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Abstract 

Recently Heuvers, Cummings, and Rao proved that if Y and @ are functions satisfying the 
relation 

Y(x,,...,x,)= 1 n 
0 

@(xi’, . . ..xZ). 
,s,=n s 

then there exist unique numbers c, such that 

@(XI, . . . . x,)= c c, Y/(x;‘, . . . . x?). 
,A(=” 

In this paper, an explicit expression for c, is established. 

1. Introduction 

The following inversion theorem of multinomial type was proved in 1988 by 

Heuvers, Cummings, and Bhaskara Rao [3, Theorem 31. It was a major tool in the 

recent characterization of determinant and permanent functions by the Binet-Cauchy 

theorem [4-61. 

Theorem 1.1. Let K be a jeld of characteristic zero, let X be a nonempty set, and let 

V be a vector space over K. Let @, Y :X”+ V be functions satisfying 

Y(Xl, . . .) x”)= 
n co @(xii, . . .) xs;) 

IsI=n s 
(1) 
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for all (Xl, . ..) x,) E X", where 

(xs,‘, . . . . x2)=(x1, . ..) Xl, . ..) x,, . . . . X”). 

- Y SI 

Then 

@(Xl, . . . . x*)= c &Y(XsI, . . ..x?) (2) 
Is/ = n 

forjxed constants c, depending only on the (:). 

An important example where this theorem applies is when @(xi, . . ., xn)= 

XIX2 ... x, and Y(xI, . . . . xn)=(xl +...+x,)“. 

For the proof of the theorem the existence of unique coefficients c, was established 

but their values were not determined. In an attempt to investigate them we used 

a computer algebra system to calculate the c, for 2 6 n < 6. As a result we were led to 

the conjecture 

(-l)“_* 
es= 

&, ‘.‘.$,dmd(n)d ’ 
(3) 

where Sil, . . , Sid are the nonzero components of s and (n)d = n!/(n -d)!. The goal of this 

paper is to prove (3) for 26n. 

2. Notation 

Let Z, = {0, 1,2, . ..} be the set of nonnegative integers. If c(=(cI~, . . . . a&Z”, Let 

Irl=a,+...+a,. If a,fl~Z’+ let p”=fiT’ .../3;“. If s=(si, . . ..s.)EZ’+ and IsI=n let 

s! = si! ... s,!. Then (‘J is the multinomial coefficient 

n. I n! 

Sl! ‘.. s,! s! 

If x=(x1, . ..) x,) is an n-tuple of indeterminates let 1x( =x1 + ... +x,, and if we have 

l<p<q<n then let x’=(xi ,..., xq) and x”=(xl ,..., xP). Also we let s=(l)..., l)~z”, 

be the n-tuple all of whose components are 1. 

An order will be introduced on Z’+. We will say a<b if C(~ < Bi for all i = 1, . . . , n. The 

symbols 6, >, and 3 have the obvious interpretations. Let Sz,,” be the set of 

multi-indices with 4 terms and sums equal to n, i.e. Q4,+= {cd~Z‘!+: (cdl= n}. Also let 

52,:” = {CI’ESZ& cCi>O, i= 1, . . . . 4). 

In order to simplify our notation we will adopt a formal ‘product’ notation for 

repeated adjacent identical terms inside n-tuples. Thus 

(x I)...) Xl ,..., X” ,..., %I) 
- Y s1 



D. Moak et al. i Discreie Mathematics 131 (1994) 195-204 191 

will be denoted by (xS;, . _ _ , x2) or (x’), where si the number of times that Xi appears 

together inside the n-tuple. If si=O then xi does not appear. 

We define N,(n) by 

For p~2, and one indeterminate x, the pth degree falling factorial polynomial (x), 

isdefinedby(x),=lifp=Oand(x),=n~=’=,(x-i+l)ifp~l.ForCr’EZ4,withI~‘I=Y1 

and x’=(x1, . . ..x.) the nth degree polynomial (x’),, is defined by 

(x’>,,= (XI)al ... (x&~, [ll, p. 113; 4, pp. 200-2031. 

Remark. The notation for falling factorials is not fixed yet. Often the notation (x), is 

used to denote falling factorials (e.g. see [lo, p. 3; 1, p. 61). However, the Pochammer 

symbols (x),, or rising factorials, are defined by (x),= 1 if p=O and 

(x&= n;= 1(x + i - 1) if p 3 1. This is the established notation in the study of hyper- 

geometric functions (e.g. see [9, p. 22; 7, pp. 8,9]). We use the notation (x), for falling 

factorials to avoid confusion with the Pochammer symbols. 

3. Some preliminary results 

If @(Xl,XZ, . . . . x,J=x1x2...x,and Y(x~,x~,...,x,)=(x~+x~+-..+x~)~ then it im- 

mediately follows from (2) that the c, are the unique coefficients satisfying 

Taking n partial derivatives on both sides and comparing coefficients we obtain the 

following result. 

Proposition 3.1. The c, are the unique numbers satisfying 

1 =n! C c,s1s2...s, 
Is\=?7 

and 

(6) 

o= c css’, ten,,,-{E}. (7) 
I.s(=lI 

The left-hand side of (5) is symmetric in x1, . . . . x,. Consequently, we have the 

following corollary. 

Corollary 3.2. c, is a symmetric function of sl, s2, . . , s,. 

In order to establish the main theorem we also need the following tool. 
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Proposition 3.3. If n is a strictly positive integer and a is any complex number then 

PI (-cc)” c m,H,(n)=(-l)” z . 
m=l . 0 

(8) 

Proof. Start with the identity (1 -x)” = e ol1”(1-x), then expand (1 - ~)a, ln( 1 - x), and eX 

into their Maclaurin series. The result is 

2 @)(-l,ixi= -f 5 (-lpJ. 
i=O m=O . 

(9) 

Expanding out the right side, we obtain 

m w i=O 
4 (- l)i xi = C (10) 

m>O 
j,,l...j,>l 

Now compare the coefficients of x” on both sides of (10). The result is (8). 0 

Another generating function identity is also needed. 

Proposition 3.4. Let q be a strictly positive integer, n be a nonnegative integer, and 

a’=@,, . . . . a,)~z”, . Then 

Proof. Consider the identity 

x”‘q! x0*u2! xaq a4 ! p’l 

(l_X)al+l (I_X)“+1~~~(1_X)a,+l=~‘~(~_x)l”~l+4~ 

Represent each fraction in (12) with its series expansion. The result is 

a’! 
a, 

=(,a!,+q_-l)! x~-~~_o(k)l.,l+U-Ixk. c 

(11) 

(12) 

(13) 

Now compare the coefficients of x” on both sides of (13). The result is (11). 0 

We also need the following change of basis result. 

Proposition 3.5. Let CX’EC& and let x1, x2, . . . , xq be q indeterminates. Then there exist 

coeficients ~‘(B,,cc’), /?‘=$a’, such that 

xMl’ = c Y(B’, a’) (x’>p, . (14) 
/?‘<a’ 
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Moreover, if ci~Q& then 

p’ = (15) 

Proof. A proof of (14) can be found in [S, Lemma 21. Also, we have from [8], 

Y(B’> M’)= fi s(8i> 4), a’, BIEf& > (16) 

i=l 

where S(p, CQ) are the ordinary Stirling numbers of the second kind defined by 

x”‘= f S(k, m) (x)~ . 
k=O 

(17) 

Upon setting x = 0 it becomes clear that S(0, m) = 0 for m > 0. If tx’~Q&,, then it follows 

from (16) that Y(/Y,a’)=O if any component of p’ is zero. This proves (15). 0 

Finally two binomial coefficient identities will be needed: 

(18) 

where n, m are nonnegative integers and x is any complex number. This follows from 

Gould [2,(3.2)] together with the symmetry relation (;)=(,!!k). 

We also need the following identity from Gould [2, (3.49)]: 

(19) 

where n,m are nonnegative integers and x is any complex number. 

4. The main result 

Theorem 4.1. Let the coejficients c, be defined by (5). Then 

1 
Cs= 

Si,Si2”‘Sid(n)d(-n)“-d’ 

where s. s. ,, , ,*, . . . . sid are the nonzero entries of s. 

(20) 

Proof. By Proposition 3.1 it suffices to show that if c, is given by (20) then (6) and (7) 

both hold. The only nonzero term in (6) is the term where s=s=(l, 1, . . . , l), so (6) 

clearly holds for the c, given by (20). 

We now need to prove (7), so we assume that tEQ,,, and that t#E. Due to the 

symmetry of the cS, it suffices to show that (7) holds if t =(tl, . . . . tJ, where 

tl B t2 3 . . .3 t,. Clearly t 1 > 1 and t, = 0. Accordingly, we let tl, t2, . . . , t, be the nonzero 
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components Of r, and we also assume that tr > 1, t2 > 1, . . . . t,> 1. It is clear that the 

nonzero terms in the sum (7) occur where the first q components of s are strictly 
positive. Now let s’ = (si, . . . , sq), t’=(tl, . . . . t,), a’=(14), and T’=(tl - 1, . . . . t,-- l)= 

t’-8’. Also let s”=(sl ,..., sp), t”=(tl ,..., t,,), s”=(lP), and Y=t”-d’=(tl-1 ,..., t,-1). 
We now have 

c c,s’= i c c,s”‘. 
IsI=n j=q se&, 

S’ER,t,, 

(21) 

Our goal is to show that the sum on the right is zero. To simplify the notation in 

what follows, we will always assume that SEC&. without explicitly stating it all the 

time. 

NOW let si,, si2, . . . , Si, be the nonzero entries among the last n-q entries of s. Then 

we obtain the following for the right-hand side of (21): 

For each choice il, i2, . . . . i, out of the set {q+l,...,n} we have 

Therefore (22) becomes 

This can be rewritten as 

Now we use Proposition 3.3 to obtain 

Now the right-hand side of (21) becomes 

(24) 

(25) 

(_]yl n-q n 

r~-~<n)~ & (i)(-l)’ s,ez_y’ P 
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Clearly it suffices to show that 

E(;)(-lJi S,EZ_yl,=O. 
: 

(27) 

At this point we consider two cases. 

4.1. Case q>p 

Here we have tl>l, tz>l,...,t,>l, ~~+~=...=t~=l, and tq+l=...=tn=O. Let 

S=(sp+l, . ..) sq). Then we can write the sum in (27) as 

So (28) becomes 

(28) 

(29) 

Since z” + e”, s”‘” = 0 whenever one of the components of s” is zero. Hence 

Moreover, if k < p and s”EQ~,~ then at least one component of sfl is zero which 

implies that s”~” = 0. So the k sum can start at 0 rather than at p. Hence (29) can be 

rewritten as 

Then we can use Proposition 3.5 on s”“’ to express (30) as 

(30) 

(31) 

Our goal is to show that the above sum is zero. It suffices to show that 

Apply Proposition 3.4 on the sum in (32) and the result is 

(33) 
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Next we will show that the sum in (33) is zero. Setting m = n + p -q - i - k it becomes 

Notice that if m>n+p-q-i-_la”( then ( “‘2&$;<-Im-1)=0. Hence we can adjust the 

upper index of the inner sum to obtain 

n-4 

co 

n+p-i-q-(&( 

; (-l)i 

c ( 

q-p-tm-1 

i=O m=O 
m I( 

n+2p-q-i-m-l 

1 Icq+p-1 . 

Next use the binomial coefficient identity (18) to obtain 

(35) 

(36) 

Since c?>e”, )c1”( ‘,p, thus (n’+{E~Ii--l ) = 0 for i > n - q. Hence we can extend the upper 

limit of the sum to n, so (36) becomes 

n 
n W( i=O 
i 

;;gy-;)(-l)‘. 

Use the binomial coefficient identity (19) on (37) to obtain 

P-l 

> q+lcc”\-n-l ’ 

(37) 

(38) 

Here Ia”1 < [?“I = It”1 - le”l= It’1 -(q - p) - p = n -4. So q + [cd’1 -n - 1 d - 1 and hence 

the above expression is zero. 

4.2. Case q=p 

Here the sum in (27) becomes 

Here q =p implies that all the components of t’ are greater 

components of 5’ are strictly positive. So if any component of s’ 

Thus 

(39) 

than one. Thus all 

is zero, then .P’ = 0. 

c s’t’ = c $r’ ) i=O,l , . . ..n-q. 
S’ER&i S’EQ,., - i 
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Also if i> n-q and s’EC&_~ then at least one component of s’ is zero which gives 

s”’ =O. Hence the upper index of the i sum can be extended to n. Hence (39) becomes 

lg;)(-l)i,,eJ SIT’. 
q.n-i 

Use Proposition 3.5 on (40) to obtain 

We want to show that the above sum is zero and it suffices to show that 

Using Proposition 3.4 the sum in (42) becomes 

(40) 

(41) 

(42) 

(43) 

We will now show that the sum in (43) is zero. When the binomial coefficient identity 

(19) is used on the above sum we obtain 

( q-1 ) Icdl+q-n-l . 
(44) 

Here a’=$~’ implies that ICYI < Jr’1 = It’1 - le’l = n -4. Hence Irx’I + q-n - 1 d - 1, so the 

above expression is zero. Therefore 

(45) 

in the case q =p as well. 0 
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