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Abstract

Recently Heuvers, Cummings, and Rao proved that if ¥ and @ are functions satisfying the
relation

n
V(X1 s Xn)= Z <5) P(x3, ..., x5,
isl=n

then there exist unique numbers ¢ such that

D(xy, uX)= 3 € PO, .. x5

|s}=n

In this paper, an explicit expression for ¢, is established.

1. Introduction

The following inversion theorem of multinomial type was proved in 1988 by
Heuvers, Cummings, and Bhaskara Rao [3, Theorem 3]. It was a major tool in the
recent characterization of determinant and permanent functions by the Binet-Cauchy
theorem [4-6].

Theorem 1.1. Let K be a field of characteristic zero, let X be a nonempty set, and let
V be a vector space over K. Let @,V :X"—V be functions satisfying

WYXy ..o Xg) = ZC) Bx, ..., x5 (1)

[s]=n
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Jor all (x4, ...,x, e X", where

(xila ...,Xf.")=(x1, s Xy ~--9xn7 ---axn)'
\_W_) H_J
51 Sn
Then
ds(xl?---axn): Z Cs W(xilw--,x;n (2)
Jsj=n

for fixed constants cg depending only on the (}).

An important example where this theorem applies is when @(xi,...,x,)=
X1%p 0 Xy and P(Xq, ..., Xp)= (X1 + -+ +X,)"

For the proof of the theorem the existence of unique coefficients ¢, was established
but their values were not determined. In an attempt to investigate them we used
a computer algebra system to calculate the ¢, for 2<n<6. As a result we were led to
the conjecture

(_ l)n —d
Cg=————————, 3
’ Sil'”sidnnid<n>d ( )
where s;,, ..., s;, are the nonzero components of s and {n);=n!/(n—d)!. The goal of this
paper is to prove (3) for 2<n.

2. Notation

Let Z,=1{0,1,2,...} be the set of nonnegative integers. If ax=(ay,...,a,)eZ% Let
| =0y + - +a, If o,feZ let fr=B5 - for. If s=(sy,...,5,)€Z% and |s]=n let
sl=s,!---5,.. Then (%) is the multinomial coefficient

n! n!
seloes,t st

If x=(xy,...,X,) is an n-tuple of indeterminates let |x|=x;+---+Xx,, and if we have
1<p<g<nthen let X' =(xy,...,x,) and x"=(xy, ..., x,). Also we let e=(1,...,1)e Z%
be the n-tuple all of whose components are 1.

An order will be introduced on Z". We will say a<fif ;< f; foralli=1,...,n. The
symbols <, >, and > have the obvious interpretations. Let €, , be the set of
multi-indices with g terms and sums equal to n, i.e. Q,,={o'eZ%: |o'|=n}. Also let
Q. ={aeQ, 0;>0,i=1,...,q}.

In order to simplify our notation we will adopt a formal ‘product’ notation for
repeated adjacent identical terms inside n-tuples. Thus

(X1 eees X5 eees Xy oeas Xp)

—_ =

51 Sn
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will be denoted by (x§., ..., x5} or (x°), where s; the number of times that x; appears
together inside the n-tuple. If 5;,=0 then x; does not appear.
We define H,,(n) by

Hum= Y ——. @

seny, 515277 Sm

For peZ, and one indeterminate x, the pth degree falling factorial polynomial (x},
is defined by (x>,=1if p=0and {(x},=[f.,(x—i+ 1) if p= 1. For a’'e Z% with |o/|=n
and x'=(xy,...,x,) the nth degree polynomial <x), is defined by
XDy =LX1Da; " {Xga, [11, p. 113; 4, pp. 200-203].

Remark. The notation for falling factorials is not fixed yet. Often the notation (x), is
used to denote falling factorials (e.g. see [10, p. 3; 1, p. 6]). However, the Pochammer
symbols (x), or rising factorials, are defined by (x),=1 if p=0 and
(x)p=I17-,(x+i—1) if p=1. This is the established notation in the study of hyper-
geometric functions (e.g. see [9, p. 22; 7, pp. 8, 9]). We use the notation {x), for falling
factorials to avoid confusion with the Pochammer symbols.

3. Some preliminary results

If @(x1,%5, ..., X ) =Xy Xz - X, and P(xy, X5, ..., X)) =(X{+ X5+ +Xx,)" then it im-
mediately follows from (2) that the ¢, are the unique coeflicients satisfying

XXy Xy = Y ColS1X1+52X54 - +5,%,)" (5)

|s|=n
Taking n partial derivatives on both sides and comparing coefficients we obtain the

following result.

Propesition 3.1. The cg are the unique numbers satisfying

l=nlY ¢;s155:05, (6)

Is)=n

and

0= ) ¢, teQ,,—{s} (7

|sl=n

The left-hand side of (5) is symmetric in xq,...,x, Consequently, we have the
following corollary.

Corollary 3.2. c, is a symmetric function of sy,5;, ...,y

In order to establish the main theorem we also need the following tool.
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Propeosition 3.3. If n is a strictly positive integer and o is any complex number then
o (—o)” . [
Y = Hyu(n)=(—1y" ). (8)
= m n

Proof. Start with the identity (1 —x)*=¢*""1 ~®, then expand (1 —x)?, In(1 —x), and €*
into their Maclaurin series. The result is

5 (o5 (53

m=0 =17

Expanding out the right side, we obtain
> [ o (—aym xfrtotim
(=1 xi= _ 10
S OS5 o

Now compare the coefficients of x" on both sides of (10). The result is (8). [
Another generating function identity is also needed.

Proposition 3.4. Let q be a strictly positive integer, n be a nonnegative integer, and
a=(ay,...,a.)eZ% . Then

n+q—1
2, (e <lal+q ) o

s'€eQqn

Proof. Consider the identity

x*ay! x%2q,! x%qa,! \ x4l
=a'l - 12
(1_x)a1+1 (1-—X)a2+l (l_x)aq+1 a (1_x)|a|+q ( )

Represent each fraction in (12) with its series expansion. The result is

( i <sl>a.xs‘> < i <Sz>a2x”>---< i <Sq>a.,xs")

§1=0 sq=0

(|a|+q—1)' Z: k>la’l+q—1xk. 3

Now compare the coefficients of x" on both sides of (13). The result is (11). U
We also need the following change of basis result.

Proposition 3.5. Let o'€Q,, and let x,x,, ..., x, be q indeterminates. Then there exist
coefficients (B, «'), B <o, such that

= ), L(B,o)x Dy (14)

p<a
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Moreover, if «' €Q,, then

xX¥= Y LB (1)

e<p =
Proof. A proof of (14) can be found in [8, Lemma 2]. Also, we have from [8],
FB.0)= [ ey (16)
where S(f;,o;) are the ordinary Stirling numbers of the second kind defined by

X" = i Sk, m) {x>y. a7
k=0

Upon setting x =0 it becomes clear that S(0, m)=0 for m>0. If o’ Q/,, then it follows
from (16) that #(f',')=0 if any component of f’ is zero. This proves (15). [

Finally two binomial coefficient identities will be needed:
n-—m _ 1
Z<x+k)<" k>=<x+"+ ). nem (18)
S\ k m n—m

where n,m are nonnegative integers and x is any complex number. This follows from
Gould [2,(3.2)] together with the symmetry relation (§)=(,%).
We also need the following identity from Gould [2, (3.49)]:

G s ! “9>
k=0 m m—n

where n,m are nonnegative integers and x is any complex number.

4. The main result

Theorem 4.1. Let the coefficients ¢, be defined by (5). Then
1

Ceg= —
’ silsiz“'sid<n>d(_n)n ¢

where s;,,5;,, ..., Si, are the nonzero entries of s.

(20)

Proof. By Proposition 3.1 it suffices to show that if ¢, is given by (20) then (6) and (7)
both hold. The only nonzero term in (6) is the term where s=¢=(1,1,...,1), so (6)
clearly holds for the ¢, given by (20).

We now need to prove (7), so we assume that te,, and that ¢t #¢. Due to the
symmetry of the c,, it suffices to show that (7) holds if t=(t,,...,t,), where
ty =tz = =t, Clearly t; > 1 and t,=0. Accordingly, we let ¢, t,, ..., t, be the nonzero
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components of ¢, and we also assume that ¢, >1, t,>1, ..., t,>1. It is clear that the
nonzero terms in the sum (7) occur where the first ¢ components of s are strictly
positive. Now let §'=(sy,...,8,), '=(t1,...,t,), £€=(1%), and 7'=(t;—1,...,t,—1)=
t'—¢. Also let s"=(sy,...,s,), t"=(ty,....t,), &'=(17), and t"=t"—¢"=(t; —1,...,t,—1).
We now have

chs‘=zn: Y oot 21

Isl=n Jj=q s€Qnn
et
s'eQ, ;

Our goal is to show that the sum on the right is zero. To simplify the notation in
what follows, we will always assume that seQ, , without explicitly stating it all the
time.

Now let s;,,s;,, ..., 5;, be the nonzero entries among the last n—g entries of s. Then
we obtain the following for the right-hand side of (21):

(=1)p n-c—gq 1
Z s* nt- “)<n> Z Z Z nhe 3<n>c+q Z St S -(22)

ot
s'€Qg.n ij= qse!?q c= el .,
(S., 28 )ER,

For each choice iy, i, ...,i, out of the set {g+1,...,n} we have

Y Hdn)

(S S )R

Therefore (22) becomes
= Ny N (e (n‘q> _
§C -+ e SN H(n-}). (23)

This can be rewritten as

Y st NPIE=iy (Cn)cH(n‘J) 04
qc=

S'€Qqm j=q s'eQg j

Now we use Proposition 3.3 to obtain

C(=1pm O ,(~1)2"“'1-f< n )
5T ————+ S - (25)
S,EZQ‘;” iy, ; s';n;,j n""1{ny, \n—j

Now the right-hand side of (21) becomes

(=11 (n ;
nn-q@qZ(,-)(—l) 2 0

i=0 S€Qin—i
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Clearly it suffices to show that
n—q n
Z(,)(—l)i Y s7=0. 27)
i=0 ! S'€Qgn-i

At this point we consider two cases.
4.1. Case g>p

Here we have t;>1, t,>1,...,t,>1, t,4,=---=t,=1, and t,,,=---=¢,=0. Let
§=(sp+1,...,5,) Then we can write the sum in (27) as

n—gq n+p—i—q

L0 2 (2)LE ) &

So (28) becomes
"_q<n)(_1)i"+p2i_q<n—i—k—1) T o 29)
Fr AN = g—p~—1 ],

”

Since 1" =e", 5" =0 whenever one of the components of s” is zero. Hence

Moreover, if k<p and s"€Q,; then at least one component of s” is zero which
implies that s"*"=0. So the k sum can start at O rather than at p. Hence (29) can be
rewritten as

—i

()

i=0 o

—q .
(""_k_1> Y oo (30)

q_p_l s"'eQpx
Then we can use Proposition 3.5 on s"*" to express (30) as
= /n TS T ik —1
Y Sy ( .)(— Y ( ) Y (e 31)
S T i=o \! k=0 q—p—1 s"eQpk
Our goal is to show that the above sum is zero. It suffices to show that
~ /n TS m—i—k—1
Z <.>(—1)i Z ( ) Z (" =0 for e"<Xa"<X7". (32)
izo \! k=0 q—p—1 s"€Qpi

Apply Proposition 3.4 on the sum in (32) and the result is

~/n P T ik —1\ [ k+p—1
o) =1y 3 . 33
.;)(l)( ) kzo <q—P—1 )(Ifxlﬂ—l) G
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Next we will show that the sum in (33) is zero. Setting m=n+p—q—i—k it becomes

"Z"‘(n>(_1)i"+‘i"“’<q—p+m_1><n+2p_q_i-m_1>
=\ o} q—p—1 o] +p—1
n-g ntp-i-g .
n . g—p+m—1\n+2p—q—i—m—1
= -1y . 34
e L (AN o

m=0

Notice that if m>n+p—g—i—|a”| then ("*2£;4,7" " 1)=0. Hence we can adjust the
upper index of the inner sum to obtain

n—g nt+p—i—q—|a .
Z n . Z —p+m—1\/n+2p—qg—i—m—1
izo \! m=0 m e’ +p~1

Next use the binomial coefficient identity (18) to obtain

n—4g . n—q .
n n+p—i-—1 ; n\/n+p—i—1 .
—1)= —1). 36
22 O oo
Since a"2=¢”, |o"|>p, thus (442717")=0 for i>n—gq. Hence we can extend the upper
limit of the sum to n, so (36) becomes

> (n\ n+p—i—1 .
i};o<i>(q+|a"l—1 )('1)' G7)

Use the binomial coefficient identity (19) on (37) to obtain

r—1
(ovtrnns) &

Here |o"| <|t"|=|t"| —|e"|=1t'|—(¢—p)—p=n—q. So g+ |¢"| —-n—1< — 1 and hence
the above expression is zero.

4.2. Case q=p

Here the sum in (27) becomes
~(n '
Y ( .)(— Doy s (39)
i=0 ! s'€ Qg

Here g=p implies that all the components of ' are greater than one. Thus all
components of 7’ are strictly positive. So if any component of s is zero, then 5™ =0.

Thus
Y ost= Y s i=01,.,n—q

SE€EQ - S'€Qqm-i
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Also if i>n—gq and s'€Q, ,_; then at least one component of s’ is zero which gives
s’ =0. Hence the upper index of the i sum can be extended to n. Hence (39) becomes

 /n . ,
Z(.)(—l)' Z s (40)
i=0 l s'€Qqn-i
Use Proposition 3.5 on (40) to obtain
= /n .
Y Py, ( .)(— DY, (D (41)
FEd i=0 l s'€eQgn—i
We want to show that the above sum is zero and it suffices to show that
> <’i’>(— Y (D=0 for <. (42)
i=0 s'€eQqn-i

Using Proposition 3.4 the sum in (42) becomes

= n\ (n+q—i—1 :
d - 1) 43
3 ()0t “
We will now show that the sum in (43) is zero. When the binomial coefficient identity
(19) is used on the above sum we obtain

g—1
(1) @0

Here o' <7’ implies that |o| <|7'| ={t'| — || =n—q. Hence [o¢'| + g—n— 1< —1, so the
above expression is zero. Therefore

Y ¢5'=0 45)

Isl=n

in the case g=p as well. [
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