms and sums equal to $n$, i.e. $\Omega_{q, n}=\left\{\alpha^{\prime} \in Z_{+}^{q}:\left|\alpha^{\prime}\right|=n\right\}$. Also let $\Omega_{q, n}^{+}=\left\{\alpha^{\prime} \in \Omega_{q, n}: \alpha_{i}>0, \mathrm{i}=1, \ldots, q\right\}$.

In order to simplify our notation we will adopt a formal 'product' notation for repeated adjacent identical terms inside $n$-tuples. Thus

will be denoted by $\left(x_{1}^{s_{1}}, \ldots, x_{n}^{s_{n}}\right)$ or $\left(x^{s}\right)$, where $s_{i}$ the number of times that $x_{i}$ appears together inside the $n$-tuple. If $s_{i}=0$ then $x_{i}$ does not appear.

We define $H_{m}(n)$ by

$$
\begin{equation*}
H_{m}(n)=\sum_{s \in \Omega_{m, n}} \frac{1}{s_{1} s_{2} \cdots s_{m}} \tag{4}
\end{equation*}
$$

For $p \in \boldsymbol{Z}_{+}$and one indeterminate $x$, the $p$ th degree falling factorial polynomial $\langle x\rangle_{p}$ is defined by $\langle x\rangle_{p}=1$ if $p=0$ and $\langle x\rangle_{p}=\prod_{i=1}^{p}(x-i+1)$ if $p \geqslant 1$. For $\alpha^{\prime} \in Z_{+}^{q}$ with $\left|\alpha^{\prime}\right|=n$ and $x^{\prime}=\left(x_{1}, \ldots, x_{q}\right)$ the $n$th degree polynomial $\left\langle x^{\prime}\right\rangle_{\alpha^{\prime}}$ is defined by $\left\langle x^{\prime}\right\rangle_{x^{\prime}}=\left\langle x_{1}\right\rangle_{\alpha_{1}} \cdots\left\langle x_{q}\right\rangle_{\alpha_{q}}$ [11, p. 113; 4, pp. 200-203].

Remark. The notation for falling factorials is not fixed yet. Often the notation $(x)_{D}$ is used to denote falling factorials (e.g. see [10, p. 3; 1, p. 6]). However, the Pochammer symbols $(x)_{p}$, or rising factorials, are defined by $(x)_{p}=1$ if $p=0$ and $(x)_{p}=\prod_{i=1}^{p}(x+i-1)$ if $p \geqslant 1$. This is the established notation in the study of hypergeometric functions (e.g. see [9, p. 22; 7, pp. 8, 9]). We use the notation $\langle x\rangle_{p}$ for falling factorials to avoid confusion with the Pochammer symbols.

## 3. Some preliminary results

If $\Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \cdots x_{n}$ and $\Psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{n}$ then it immediately follows from (2) that the $c_{s}$ are the unique coefficients satisfying

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{n}=\sum_{||| |-n} c_{s}\left(s_{1} x_{1}+s_{2} x_{2}+\cdots+s_{n} x_{n}\right)^{n} \tag{5}
\end{equation*}
$$

Taking $n$ partial derivatives on both sides and comparing coefficients we obtain the following result.

Proposition 3.1. The $c_{s}$ are the unique numbers satisfying

$$
\begin{equation*}
1=n!\sum_{|s|=n} c_{s} s_{1} s_{2} \cdots s_{n} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\sum_{|s|=n} c_{s} s^{t}, \quad t \in \Omega_{n, n}-\{\varepsilon\} . \tag{7}
\end{equation*}
$$

The left-hand side of (5) is symmetric in $x_{1}, \ldots, x_{n}$. Consequently, we have the following corollary.

Corollary 3.2. $c_{s}$ is a symmetric function of $s_{1}, s_{2}, \ldots, s_{n}$.
In order to establish the main theorem we also need the following tool.

Proposition 3.3. If $n$ is a strictly positive integer and $\alpha$ is any complex number then

$$
\begin{equation*}
\sum_{m=1}^{n} \frac{(-\alpha)^{m}}{m!} H_{m}(n)=(-1)^{n}\binom{\alpha}{n} . \tag{8}
\end{equation*}
$$

Proof. Start with the identity $(1-x)^{\alpha}=\mathrm{e}^{\alpha \ln (1-x)}$, then expand $(1-x)^{\alpha}, \ln (1-x)$, and $\mathrm{e}^{x}$ into their Maclaurin series. The result is

$$
\begin{equation*}
\sum_{i=0}^{\infty}\binom{\alpha}{i}(-1)^{i} x^{i}=\sum_{m=0}^{\infty} \frac{1}{\dot{m}!}\left(-\alpha \sum_{j=1}^{\infty} \frac{x^{j}}{j}\right)^{m} . \tag{9}
\end{equation*}
$$

Expanding out the right side, we obtain

$$
\begin{equation*}
\sum_{i=0}^{\infty}\binom{\alpha}{i}(-1)^{i} x^{i}=\sum_{\substack{m \geqslant 0 \\ j_{1} \geqslant 1 \cdots j_{m} \geqslant 1}} \frac{(-\alpha)^{m} x^{j_{1}+\cdots+j_{m}}}{m!j_{1} \cdots j_{m}} . \tag{10}
\end{equation*}
$$

Now compare the coefficients of $x^{n}$ on both sides of (10). The result is (8).
Another generating function identity is also needed.
Proposition 3.4. Let $q$ be a strictly positive integer, $n$ be a nonnegative integer, and $a^{\prime}=\left(a_{1}, \ldots, a_{q}\right) \in Z^{q}$. Then

$$
\begin{equation*}
\sum_{s^{\prime} \in \Omega_{q, n}}\left\langle s^{\prime}\right\rangle_{a^{\prime}}=a^{\prime}!\binom{n+q-1}{\left|a^{\prime}\right|+q-1} . \tag{11}
\end{equation*}
$$

Proof. Consider the identity

$$
\begin{equation*}
\frac{x^{a_{1}} a_{1}!}{(1-x)^{a_{1}+1}} \frac{x^{a_{2}} a_{2}!}{(1-x)^{a_{2}+1}} \cdots \frac{x^{a_{q}} a_{q}!}{(1-x)^{a_{q}+1}}=a^{\prime}!\frac{x^{\left|a^{\prime}\right|}}{(1-x)^{\left|a^{\prime}\right|+q}} . \tag{12}
\end{equation*}
$$

Represent each fraction in (12) with its series expansion. The result is

$$
\begin{align*}
& \left(\sum_{s_{1}=0}^{\infty}\left\langle s_{1}\right\rangle_{a_{1}} x^{s_{1}}\right)\left(\sum_{s_{2}=0}^{\infty}\left\langle s_{2}\right\rangle_{a_{2}} x^{s_{2}}\right) \cdots\left(\sum_{s_{q}=0}^{\infty}\left\langle s_{q}\right\rangle_{a_{q}} x^{s_{q}}\right) \\
& \quad=\frac{a^{\prime}!}{\left(\left|a^{\prime}\right|+q-1\right)!} x^{1-q} \sum_{k=0}^{\infty}\langle k\rangle_{\left|a^{\prime}\right|+q-1} x^{k} . \tag{13}
\end{align*}
$$

Now compare the coefficients of $x^{n}$ on both sides of (13). The result is (11).
We also need the following change of basis result.
Proposition 3.5. Let $\alpha^{\prime} \in \Omega_{q, n}$ and let $x_{1}, x_{2}, \ldots, x_{q}$ be $q$ indeterminates. Then there exist coefficients $\mathscr{S}\left(\beta^{\prime}, \alpha^{\prime}\right), \beta^{\prime} \preccurlyeq \alpha^{\prime}$, such that

$$
\begin{equation*}
x^{\prime \alpha^{\prime}}=\sum_{\beta^{\prime} \leqslant \alpha^{\prime}} \mathscr{P}\left(\beta^{\prime}, \alpha^{\prime}\right)\left\langle x^{\prime}\right\rangle_{\beta^{\prime}} \tag{14}
\end{equation*}
$$

Moreover, if $\alpha^{\prime} \in \Omega_{q, n}^{+}$then

$$
\begin{equation*}
x^{\prime \alpha^{\prime}}=\sum_{e^{\prime} \leqslant \beta^{\prime} \leqslant \alpha^{\prime}} \mathscr{P}\left(\beta^{\prime}, \alpha^{\prime}\right)\left\langle x^{\prime}\right\rangle_{\beta^{\prime}} . \tag{15}
\end{equation*}
$$

Proof. A proof of (14) can be found in [8, Lemma 2]. Also, we have from [8],

$$
\begin{equation*}
\mathscr{S}\left(\beta^{\prime}, \alpha^{\prime}\right)=\prod_{i=1}^{q} S\left(\beta_{i}, \alpha_{i}\right), \quad \alpha^{\prime}, \beta^{\prime} \in \Omega_{q, n}, \tag{16}
\end{equation*}
$$

where $S\left(\beta_{i}, \alpha_{i}\right)$ are the ordinary Stirling numbers of the second kind defined by

$$
\begin{equation*}
x^{m}=\sum_{k=0}^{m} S(k, m)\langle x\rangle_{k} . \tag{17}
\end{equation*}
$$

Upon setting $x=0$ it becomes clear that $S(0, m)=0$ for $m>0$. If $\alpha^{\prime} \in \Omega_{q, n}^{+}$, then it follows from (16) that $\mathscr{S}\left(\beta^{\prime}, \alpha^{\prime}\right)=0$ if any component of $\beta^{\prime}$ is zero. This proves (15).

Finally two binomial coefficient identities will be needed:

$$
\begin{equation*}
\sum_{k=0}^{n-m}\binom{x+k}{k}\binom{n-k}{m}=\binom{x+n+1}{n-m}, \quad n \geqslant m, \tag{18}
\end{equation*}
$$

where $n, m$ are nonnegative integers and $x$ is any complex number. This follows from Gould $[2,(3.2)]$ together with the symmetry relation $\binom{n}{k}=\left(n_{n}^{n}\right)$.

We also need the following identity from Gould [2, (3.49)]:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{x-k}{m}(-1)^{k}=\binom{x-n}{m-n} \tag{19}
\end{equation*}
$$

where $n, m$ are nonnegative integers and $x$ is any complex number.

## 4. The main result

Theorem 4.1. Let the coefficients $c_{s}$ be defined by (5). Then

$$
\begin{equation*}
c_{s}=\frac{1}{s_{i_{1}} s_{i_{2}} \cdots s_{i_{d}}\langle n\rangle_{d}(-n)^{n-d}}, \tag{20}
\end{equation*}
$$

where $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{d}}$ are the nonzero entries of $s$.
Proof. By Proposition 3.1 it suffices to show that if $c_{s}$ is given by (20) then (6) and (7) both hold. The only nonzero term in (6) is the term where $s=\varepsilon=(1,1, \ldots, 1)$, so (6) clearly holds for the $c_{s}$ given by (20).

We now need to prove (7), so we assume that $t \in \Omega_{n, n}$ and that $t \neq \varepsilon$. Due to the symmetry of the $c_{s}$, it suffices to show that (7) holds if $t=\left(t_{1}, \ldots, t_{n}\right)$, where $t_{1} \geqslant t_{2} \geqslant \cdots \geqslant t_{n}$. Clearly $t_{1}>1$ and $t_{n}=0$. Accordingly, we let $t_{1}, t_{2}, \ldots, t_{q}$ be the nonzero
components of $t$, and we also assume that $t_{1}>1, t_{2}>1, \ldots, t_{p}>1$. It is clear that the nonzero terms in the sum (7) occur where the first $q$ components of $s$ are strictly positive. Now let $s^{\prime}=\left(s_{1}, \ldots, s_{q}\right), t^{\prime}=\left(t_{1}, \ldots, t_{q}\right), \varepsilon^{\prime}=\left(1^{q}\right)$, and $\tau^{\prime}=\left(t_{1}-1, \ldots, t_{q}-1\right)=$ $t^{\prime}-\varepsilon^{\prime}$. Also let $s^{\prime \prime}=\left(s_{1}, \ldots, s_{p}\right), t^{\prime \prime}=\left(t_{1}, \ldots, t_{p}\right), \varepsilon^{\prime \prime}=\left(1^{p}\right)$, and $\tau^{\prime \prime}=t^{\prime \prime}-\varepsilon^{\prime \prime}=\left(t_{1}-1, \ldots, t_{p}-1\right)$. We now have

$$
\begin{equation*}
\sum_{|s|=n} c_{s} s^{t}=\sum_{j=q}^{n} \sum_{\substack{s \in \Omega_{n, n} \\ s^{\prime} \in \Omega_{q, j}}} c_{s} s^{\prime t^{\prime}} \tag{21}
\end{equation*}
$$

Our goal is to show that the sum on the right is zero. To simplify the notation in what follows, we will always assume that $s \in \Omega_{n, n}$ without explicitly stating it all the time.

Now let $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{c}}$ be the nonzero entries among the last $n-q$ entries of $s$. Then we obtain the following for the right-hand side of (21):

$$
\begin{equation*}
\sum_{s^{\prime} \in \Omega_{q, n}^{t}} s^{\prime \tau^{\prime}} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}}+\sum_{j=q}^{n-1} \sum_{s^{\prime} \in \Omega_{\alpha_{i}, j}^{t}} \sum_{c=1}^{n-j} s^{s^{\prime \tau^{\prime}}} \frac{(-1)^{n-c-q}}{n^{n-c-q}\langle n\rangle_{c+q}} \sum_{\substack{\left\{i_{1}, \ldots, i_{i} \mid \leq\{q+1, \ldots, n\} \\\left\{s_{i, j}, \ldots, s_{i}\right\} \in \Omega_{c, n-}^{+}\right\}}} \frac{1}{s_{i_{1}} \cdots s_{i_{c}}} . \tag{22}
\end{equation*}
$$

For each choice $i_{1}, i_{2}, \ldots, i_{c}$ out of the set $\{q+1, \ldots, n\}$ we have

$$
\sum_{\left(s_{i}, \ldots, s_{j}, \in s_{i n+1}\right.} \frac{1}{s_{i_{1}} \cdots s_{i_{c}}}=H_{c}(n-j) .
$$

Therefore (22) becomes

$$
\begin{equation*}
\sum_{s^{\prime} \Omega_{q, n}} s^{r^{\prime}} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}}+\sum_{j=q}^{n-1} \sum_{s^{\prime} \Omega_{q, j}} \sum_{c=1}^{n-j} s^{\prime \tau^{\prime}} \frac{(-1)^{n-c-q}}{n^{n-c-q}\langle n\rangle_{c+q}}\binom{n-q}{c} H_{c}(n-j) . \tag{23}
\end{equation*}
$$

This can be rewritten as

$$
\begin{equation*}
\sum_{s^{\prime} \in \Omega_{q}^{+}, n} s^{\prime \tau^{\prime}} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}}+\sum_{j=q}^{n-1} \sum_{s^{\prime} \in \Omega_{q}^{q}, j} s^{\prime r^{\prime}} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} \sum_{c=1}^{n-j} \frac{(-n)^{c}}{c!} H_{c}(n-j) . \tag{24}
\end{equation*}
$$

Now we use Proposition 3.3 to obtain

$$
\begin{equation*}
\sum_{s^{\prime} \in \Omega_{q, n}^{+}} s^{\prime \tau^{\prime}} \frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}}+\sum_{j=q}^{n-1} \sum_{s^{\prime} \in \Omega_{q, j}^{q}} s^{\prime \tau^{\tau^{\prime}}} \frac{(-1)^{2 n-q-j}}{n^{n-q}\langle n\rangle_{q}}\binom{n}{n-j} . \tag{25}
\end{equation*}
$$

Now the right-hand side of (21) becomes

$$
\begin{equation*}
\frac{(-1)^{n-q}}{n^{n-q}\langle n\rangle_{q}} \sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{s^{\prime} \in \Omega_{q, n-i}} s^{\prime^{\prime}} . \tag{26}
\end{equation*}
$$

Clearly it suffices to show that

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{s^{\prime} \in \Omega_{a, n-i}} s^{\tau^{\prime}}=0 . \tag{27}
\end{equation*}
$$

At this point we consider two cases.

### 4.1. Case $q>p$

Here we have $t_{1}>1, t_{2}>1, \ldots, t_{p}>1, t_{p+1}=\cdots=t_{q}=1$, and $t_{q+1}=\cdots=t_{n}=0$. Let $\tilde{s}=\left(s_{p+1}, \ldots, s_{q}\right)$. Then we can write the sum in (27) as

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i^{2}} \sum_{k=p}^{n+p-i-q}\left(\sum_{s \in \Omega_{j, k}^{+}} s^{\prime \prime \tau^{\prime \prime}}\right)\left(\sum_{s^{\prime \prime} \in \Omega_{\dot{q}-p, n-i-k}} 1\right) \tag{28}
\end{equation*}
$$

So (28) becomes

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{k=p}^{n+p-i-q}\binom{n-i-k-1}{q-p-1} \sum_{s^{\prime \prime} \in \Omega_{p, k}^{p}} s^{\prime \prime \tau^{\prime \prime}} \tag{29}
\end{equation*}
$$

Since $\tau^{\prime \prime} \succcurlyeq e^{\prime \prime}, s^{\prime \prime \tau^{\prime \prime}}=0$ whenever one of the components of $s^{\prime \prime}$ is zero. Hence

$$
\sum_{s^{\prime \prime} \in \Omega_{p, k}^{+}} s^{\prime \prime t^{\prime \prime}}=\sum_{s^{\prime \prime} \in \Omega_{p, k}} s^{\prime \prime \tau^{\prime \prime}}
$$

Moreover, if $k<p$ and $s^{\prime \prime} \in \Omega_{p, k}$ then at least one component of $s^{\prime \prime}$ is zero which implies that $s^{\prime \prime \tau} \tau^{\prime \prime}=0$. So the $k$ sum can start at 0 rather than at $p$. Hence (29) can be rewritten as

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{k=0}^{n+p-i-q}\binom{n-i-k-1}{q-p-1} \sum_{s^{\prime \prime} \in \Omega_{p, k}} s^{\prime \prime \tau^{\prime \prime}} \tag{30}
\end{equation*}
$$

Then we can use Proposition 3.5 on $s^{\prime \prime \prime} \tau^{\prime \prime}$ to express (30) as

$$
\begin{equation*}
\sum_{e^{\prime \prime} \leqslant \alpha^{\prime \prime} \leqslant r^{\prime \prime}} \mathscr{S}\left(\alpha^{\prime \prime}, \tau^{\prime \prime}\right) \sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{k=0}^{n+p-i-q}\binom{n-i-k-1}{q-p-1} \sum_{s^{\prime \prime} \in \Omega_{p, k}}\left\langle s^{\prime \prime}\right\rangle_{\alpha^{\prime \prime}} . \tag{31}
\end{equation*}
$$

Our goal is to show that the above sum is zero. It suffices to show that

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i^{\prime}} \sum_{k=0}^{i}\binom{n-i-k-1}{q-p-1} \sum_{s^{\prime \prime} \in \Omega_{p, k}}\left\langle s^{\prime \prime}\right\rangle_{\alpha^{\prime \prime}}=0 \quad \text { for } e^{\prime \prime} \leqslant \alpha^{\prime \prime} \leqslant \tau^{\prime \prime} \tag{32}
\end{equation*}
$$

Apply Proposition 3.4 on the sum in (32) and the result is

$$
\begin{equation*}
\alpha^{\prime \prime}!\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{k=0}^{n+p-i-q}\binom{n-i-k-1}{q-p-1}\binom{k+p-1}{\left|\alpha^{\prime \prime}\right|+p-1} . \tag{33}
\end{equation*}
$$

Next we will show that the sum in (33) is zero. Setting $m=n+p-q-i-k$ it becomes

$$
\begin{align*}
& \sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{m=0}^{n+p-i-q}\binom{q-p+m-1}{q-p-1}\binom{n+2 p-q-i-m-1}{\left|\alpha^{\prime \prime}\right|+p-1} \\
& \quad=\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{m=0}^{n+p-i-q}\binom{q-p+m-1}{m}\binom{n+2 p-q-i-m-1}{\left|\alpha^{\prime}\right|+p-1} . \tag{34}
\end{align*}
$$

Notice that if $m>n+p-q-i-\left|\alpha^{\prime \prime}\right|$ then $\left({ }^{n+2 p-\alpha^{\prime} \mid} \mid q_{p-1}^{-i-m-1}\right)=0$. Hence we can adjust the upper index of the inner sum to obtain

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{m=0}^{n+p-i-q-\left|\alpha^{\prime}\right|}\binom{q-p+m-1}{m}\binom{n+2 p-q-i-m-1}{\left|\alpha^{*}\right|+p-1} . \tag{35}
\end{equation*}
$$

Next use the binomial coefficient identity (18) to obtain

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}\binom{n+p-i-1}{n+p-i-q-\left|\alpha^{\prime \prime}\right|}(-1)^{i}=\sum_{i=0}^{n-q}\binom{n}{i}\binom{n+p-i-1}{q+\left|\alpha^{\prime \prime}\right|-1}(-1)^{i} \tag{36}
\end{equation*}
$$

Since $\alpha^{\prime \prime} \geqslant e^{\prime \prime},\left|\alpha^{\prime \prime}\right| \geqslant p$, thus $\binom{n+p-x^{-1}}{q+\left|\alpha^{\prime}\right|-1}=0$ for $i>n-q$. Hence we can extend the upper limit of the sum to $n$, so (36) becomes

$$
\begin{equation*}
\sum_{i=0}^{n}\binom{n}{i}\binom{n+p-i-1}{q+\left|\alpha^{\prime \prime}\right|-1}(-1)^{i} \tag{37}
\end{equation*}
$$

Use the binomial coefficient identity (19) on (37) to obtain

$$
\begin{equation*}
\binom{p-1}{q+\left|\alpha^{\prime \prime}\right|-n-1} . \tag{38}
\end{equation*}
$$

Here $\left|\alpha^{\prime \prime}\right| \leqslant\left|\tau^{\prime \prime}\right|=\left|t^{\prime \prime}\right|-\left|e^{\prime \prime}\right|=\left|t^{\prime}\right|-(q-p)-p=n-q$. So $q+\left|\alpha^{\prime \prime}\right|-n-1 \leqslant-1$ and hence the above expression is zero.

### 4.2. Case $q=p$

Here the sum in (27) becomes

$$
\begin{equation*}
\sum_{i=0}^{n-q}\binom{n}{i}(-1)^{i} \sum_{s^{\prime} \in \Omega_{q, n-1}} s^{\prime \tau^{\prime}} \tag{39}
\end{equation*}
$$

Here $q=p$ implies that all the components of $t^{\prime}$ are greater than one. Thus all components of $\tau^{\prime}$ are strictly positive. So if any component of $s^{\prime}$ is zero, then $s^{\prime \tau^{\prime}}=0$. Thus

$$
\sum_{s^{\prime} \in \Omega_{q, n-i}^{*}} s^{\prime \tau^{\prime}}=\sum_{s^{\prime} \in \Omega_{q, n-i}} s^{\prime \tau^{\prime}}, \quad i=0,1, \ldots, n-q .
$$

Also if $i>n-q$ and $s^{\prime} \in \Omega_{q, n-i}$ then at least one component of $s^{\prime}$ is zero which gives $s^{\prime \tau}=0$. Hence the upper index of the $i$ sum can be extended to $n$. Hence (39) becomes

$$
\begin{equation*}
\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \sum_{s^{\prime} \in \Omega_{q, n-i}} s^{r^{\prime}} . \tag{40}
\end{equation*}
$$

Use Proposition 3.5 on (40) to obtain

$$
\begin{equation*}
\sum_{\alpha^{\prime} \leqslant \tau^{\prime}} \mathscr{P}\left(\alpha^{\prime}, \tau^{\prime}\right) \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \sum_{s^{\prime} \in \Omega_{q, n-i}}\left\langle s^{\prime}\right\rangle \tag{41}
\end{equation*}
$$

We want to show that the above sum is zero and it suffices to show that

$$
\begin{equation*}
\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \sum_{s^{\prime} \in \Omega_{q, n-i}}\left\langle s^{\prime}\right\rangle_{\alpha^{\prime}}=0 \quad \text { for } \alpha^{\prime} \leqslant \tau^{\prime} . \tag{42}
\end{equation*}
$$

Using Proposition 3.4 the sum in (42) becomes

$$
\begin{equation*}
\alpha^{\prime}!\sum_{i=0}^{n}\binom{n}{i}\binom{n+q-i-1}{\left|\alpha^{\prime}\right|+q-1}(-1)^{i} \tag{43}
\end{equation*}
$$

We will now show that the sum in (43) is zero. When the binomial coefficient identity (19) is used on the above sum we obtain

$$
\begin{equation*}
\binom{q-1}{\left|\alpha^{\prime}\right|+q-n-1} . \tag{44}
\end{equation*}
$$

Here $\alpha^{\prime} \leqslant \tau^{\prime}$ implies that $\left|\alpha^{\prime}\right| \leqslant\left|\tau^{\prime}\right|=\left|t^{\prime}\right|-\left|e^{\prime}\right|=n-q$. Hence $\left|\alpha^{\prime}\right|+q-n-1 \leqslant-1$, so the above expression is zero. Therefore

$$
\begin{equation*}
\sum_{|s|=n} c_{s} s^{t}=0 \tag{45}
\end{equation*}
$$

in the case $q=p$ as well.

## Acknowledgement

This work was supported in part by a Visiting Mathematicians Award from the Department of Mathematical Sciences at Michigan Technological University.

## References

[1] L. Comtet, Advanced Combinatorics (Reidel, Dordrecht, 1974).
[2] H.W. Gould, Combinatorial Identities (Morgantown Printing and Binding Co., 1972).
[3] K.J. Heuvers, L.J. Cummings and K.P.S. Bhaskara Rao, A characterization of the permanent function by the Binet-Cauchy theorem, Linear Algebra Appl. 101 (1988) 49-72.
[4] K.J. Heuvers and D.S. Moak, The Binet-Cauchy functional equation and non-singular multi-indexed matrices, Linear Algebra Appl. 140 (1990) 197-215.
[5] K.J. Heuvers and D.S. Moak, The Binet-Pexider functional equation for rectangular matrices, Aequationes Math. 40 (1990) 136-146.
[6] K.J. Heuvers and D.S. Moak, The solution of the Binet-Cauchy functional equation for square matrices, Discrete Math. 88 (1991) 21-32.
[7] Y.L. Luke, The Special Functions and their Approximations, Vol. 1 (Academic Press, New York, 1969).
[8] D.S. Moak, Combinatorial multinomial matrices and multinomial Stirling numbers, Proc. Amer. Math. Soc. 1 (1990) 1-8.
[9] E.D. Rainville, Speical Functions (Macmillan, New York, 1960).
[10] J. Riordan, An Introduction to Combinatorial Analysis (Wiley, New York, 1958).
[11] R. Shelton, K.J. Heuvers and D.S. Moak, Multinomial matrices, Discrete Math. 61 (1990) 107-114.


[^0]:    * Corresponding author.

