Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Reynolds operator on functors

Amelia Álvarez^{a,*}, Carlos Sancho^b, Pedro Sancho^a

^a Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain ^b Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain

ARTICLE INFO

Article history: Received 9 February 2009 Received in revised form 22 October 2010 Available online 13 December 2010 Communicated by M. Broue

MSC: Primary: 14L24 Secondary: 14L17

0. Introduction

ABSTRACT

Let G = Spec A be an affine R-monoid scheme. We prove that the category of dual functors (over the category of commutative R-algebras) of G-modules is equivalent to the category of dual functors of A^* -modules. We prove that G is invariant exact if and only if $A^* = R \times B^*$ as R-algebras and the first projection $A^* \rightarrow R$ is the unit of A. If \mathbb{M} is a dual functor of G-modules and $w_G := (1, 0) \in R \times B^* = A^*$, we prove that $\mathbb{M}^G = w_G \cdot \mathbb{M}$ and $\mathbb{M} = w_G \cdot \mathbb{M} \oplus (1 - w_G) \cdot \mathbb{M}$; hence, the Reynolds operator can be defined on \mathbb{M} .

© 2010 Elsevier B.V. All rights reserved.

OURNAL OF URE AND IPPLIED ALGEBRA

Let *R* be a commutative ring with unit. An *R*-module *M* can be considered as a functor of \mathcal{R} -modules over the category of commutative *R*-algebras, which we will denote by \mathcal{M} and we will call a quasi-coherent module, by defining $\mathcal{M}(S) := M \otimes_R S$. If \mathbb{M} and \mathbb{N} are functors of \mathcal{R} -modules, we will denote by $\mathbb{H}om_{\mathcal{R}}(\mathbb{M}, \mathbb{N})$ the functor of \mathcal{R} -modules

 $\mathbb{H}om_{\mathscr{R}}(\mathbb{M},\mathbb{N})(S) := \mathrm{H}om_{\mathscr{E}}(\mathbb{M}_{|S},\mathbb{N}_{|S}),$

where $\mathbb{M}_{|S}$ is the functor \mathbb{M} restricted to the category of commutative S-algebras. The functor $\mathbb{M}^* := \mathbb{H}om_{\mathcal{R}}(\mathbb{M}, \mathcal{R})$ is said to be a dual functor. For example, $\mathcal{M}, \mathcal{M}^*$ and $\mathbb{H}om_{\mathcal{R}}(\mathcal{M}, \mathcal{M}')$ are dual functors (see [1, 1.10] and Proposition 1.1).

An affine *R*-monoid scheme G = Spec A can be considered as a functor of monoids over the category of commutative *R*-algebras: $G(S) := \text{Hom}_{R-alg}(A, S)$, which is known as the functor of points of *G*.

It is well known that the theory of linear representations of algebraic groups can be developed, via their associated functors, as a theory of (abstract) groups and their linear representations. That is, the category of modules is equivalent to the category of quasi-coherent modules and the category of rational *G*-modules is equivalent to the category of quasi-coherent *G* -modules. Moreover, it is sometimes necessary to consider some natural vector spaces via their associated functors. For example, if *M* and *M'* are two (rational) linear representations of *G* = Spec *A*, then Hom_{*R*}(*M*, *M'*) is not a (rational) linear representation of *G*, although *G* acts naturally on $\mathbb{H}om_{\mathcal{R}}(\mathcal{M}, \mathcal{M}')$; *A*^{*} is not a (rational) linear representation of *G* = Spec *A*, although *G'* acts naturally on \mathcal{A}^* .

 A^* is a functor of algebras and there exists a natural and obvious morphism of functors of monoids $G \hookrightarrow A^*$. Then every functor of A^* -modules is a functor of G-modules (see Definition 1.3). In this paper, we prove the following theorem.

Theorem 1. The category of dual functors of G-modules is equal to the category of dual functors of A^* -modules.

In the classical situation observe that if we consider the rational points of *G*, *G* (*R*), and the inclusion *G* (*R*) \hookrightarrow *A*^{*}, the category of (rational) *G* (*R*)-modules it is not equivalent to the category of *A*^{*}-modules, even if *G* is a smooth algebraic group over an algebraically closed field (in this last case it is necessary to introduce topologies on *A*^{*} and on the modules).

* Corresponding author. *E-mail addresses*: aalarma@unex.es (A. Álvarez), mplu@usal.es (C. Sancho), sancho@unex.es (P. Sancho).

^{0022-4049/\$ –} see front matter s 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jpaa.2010.11.006

We prove that an affine *R*-group scheme G = Spec A is invariant exact if and only if $A^* = \Re \times \mathscr{B}^*$ as functors of \Re -algebras (Corollary 2.6). If *A* is a projective *R*-module, G = Spec A is invariant exact if and only if $A^* = R \times C$ as *R*-algebras (Remark 2.7). If *G* is invariant exact, there exists an isomorphism $A^* = R \times B^*$ such that the first projection $A^* \to R$ is the unit of *A*. Let $w_G := (1, 0) \in R \times B^* = A^*$ be the "invariant integral" on *G*. We prove the following theorem.

Theorem 2. Let G = Spec A be an invariant exact R-group and let $w_G \in A^*$ be the invariant integral on G. Let \mathbb{M} be a dual functor of G-modules. It holds that:

(1) $\mathbb{M}^{G'} = w_G \cdot \mathbb{M}$.

(2) \mathbb{M} splits uniquely as a direct sum of $\mathbb{M}^{G^{\circ}}$ and another subfunctor of G° -modules, explicitly

$$\mathbb{M} = w_G \cdot \mathbb{M} \oplus (1 - w_G) \cdot \mathbb{M}$$

We call the projection $\mathbb{M} \to \mathbb{M}^G = w_G \cdot \mathbb{M}$ the Reynolds operator. Taking sections we have $\mathbb{M}(R)^G = w_G \cdot \mathbb{M}(R)$ and the morphism $\mathbb{M}(R) \to \mathbb{M}(R)^G$, $m \mapsto w_G \cdot m$. The classical Reynolds operator is a particular case of Theorem 2, for $\mathbb{M} = \mathcal{M}$. The previous theorem still holds for any separated functor of \mathcal{A}^* -modules (see Definition 3.1). More generally, for every functor \mathbb{N} of *G*-modules, we prove that there exists the maximal separated *G*-invariant quotient of \mathbb{N} and that the dual of this quotient is \mathbb{N}^{*G} (Theorem 4.1).

In [4] it is proved that a Reynolds operator can be defined on $\text{Hom}_B(M, M')$, where *B* is a *G*-algebra and *M* and *M'* are two *BG*-modules. Obviously *G'* acts on $\mathbb{H}om_{\mathcal{B}}(\mathcal{M}, \mathcal{M}')$ and it is a separated functor by Proposition 3.8. Hence, the Reynolds operator can be defined on $\text{Hom}_B(M, M')$ by Theorem 2. This is an example that shows that functorial treatment can clarify some problems.

Let $\chi: G \to G_m$ be a multiplicative character. Given a functor of *G*-modules \mathbb{M} , let \mathbb{M}^{χ} be the subfunctor of the χ -semiinvariant elements of \mathbb{M} (see Definition 5.1). In Section 5, we extend the previous theorems about the invariant integral and the Reynolds operator to the semi-invariant integral and the Reynolds χ -operator. We apply these results to prove some results of [5] about generalized Cayley's Ω -processes in Example 5.6.

Finally, these results about the invariant integral, the Reynolds operator, etc., can be extended to functors of monoids with a reflexive functor of functions. We will explain it in detail in a next paper.

1. Preliminary results

[1] is the basic reference for reading this paper.

Let *R* be a commutative ring (associative with unit). All functors considered in this paper are covariant functors over the category of commutative *R*-algebras (associative with unit). We will say that X is a functor of sets (resp. monoids, etc.) if X is a functor from the category of commutative *R*-algebras to the category of sets (resp. monoids and so forth).

Let \mathcal{R} be the functor of rings defined by $\mathcal{R}(S) := S$ for every commutative R-algebra S. A functor of sets \mathbb{M} is said to be a functor of \mathcal{R} -modules if we have morphisms of functors of sets $\mathbb{M} \times \mathbb{M} \to \mathbb{M}$ and $\mathcal{R} \times \mathbb{M} \to \mathbb{M}$, so that $\mathbb{M}(S)$ is an S-module for every commutative R-algebra S. We will say that a functor of \mathcal{R} -modules \mathbb{A} is a functor of \mathcal{R} -algebra sif $\mathbb{A}(S)$ is a S-algebra with unit and S commutes with all the elements of $\mathbb{A}(S)$. If \mathbb{M} and \mathbb{N} are functors of \mathcal{R} -modules, we will denote by $\mathbb{H}om_{\mathcal{R}}(\mathbb{M}, \mathbb{N})$ the functor of \mathcal{R} -modules

 $\mathbb{H}om_{\mathscr{R}}(\mathbb{M},\mathbb{N})(S) := \mathrm{H}om_{\mathscr{S}}(\mathbb{M}_{|S},\mathbb{N}_{|S}),$

where \mathbb{M}_{IS} is the functor \mathbb{M} restricted to the category of commutative *S*-algebras.

The functor $\mathbb{M}^* := \mathbb{H}om_{\mathcal{R}}(\mathbb{M}, \mathcal{R})$ is said to be a dual functor.

Proposition 1.1. If \mathbb{M}^* is a dual functor of \mathcal{R} -modules and \mathbb{N} is a functor of \mathcal{R} -modules, then $\mathbb{H}om_{\mathcal{R}}(\mathbb{N}, \mathbb{M}^*)$ is a dual functor of \mathcal{R} -modules.

Proof. Actually, $\mathbb{H}om_{\mathcal{R}}(\mathbb{N}, \mathbb{M}^*) = \mathbb{H}om_{\mathcal{R}}(\mathbb{N} \otimes \mathbb{M}, \mathcal{R})$. \Box

Given an *R*-module *M*, the functor of \mathcal{R} -modules \mathcal{M} defined by $\mathcal{M}(S) := M \otimes_R S$ is called a quasi-coherent \mathcal{R} -module. The functors $M \rightsquigarrow \mathcal{M}, \mathcal{M} \rightsquigarrow \mathcal{M}(R) = M$ establish an equivalence between the category of \mathcal{R} -modules and the category of quasi-coherent \mathcal{R} -modules [1, 1.12]. In particular, $\operatorname{Hom}_{\mathcal{R}}(\mathcal{M}, \mathcal{M}') = \operatorname{Hom}_{\mathcal{R}}(\mathcal{M}, \mathcal{M}')$. The notion of quasi-coherent \mathcal{R} -module is stable under base change $R \rightarrow S$, that is, $\mathcal{M}_{|S}$ is equal to the quasi-coherent \mathscr{E} -module associated with the *S*-module $M \otimes_R S$.

The functor $\mathcal{M}^* = \mathbb{H}om_{\mathcal{R}}(\mathcal{M}, \mathcal{R})$ is called an \mathcal{R} -module scheme. Specifically, $\mathcal{M}^*(S) = Hom_S(\mathcal{M} \otimes_R S, S) = Hom_R(\mathcal{M}, S)$. It is easy to check that given two functors of \mathcal{R} -modules \mathbb{M} and \mathbb{M}' , then

$$(\mathbb{H}om_{\mathcal{R}}(\mathbb{M},\mathbb{M}'))_{|S} = \mathbb{H}om_{\mathscr{S}}(\mathbb{M}_{|S},\mathbb{M}'_{|S}).$$

In particular, $(\mathcal{M}^*)_{|S}$ is an \mathscr{S} -module scheme. An \mathscr{R} -module scheme \mathcal{M}^* is a quasi-coherent \mathscr{R} -module if and only if M is a projective R-module of finite type [2]. A basic result says that quasi-coherent modules and module schemes are reflexive, that is,

 $\mathcal{M}^{**}=\mathcal{M}$

[1, 1.10]; thus, the functors $\mathcal{M} \rightsquigarrow \mathcal{M}^*$ and $\mathcal{M}^* \rightsquigarrow \mathcal{M}^{**} = \mathcal{M}$ establish an equivalence between the category of quasi-coherent modules and the category of module schemes. \mathcal{M} and \mathcal{M}^* are examples of dual functors.

Let $X = \operatorname{Spec} A$ be an affine *R*-scheme and let X^{\cdot} be the functor of points of *X*, that is, the functor of sets

 $X^{\cdot}(S) = \operatorname{Hom}_{R\operatorname{-sch}}(\operatorname{Spec} S, X) = \operatorname{Hom}_{R\operatorname{-alg}}(A, S),$

"points of X with values in S". Given another affine scheme Y = Spec B, by Yoneda's lemma

 $\operatorname{Hom}_{R-\operatorname{sch}}(X, Y) = \operatorname{Hom}(X^{\cdot}, Y^{\cdot}),$

and $X^{\cdot} \simeq Y^{\cdot}$ if and only if $X \simeq Y$. We will sometimes denote $X^{\cdot} = X$.

Let $R \to S$ be a morphism of rings and let $X_S = \text{Spec}(A \otimes_R S)$, then $(X^{\cdot})_{|S} = (X_S)^{\cdot}$. Observe that $\text{Hom}(X^{\cdot}, \mathcal{R}) = \text{Hom}(X^{\cdot}, (\text{Spec } R[X])^{\cdot}) = \text{Hom}_{R-alg}(R[X], A) = A$, then $\mathbb{H}om(X^{\cdot}, \mathcal{R}) = A$. There is a natural morphism $X^{\cdot} \to A^*$, because $X^{\cdot}(S) = \text{Hom}_{R-alg}(A, S) \subset \text{Hom}_R(A, S) = A^*(S)$.

Proposition 1.2. Let \mathbb{M}^* be a dual functor of \mathcal{R} -modules, any morphism of functors $X^{\cdot} \to \mathbb{M}^*$ factorizes via a unique morphism of functors of \mathcal{R} -modules $\mathcal{A}^* \to \mathbb{M}^*$.

Proof. It is a consequence of the equalities

$$\begin{split} \operatorname{Hom}(X^{\cdot}, \mathbb{M}^*) &= \operatorname{Hom}_{\mathcal{R}}(\mathbb{M}, \operatorname{Hom}(X^{\cdot}, \mathcal{R})) = \operatorname{Hom}_{\mathcal{R}}(\mathbb{M}, \mathcal{A}) = \operatorname{Hom}_{\mathcal{R}}(\mathbb{M} \otimes_{\mathcal{R}} \mathcal{A}^*, \mathcal{R}) \\ &= \operatorname{Hom}_{\mathcal{R}}(\mathcal{A}^*, \mathbb{M}^*). \quad \Box \end{split}$$

Let G = Spec A be an affine R-monoid scheme, that is, G' is a functor of monoids. \mathcal{A}^* is an \mathcal{R} -algebra scheme, that is, besides from being an \mathcal{R} -module scheme it is a functor of \mathcal{R} -algebras. The natural morphism $G' \to \mathcal{A}^*$ is a morphism of functors of monoids. By [1, 5.3], given any dual functor of algebras \mathbb{B}^* (that is, a dual functor of \mathcal{R} -modules which is a functor of \mathcal{R} -algebras), then any morphism of functors of monoids $G' \to \mathbb{B}^*$ factorizes via a unique morphism of functors of \mathcal{R} -algebras $\mathcal{A}^* \to \mathbb{B}^*$.

Definition 1.3. A functor \mathbb{M} of (left) *G*-modules is a functor of \mathcal{R} -modules endowed with an action of *G*, i.e., a morphism of functors of monoids $G^{\cdot} \to \mathbb{E}nd_{\mathcal{R}}(\mathbb{M})$. A functor \mathbb{M} of (left) \mathcal{A}^* -modules is a functor of \mathcal{R} -modules endowed with a morphism of functors of \mathcal{R} -algebras $\mathcal{A}^* \to \mathbb{E}nd_{\mathcal{R}}(\mathbb{M})$.

The functors $M \rightsquigarrow \mathcal{M}, \mathcal{M} \rightsquigarrow \mathcal{M}(R) = M$ establish an equivalence between the category of rational *G*-modules and the category of quasi-coherent *G*-modules. The category of quasi-coherent *G*-modules is equal to the category of quasi-coherent \mathcal{A}^* -modules by [1, 5.5].

Notation 1.4. For abbreviation, we sometimes use $g \in G$ or $m \in M$ to denote $g \in G(S)$ or $m \in M(S)$ respectively. Given $m \in M(S)$ and a morphism of \mathcal{R} -algebras $S \to T$, we still denote by m its image by the morphism $M(S) \to M(T)$.

Definition 1.5. Let \mathbb{M} be a functor of *G*-modules. We define

 $\mathbb{M}(S)^G := \{m \in \mathbb{M}(S), \text{ such that } g \cdot m = m \text{ for every } g \in G\}^1$

and we denote by \mathbb{M}^{G} the subfunctor of \mathcal{R} -modules of \mathbb{M} defined by $\mathbb{M}^{G}(S) := \mathbb{M}(S)^{G}$. We will say that $m \in \mathbb{M}$ is left *G*-invariant if $m \in \mathbb{M}^{G}$.

If \mathbb{M} is a functor of *G*-modules (resp. of right *G*-modules), then \mathbb{M}^* is a functor of right *G*-modules: $w * g := w(g \cdot -)$, for every $w \in \mathbb{M}^*$ and $g \in G$ (resp. of left *G*-modules: $g * w := w(- \cdot g)$). If \mathbb{M}_1 and \mathbb{M}_2 are two functors of *G*-modules and *G* is an affine *R*-group scheme, then $\mathbb{H}om_{\mathcal{R}}(\mathbb{M}_1, \mathbb{M}_2)$ is a functor of *G*-modules, with the natural action $g * f := g \cdot f(g^{-1} \cdot -)$, and it holds that

 $\mathbb{H}om_{\mathcal{R}}(\mathbb{M}_1, \mathbb{M}_2)^G = \mathbb{H}om_G(\mathbb{M}_1, \mathbb{M}_2).$

Let \mathbb{M} be a functor of *G*-modules, then $(\mathbb{M}^G)_{|S} = (\mathbb{M}_{|S})^{G_S}$.

2. Invariant exact monoids

From now on, through out this paper $G = \operatorname{Spec} A$ is an affine *R*-monoid scheme.

Theorem 2.1. The category of dual functors of *G*-modules is equivalent to the category of dual functors of A^* -modules.

1960

¹ More precisely, $g \cdot m = m$ for every $g \in G(T)$ and every morphism of \mathcal{R} -algebras $S \to T$.

Proof. Let \mathbb{M} be a dual functor of \mathcal{R} -modules. By Proposition 1.1, $\mathbb{E}nd_{\mathcal{R}}(\mathbb{M})$ is a dual functor of \mathcal{R} -algebras. Hence,

 $\operatorname{Hom}_{mon}(G^{\cdot}, \operatorname{\mathbb{E}nd}_{\mathcal{R}}(\mathbb{M})) = \operatorname{Hom}_{\mathcal{R}-alg}(\mathcal{A}^*, \operatorname{\mathbb{E}nd}_{\mathcal{R}}(\mathbb{M})),$

and giving a structure of functor of G-modules on \mathbb{M} is equivalent to giving a structure of functor of \mathcal{A}^* -modules on \mathbb{M} .

Given two dual functors of *G*-modules \mathbb{M} and \mathbb{M}' , it holds $\text{Hom}_G(\mathbb{M}, \mathbb{M}') = \text{Hom}_{\mathcal{A}^*}(\mathbb{M}, \mathbb{M}')$: observe that given a morphism of functors of \mathcal{R} -modules $L : \mathbb{M} \to \mathbb{M}'$ and $m \in \mathbb{M}$, the morphism $L_1 : G \to \mathbb{M}', L_1(g) := L(gm) - gL(m)$ is null if and only if the morphism $L_2 : \mathcal{A}^* \to \mathbb{M}', L_2(a) := L(am) - aL(m)$ is null. \Box

Definition 2.2. An affine *R*-monoid scheme $G = \operatorname{Spec} A$ is said to be left invariant exact if for any exact sequence (in the category of functors of \mathcal{R} -modules) of dual functors of left *G*-modules

 $0 \to \mathbb{M}_1 \to \mathbb{M}_2 \to \mathbb{M}_3 \to 0$

the sequence

 $0 \to \mathbb{M}_1^G \to \mathbb{M}_2^G \to \mathbb{M}_3^G \to 0$

is exact. G is said to be invariant exact if it is left and right invariant exact.

If *G* is an affine *R*-group scheme and it is left invariant exact, then it is right invariant exact since every functor of right *G*-modules \mathbb{M} can be regarded as a functor of left *G*-modules: $g \cdot m := m \cdot g^{-1}$.

Let Θ : $G \to \mathcal{R}, g \mapsto 1$ be the trivial character, which induces the trivial representation Θ : $\mathcal{A}^* \to \mathcal{R}$. Observe that $\Theta = 1 \in A$.

Theorem 2.3. An affine R-monoid scheme G = Spec A is invariant exact if and only if $A^* = \mathcal{R} \times \mathcal{B}^*$ as \mathcal{R} -algebra schemes, where the projection $A^* \to \mathcal{R}$ is Θ .

Proof. Let us assume that *G* is invariant exact. The projection $\Theta : A^* \to \mathcal{R}$ is a morphism of left and right *G*-modules (or A^* -modules). Taking left invariants one obtains an epimorphism $\Theta : A^{*G} \to \mathcal{R}$. Let $w_l \in A^*$ be left *G*-invariant such that $\Theta(w_l) = 1$. Likewise, taking right invariants let $w_r \in A^*$ be right *G*-invariant such that $\Theta(w_r) = 1$. Then $w = w_l \cdot w_r \in A^*$ is left and right *G*-invariant and $\Theta(w) = 1$. Then, $w' \cdot w = w'(1) \cdot w = w \cdot w'$, because $g \cdot w = w = w \cdot g$. Hence, w is idempotent. Therefore, one finds a decomposition as a product of \mathcal{R} -algebra schemes $A^* = w \cdot A^* \oplus (1-w) \cdot A^*$; moreover, the morphism $\mathcal{R} \to A^*, \lambda \mapsto \lambda \cdot w$, is a section of Θ , $w \cdot A^* = \mathcal{R} \cdot w$ and Θ vanishes on $(1 - w) \cdot A^*$.

Let us assume now that $A^* = \mathcal{R} \times \mathcal{B}^*$ and $\pi_1 = \Theta$. Let $w = (1, 0) \in \mathcal{R} \times \mathcal{B}^* = A^*$ and let us prove that *G* is invariant exact.

For any dual functor of *G*-modules \mathbb{M} , let us see that $w \cdot \mathbb{M} = \mathbb{M}^{C}$. One sees that $w \cdot \mathbb{M} \subseteq \mathbb{M}^{C}$, because $g \cdot (w \cdot m) = (g \cdot w) \cdot m = w \cdot m$, for every $g \in G$ and every $m \in \mathbb{M}$. Conversely, $\mathbb{M}^{G} \subseteq w \cdot \mathbb{M}$: Let $m \in \mathbb{M}$ be *G*-invariant. The morphism $G \to \mathbb{M}$, $g \mapsto g \cdot m = m$, extends to a unique morphism $\mathcal{A}^{*} \to \mathbb{M}$. The uniqueness implies that $w' \cdot m = w'(1) \cdot m$ and then $m = w \cdot m \in w \cdot \mathbb{M}$.

Taking invariants is a left exact functor. If $\mathbb{M}_2 \to \mathbb{M}_3$ is a surjective morphism, then the morphism $\mathbb{M}_2^G \to \mathbb{M}_3^G$ is surjective because so is the morphism $\mathbb{M}_2^G = w \cdot \mathbb{M}_2 \to w \cdot \mathbb{M}_3 = \mathbb{M}_3^G$. \Box

Remark 2.4. If a quasi-coherent \mathcal{R} -module \mathcal{M} is isomorphic to a direct product $\mathbb{M} \times \mathbb{N}$ of functors of \mathcal{R} -modules, then \mathbb{M} and \mathbb{N} are quasi-coherent (specifically, they are the quasi-coherent modules associated with the modules $\mathbb{M}(R)$ and $\mathbb{N}(R)$). Dually, if \mathcal{M}^* is isomorphic to a direct product $\mathbb{M} \times \mathbb{N}$ of functors of \mathcal{R} -modules, then \mathbb{M} and \mathbb{N} are \mathcal{R} -module schemes. If $\mathcal{A}^* = \mathbb{B} \times \mathbb{C}$ as functors of \mathcal{R} -algebras, then \mathbb{B} and \mathbb{C} are \mathcal{R} -algebra schemes.

Let $\chi : G \to G_m$ be a multiplicative character and let $\chi : A^* \to \mathcal{R}$ be the induced morphism of functors of \mathcal{R} -algebras.

Corollary 2.5. An affine *R*-monoid scheme G = Spec A is invariant exact if and only if $A^* = \mathcal{R} \times \mathcal{B}^*$ as \mathcal{R} -algebra schemes, where the projection $A^* \to \mathcal{R}$ is χ .

Proof. The character χ induces the morphism $G \to A^*, g \mapsto \chi(g) \cdot g$, which induces a morphism of \mathcal{R} -algebra schemes $\varphi \colon A^* \to A^*$. This last morphism is an isomorphism because its inverse morphism is the morphism induced by χ^{-1} . The diagram

is commutative. Hence, via φ , " $A^* = \mathcal{R} \times \mathcal{B}^*$ as \mathcal{R} -algebra schemes, where the projection $A^* \to \mathcal{R}$ is Θ " if and only if " $A^* = \mathcal{R} \times \mathcal{B}'^*$ as \mathcal{R} -algebra schemes, where the projection $A^* \to \mathcal{R}$ is χ ". Then, Theorem 2.3 proves this corollary. \Box

Corollary 2.6. An affine R-group scheme G = Spec A is invariant exact if and only if $A^* = \mathcal{R} \times \mathcal{B}^*$ as \mathcal{R} -algebra schemes.

Proof. Assume that $A^* = \mathcal{R} \times \mathcal{B}^*$ and let $G \hookrightarrow A^*, g \mapsto g$ be the natural morphism. The composite morphism

 $G \hookrightarrow \mathcal{A}^* = \mathcal{R} \times \mathcal{B}^* \xrightarrow{\pi_1} \mathcal{R}$

is a multiplicative character and π_1 is the morphism induced by this character. Now it is easy to prove that this corollary is a consequence of Corollary 2.5. \Box

If M is an R-module and the natural morphism $M \to M^{**}$ is injective, for example if M is a projective module, then

 $\operatorname{Hom}_{\mathcal{R}}(\mathcal{M}^*, {\mathcal{M}'}^*) = \operatorname{Hom}_{\mathcal{R}}(\mathcal{M}', \mathcal{M}) = \operatorname{Hom}_{\mathcal{R}}(M', M) \subseteq \operatorname{Hom}_{\mathcal{R}}(M^*, M'^*).$

Remark 2.7. Assume that *A* is a projective *R*-module. If $A^* = C_1 \times C_2$ as *R*-algebras, then the morphisms $A^* \to A^*$, $w \mapsto (1, 0) \cdot w - w \cdot (1, 0), (0, 1) \cdot w - w \cdot (0, 1)$ are null and $A^* = A^* \cdot (1, 0) \times A^* \cdot (0, 1)$ as functors of *R*-algebras. Then, an affine *R*-group scheme *G* = Spec *A* is invariant exact if and only if $A^* = R \times C$ as *R*-algebras.

Theorem 2.8. An affine R-group scheme G = Spec A is invariant exact if and only if there exists a left G-invariant 1-form $w \in A^*$ such that w(1) = 1. Moreover, w is unique, it is right G-invariant and *(w) = w (where * is the morphism induced on A^* by the morphism $G \to G, g \mapsto g^{-1}$).

Proof. If w_l is left invariant and $w_l(1) = 1$, then $w := w_l$ is right invariant, $w := w_l \cdot w_r$ is left and right invariant and w(1) = 1. Now we can proceed as in Theorem 2.3 in order to prove that *G* is invariant exact.

Let us only prove the last statement. We follow the notation used in the proof of the last theorem. We know that $A^{*G} = (1, 0) \cdot A^* = \mathcal{R} \times 0$, then $(1, 0) : A \to R$ is the only left *G*-invariant linear map $w : A \to R$ such that (1, 0)(1) = 1. As well, (1, 0) is right invariant. Finally, *(1, 0) is left invariant and (*(1, 0))(1) = (1, 0)(1) = 1, then *(1, 0) = (1, 0). \Box

Remark 2.9. This result can be found in [3,7] for *R* being a field and *G* being a linearly reductive algebraic group (that is, every rational *G*-module *M* is direct sum of irreducible *G*-modules). If *R* is an algebraically closed field of characteristic zero, then *G* is a reductive group if and only if *G* is linearly reductive, by a theorem of H. Weyl. If *R* is a field of positive characteristic, then the monoid of matrices $M_n(R)$ is not a linearly reductive monoid (there exists rational representations of $M_n(R)$ not completely reducible); however, $M_n(R)$ is invariant exact (observe that given $0 \in M_n(R)$ and an $M_n(R)$ -module \mathbb{M} , then $0 \cdot \mathbb{M} = \mathbb{M}^{M_n(R)}$).

In the proof of Theorem 2.3, we have also proved Theorems 2.10 and 2.12.

Theorem 2.10. An affine *R*-monoid scheme G = Spec A is invariant exact if and only if there exists a left and right *G*-invariant 1-form $w \in A^*$ such that w(1) = 1.

Definition 2.11. Let G = Spec A be an invariant exact affine *R*-monoid scheme. The only 1-form $w_G \in A^*$ that is left and right *G*-invariant and such that $w_G(1) = 1$ is called the invariant integral on *G* (influenced by the theory of compact Lie groups).

Theorem 2.12. An affine R-group scheme G =Spec A is invariant exact if and only if for every exact sequence (in the category of functors of \mathcal{R} -modules) of G-module schemes

 $0
ightarrow \mathcal{M}_1^*
ightarrow \mathcal{M}_2^*
ightarrow \mathcal{M}_3^*
ightarrow 0$

the sequence

 $0
ightarrow \mathcal{M}_1^{*G}
ightarrow \mathcal{M}_2^{*G}
ightarrow \mathcal{M}_3^{*G}
ightarrow 0$

is exact.

Theorem 2.13. Let G = Spec A be an affine R-monoid scheme. Assume that A is a projective R-module. G is invariant exact if and only if the functor "take invariants" is (left and right) exact on the category of quasi-coherent G-modules (or equivalently, the category of rational G-modules).

Proof. Assume that the functor "take invariants" is (left and right) exact on the category of quasi-coherent *G*-modules. \mathcal{A}^* is an inverse limit of quotients \mathcal{B}_i , which are coherent \mathcal{R} -algebras by [1, 4.12]. It can be assumed that the morphism $\Theta: \mathcal{A}^* \to \mathcal{R}$ factorizes via \mathcal{B}_i for all *i*. Observe that \mathcal{B}_i are (left and right) \mathcal{A}^* -modules, then they are *G*-modules. Now, as in Theorem 2.10, we can prove that $\mathcal{B}_i = \mathcal{R} \times \mathcal{B}'_i$ as coherent \mathcal{R} -algebras (where the projection onto the first factor is Θ). Then, taking inverse limit $\mathcal{A}^* = \mathcal{R} \times \mathcal{B}^*$ and, by Theorem 2.3, *G* is invariant exact. \Box

3. Reynolds operator on separated functors

Let \mathbb{M} be a functor of \mathcal{R} -modules and let \mathbb{K} be the kernel of the natural morphism $\mathbb{M} \to \mathbb{M}^{**}$. One has that $\mathbb{K}(S) = \{m \in \mathbb{M}(S) : w(m) = 0, \text{ for every } w \in \mathbb{M}^{*}(T) \text{ and every morphism of } R\text{-algebras } S \to T\}$. Moreover, $(\mathbb{M}/\mathbb{K})^{*} = \mathbb{M}^{*}$ (then $(\mathbb{M}/\mathbb{K})^{**} = \mathbb{M}^{**}$) and the morphism $\mathbb{M}/\mathbb{K} \to (\mathbb{M}/\mathbb{K})^{**}$ is injective.

Definition 3.1. We will say that \mathbb{M} is a separated functor of \mathcal{R} -modules if the morphism $\mathbb{M} \to \mathbb{M}^{**}$ is injective, that is, $m \in \mathbb{M}$ is null if and only if w(m) = 0 for every $w \in \mathbb{M}^*$.

Dual functors of \mathcal{R} -modules are separated: given $0 \neq m \in \mathbb{M} = \mathbb{N}^*$ there exists $n \in \mathbb{N}$ such that $m(n) \neq 0$; if \tilde{n} is the image of n by the morphism $\mathbb{N} \to \mathbb{N}^{**} = \mathbb{M}^*$, then $\tilde{n}(m) = m(n) \neq 0$. Every subfunctor of \mathcal{R} -modules of a separated functor of \mathcal{R} -modules is separated.

Proposition 3.2. Let G = Spec A be an invariant exact *R*-monoid and let $w_G \in A^*$ be the invariant integral on *G*. Let \mathbb{M} be a separated functor of A^* -modules. It holds that:

(1)
$$\mathbb{M}^G = w_G \cdot \mathbb{M}$$
.

(2) \mathbb{M} splits uniquely as a direct sum of \mathbb{M}^{G} and another subfunctor of G-modules, explicitly

$$\mathbb{M} = w_G \cdot \mathbb{M} \oplus (1 - w_G) \cdot \mathbb{M}.$$

The morphism $\mathbb{M} \to \mathbb{M}^{G}$, $m \mapsto w_{G} \cdot m$ will be called the Reynolds operator of \mathbb{M} .

- **Proof.** (1) One deduces that $w_G \cdot \mathbb{M} \subseteq \mathbb{M}^G$, because $g \cdot (w_G \cdot m) = (g \cdot w_G) \cdot m = w_G \cdot m$ for every $g \in G$ and every $m \in \mathbb{M}$. Conversely, let us see that $\mathbb{M}^G \subseteq w_G \cdot \mathbb{M}$. Let $m \in \mathbb{M}^G$. The morphism $G \to \mathbb{M} \hookrightarrow \mathbb{M}^{**}$, $g \mapsto g \cdot m = m$, extends to a unique morphism $\mathcal{A}^* \to \mathbb{M}^{**}$. The uniqueness implies that $w' \cdot m = w'(1) \cdot m$ and then $m = w_G \cdot m \in w_G \cdot \mathbb{M}$.
- (2) Since $A^* = w_G \cdot A^* \oplus (1 w_G) \cdot A^*$, then

$$\mathbb{M} = \mathcal{A}^* \otimes_{\mathcal{A}^*} \mathbb{M} = w_G \cdot \mathbb{M} \oplus (1 - w_G) \cdot \mathbb{M}.$$

Let $\mathbb{M} = \mathbb{M}^G \oplus \mathbb{N}$ be an isomorphism of *G*-modules. The *G*-module structure of \mathbb{N} extends to an \mathcal{A}^* -module structure, because $\mathbb{N} = \mathbb{M}/\mathbb{M}^G$. Moreover, \mathbb{N} is separated because it is a subfunctor of \mathcal{R} -modules of \mathbb{M} . Now, every morphism of *G*-modules between separated \mathcal{A}^* -modules is a morphism of \mathcal{A}^* -modules, because the morphism between the double duals is of \mathcal{A}^* -modules by Theorem 2.1. Thus, multiplying by w_G one concludes that $w_G \cdot \mathbb{M} = \mathbb{M}^G \oplus w_G \cdot \mathbb{N}$; hence, $w_G \cdot \mathbb{N} = 0$ and $(1 - w_G) \cdot \mathbb{M} = (1 - w_G) \cdot \mathbb{N} = \mathbb{N}$. \Box

Proposition 3.3. Let G = Spec A be an invariant exact affine R-group scheme and let \mathbb{M} and \mathbb{N} be dual functors of G-modules. If $\pi : \mathbb{M} \to \mathbb{N}$ is an epimorphism of functors of G-modules and $s : \mathbb{N} \to \mathbb{M}$ is a section of functors of \mathcal{R} -modules of π , then $w_G \cdot s$ is a section of functors of G-modules of π .

Proof. Let us consider the epimorphism of functors of *G*-modules (then of A^* -modules)

$$\pi_*: \mathbb{H}om_{\mathcal{R}}(\mathbb{N}, \mathbb{M}) \to \mathbb{H}om_{\mathcal{R}}(\mathbb{N}, \mathbb{N}), f \mapsto \pi \circ f.$$

Then, $\pi \circ (w_G \cdot s) = \pi_*(w_G \cdot s) = w_G \cdot \pi_*(s) = w_G \cdot Id = Id.$

Likewise, it can be proved that if \mathbb{M} and \mathbb{N} are functors of *G*-modules, \mathbb{M} is a dual functor, $i : \mathbb{M} \to \mathbb{N}$ is an injective morphism of *G*-modules and *r* is a retract of functors *R*-modules of *i*, then $w_G \cdot r$ is a retract of functors of *G*-modules of *i*.

Remark 3.4. We shall say a rational *G*-module *M* is simple if it does not contain any *G*-submodule $M' \subsetneq M$, such that M' is a direct summand of *M* as an *R*-module, this last condition is equivalent to the morphism of functors of \mathcal{R} -modules $\mathcal{M}^* \to \mathcal{M}'^*$ being surjective (see the paragraph previous to [1, 1.14]). If *G* is an invariant exact affine *R*-group scheme, *M* is a rational *G*-module and it is a noetherian *R*-module, then it is easy to prove, using the previous proposition, that *M* is a direct sum of simple *G*-modules.

Example 3.5. Let us give the proof of the famous *Finiteness Theorem of Hilbert*, [6], for its simplicity: "Let *k* be a field, let *G* be a linearly reductive affine *k*-group scheme and let us consider an operation of *G* over an algebraic variety X = Spec A. Then $X / \sim := \text{Spec } A^G$ is an algebraic variety".

Proof. Let ξ_1, \ldots, ξ_m be a system of generators of the *k*-algebra *A*. Let *V* be a finite dimensional *G*-submodule of *A* which contains ξ_1, \ldots, ξ_m . The natural morphism $S^{\cdot}V \to A$ is surjective. We have to prove that A^G is an algebra of finite type. As *G* is invariant exact, it is sufficient to prove that $(S^{\cdot}V)^G = (k[x_1, \ldots, x_n])^G$ is a *k*-algebra of finite type.

is invariant exact, it is sufficient to prove that $(S \cdot V)^G = (k[x_1, \ldots, x_n])^G$ is a *k*-algebra of finite type. Let $I \subset k[x_1, \ldots, x_n]$ be the ideal generated by $(x_1, \ldots, x_n)^G$. Let $f_1, \ldots, f_r \in (x_1, \ldots, x_n)^G$ be a finite system of generators of *I*. We can assume f_i are homogeneous. Let us prove that $k[x_1, \ldots, x_n]^G = k[f_1, \ldots, f_r]$. Given a homogeneous $h \in k[x_1, \ldots, x_n]^G$, we have to prove that $h \in k[f_1, \ldots, f_r]$. We are going to proceed by induction on the degree of *h*. If dg h = 0, then $h \in k \subseteq k[f_1, \ldots, f_r]$. Let dg h = d > 0. We can write $h = \sum_{i=1}^r a_i \cdot f_i$, where $a_i \in k[x_1, \ldots, x_n]$ are homogeneous of degree $d - dg(f_i)$ (which are less than *d*). Then

$$h = w_G \cdot h = \sum_{i=1}^r w_G \cdot (a_i \cdot f_i) \stackrel{*}{=} \sum_{i=1}^r (w_G \cdot a_i) \cdot f_i.$$

(Observe in $\stackrel{*}{=}$ that $g \cdot (a_i \cdot f_i) = (g \cdot a_i) \cdot (g \cdot f_i) = (g \cdot a_i) \cdot f_i$, then $w \cdot (a_i \cdot f_i) = (w \cdot a_i) \cdot f_i$ for all $w \in A^*$). By the induction hypothesis $w_G \cdot a_i \in k[f_1, \ldots, f_r]$ and therefore $h \in k[f_1, \ldots, f_r]$. \Box

Let us see more examples where this theory can be applied.

Let $G = \operatorname{Spec} A$ be an affine *R*-group scheme and let *B* be an *R*-algebra.

Definition 3.6. We say that *B* is a *G*-algebra if *G* acts on *B* by endomorphisms of *R*-algebras, that is, there exists a morphism of monoids $G \to \mathbb{E}nd_{\mathcal{R}-alg}(\mathcal{B})$.

We will say that a functor of \mathcal{R} -modules \mathbb{M} is a functor of \mathcal{B} -modules if there exists a morphism of functors of \mathcal{R} -algebras $\mathcal{B} \to \mathbb{E}nd_{\mathcal{R}}(\mathbb{M})$.

Definition 3.7. Let *B* be a *G*-algebra and \mathbb{M} a functor of \mathcal{B} -modules. We say that \mathbb{M} is a $\mathcal{B}G$ -module if it has a *G*-module structure which is compatible with the \mathcal{B} -module structure, that is,

$$g(b \cdot m) = g(b) \cdot g(m)$$

for every $g \in G$, $b \in \mathcal{B}$ and $m \in \mathbb{M}$.

If \mathbb{M} and \mathbb{N} are $\mathcal{B}G$ -modules, then it is easy to check that $\mathbb{H}om_{\mathcal{B}}(\mathbb{M}, \mathbb{N})$ is a subfunctor of G-modules of $\mathbb{H}om_{\mathcal{R}}(\mathbb{M}, \mathbb{N})$ and it coincides with the kernel of the morphism of G-modules

$$\begin{array}{cccc} \mathbb{H}om_{\mathscr{R}}(\mathbb{M},\mathbb{N}) & \stackrel{\varphi}{\to} & \mathbb{H}om_{\mathscr{R}}(\mathscr{B}\otimes_{\mathscr{R}}\mathbb{M},\mathbb{N}), \\ L & \mapsto & L_1 - L_2 \end{array}$$

where $L_1(b \otimes m) := L(b \cdot m)$ and $L_2(b \otimes m) := b \cdot L(m)$. Therefore, if \mathbb{N} is a dual functor as well, then $\mathbb{H}om_{\mathscr{B}}(\mathbb{M}, \mathbb{N})$ is an \mathscr{A}^* -module. Moreover, $\mathbb{H}om_{\mathscr{B}}(\mathbb{M}, \mathbb{N})$ is separated because it is an *R*-submodule of $\mathbb{H}om_{\mathscr{R}}(\mathbb{M}, \mathbb{N})$, and this latter is separated because it is a dual functor. Hence, if $G = \operatorname{Spec} A$ is an invariant exact *R*-group scheme, $\mathbb{H}om_{\mathscr{B}}(\mathbb{M}, \mathbb{N})^G = w_G \cdot \mathbb{H}om_{\mathscr{B}}(\mathbb{M}, \mathbb{N})$. We have proved the following proposition.

Proposition 3.8. Let \mathbb{N} be a dual functor of $\mathcal{B}G$ -modules and let \mathbb{M} be a functor of $\mathcal{B}G$ -modules. Then,

(1) $\operatorname{Hom}_{\mathcal{B}}(\mathbb{M}, \mathbb{N})$ is a separated functor of \mathcal{A}^* -modules.

(2) If $G = \operatorname{Spec} A$ is an invariant exact affine R-group scheme, then

 $\operatorname{Hom}_{\mathscr{B}}(\mathbb{M},\mathbb{N})^{G} = w_{G} \cdot \operatorname{Hom}_{\mathscr{B}}(\mathbb{M},\mathbb{N})$

and $w_{G} \colon \mathbb{H}om_{\mathscr{B}}(\mathbb{M}, \mathbb{N}) \to \mathbb{H}om_{\mathscr{B}}(\mathbb{M}, \mathbb{N})^{G}$ is the Reynolds operator.

4. Reynolds operator on functors

Let us generalize the Reynolds operator to all functors of *G*-modules.

Let us assume that $G = \operatorname{Spec} A$ is an invariant exact monoid.

Given a dual functor of G-modules \mathbb{M} , the dual morphism of $\mathbb{M}^G \hookrightarrow \mathbb{M}$ is the Reynolds operator of \mathbb{M}^* .

Let \mathbb{N} be a separated functor of *G*-modules. Let $\mathbb{N}_1 = \mathbb{N} \cap (1 - w_G) \cdot \mathbb{N}^{**}$. Then $\mathbb{N}_1 = \{n \in \mathbb{N} : w_G \cdot n = 0\}$, since $(1 - w_G) \cdot \mathbb{N}^{**} = \{n' \in \mathbb{N}^{**} : w_G \cdot n' = 0\}$. One deduces that $\mathbb{N}_1^G = \mathbb{N}_1 \cap \mathbb{N}^{**G} = 0$ and $(\mathbb{N}/\mathbb{N}_1)^G = \mathbb{N}/\mathbb{N}_1$, because \mathbb{N}/\mathbb{N}_1 injects into $\mathbb{N}^{**}/(1 - w_G) \cdot \mathbb{N}^{**} = \mathbb{N}^{**G}$. Moreover, $(\mathbb{N}/\mathbb{N}_1)^* = \mathbb{N}^{*G} : \mathbb{N}^{*G} = \mathbb{N}^* \cdot w_G$ vanishes on \mathbb{N}_1 , then $\mathbb{N}^{*G} \subseteq (\mathbb{N}/\mathbb{N}_1)^*$, and $(\mathbb{N}/\mathbb{N}_1)^* \subseteq \mathbb{N}^{*G}$. Therefore, $\mathbb{N}^{**} \to (\mathbb{N}/\mathbb{N}_1)^{**}$ is the Reynolds operator of \mathbb{N}^{**} .

Theorem 4.1. Let G = Spec A be an invariant exact R-monoid, let \mathbb{N} be a functor of G-modules and let $\mathbb{N}_1 \subset \mathbb{N}$ be the subfunctor of G-modules defined by $\mathbb{N}_1 := \{n \in \mathbb{N} : w_G \cdot \tilde{n} = 0\}$, where \tilde{n} denotes the image of n by the morphism $\mathbb{N} \to \mathbb{N}^{**}$. It holds that:

(1) \mathbb{N}/\mathbb{N}_1 is the maximal separated *G*-invariant quotient of \mathbb{N} .

(2) The double dual of the morphism $\mathbb{N} \to \mathbb{N}/\mathbb{N}_1$ is the Reynolds operator $\mathbb{N}^{**} \to \mathbb{N}^{**G}$ and one has the commutative diagram

(1)

(3) If \mathbb{N} is a dual functor, then $\mathbb{N}/\mathbb{N}_1 = \mathbb{N}^G$ and the morphism $\mathbb{N} \to \mathbb{N}/\mathbb{N}_1$ is the Reynolds operator of \mathbb{N} .

Proof. (2) \mathbb{N}_1 is the kernel of the composite morphism $\mathbb{N} \to \mathbb{N}^{**} \to \mathbb{N}^{**G}$, then \mathbb{N}_1 contains the kernel \mathbb{K} of the morphism $\mathbb{N} \to \mathbb{N}^{**}$. Let $\mathbb{N}' = \mathbb{N}/\mathbb{K}$. Observe that $\mathbb{N}'^* = \mathbb{N}^*$, that \mathbb{N}' is separated, $\mathbb{N}'_1 = \mathbb{N}_1/\mathbb{K}$ and $\mathbb{N}'/\mathbb{N}'_1 = \mathbb{N}/\mathbb{N}_1$. Therefore, the diagram (1) is commutative because is commutative for $\mathbb{N} = \mathbb{N}'$. In particular, \mathbb{N}/\mathbb{N}_1 is separated.

(1) We must prove that if $\mathbb{P} \subseteq \mathbb{N}$ is a subfunctor of *G*-modules such that \mathbb{N}/\mathbb{P} is separated and *G*-invariant, then $\mathbb{N}_1 \subseteq \mathbb{P}$, i.e., \mathbb{N}/\mathbb{P} is a quotient of \mathbb{N}/\mathbb{N}_1 .

 $\mathbb{N}/(\mathbb{P} \cap \mathbb{N}_1)$ is *G*-invariant and separated functor, because the morphism $\mathbb{N}/(\mathbb{P} \cap \mathbb{N}_1) \hookrightarrow \mathbb{N}/\mathbb{N}_1 \oplus \mathbb{N}/\mathbb{P}$, $\bar{n} \mapsto (\bar{n}, \bar{n})$ is injective. It is enough to prove that $\mathbb{N}_1 = \mathbb{P} \cap \mathbb{N}_1$. Let us denote $\mathbb{P}' = \mathbb{P} \cap \mathbb{N}_1$. From the composition of injections $\mathbb{N}^{*G} = (\mathbb{N}/\mathbb{N}_1)^* \hookrightarrow (\mathbb{N}/\mathbb{P}')^* \hookrightarrow \mathbb{N}^{*G}$ one concludes that $(\mathbb{N}/\mathbb{N}_1)^* = (\mathbb{N}/\mathbb{P}')^*$. Now, the commutative diagram

implies that the morphism $\mathbb{N}/\mathbb{P}' \to \mathbb{N}/\mathbb{N}_1$ is injective; hence, $\mathbb{P}' = \mathbb{N}_1$. (3) Recall that $\mathbb{N} = w_G \cdot \mathbb{N} \oplus (1 - w_G) \cdot \mathbb{N}$, $\mathbb{N}_1 = (1 - w_G) \cdot \mathbb{N}$ and $\mathbb{N}/\mathbb{N}_1 = w_G \cdot \mathbb{N} = \mathbb{N}^G$. \Box

Let us observe that $\mathbb{N}_1^0 := \{ w \in \mathbb{N}^* : w(\mathbb{N}_1) = 0 \} = (\mathbb{N}/\mathbb{N}_1)^* = \mathbb{N}^{*G}$. On the other hand, $(\mathbb{N}^{*G})^0 := \{ n \in \mathbb{N} : \mathbb{N}^{*G}(n) = 0 \}$ = $\{ n \in \mathbb{N} : \tilde{n}(\mathbb{N}^{*G} = \mathbb{N}^* \cdot w_G) = 0 \} = \{ n \in \mathbb{N} : (w_G \cdot \tilde{n})(\mathbb{N}^*) = 0 \} = \{ n \in \mathbb{N} : w_G \cdot \tilde{n} = 0 \} = \mathbb{N}_1$.

5. Semi-invariants

Let χ : $G = \text{Spec} A \to \mathcal{R}$ be a multiplicative character and let χ : $\mathcal{A}^* \to \mathcal{R}$ be the induced morphism.

Definition 5.1. Let \mathbb{M} be a functor of *G*-modules. An element $m \in \mathbb{M}$ is said to be (left) χ -semi-invariant if $g \cdot m = \chi(g) \cdot m$ for every $g \in G$.

Definition 5.2. Let $G = \operatorname{Spec} A$ be an affine *R*-monoid scheme and let $\chi : G \to \mathcal{R}$ be a multiplicative character. We will call the 1-form $w_{\chi} \in A^*$ which is left and right χ -semi-invariant and such that $w_{\chi}(\chi) = 1$, if it exists, a χ -semi-invariant integral on *G*.

If a χ -semi-invariant integral exists, then it is unique: observe that $w \cdot w_{\chi} = w(\chi) \cdot w_{\chi}$, because $g \cdot w_{\chi} = \chi(g) \cdot w_{\chi}$ for every $g \in G$, since w_{χ} is left χ -semi-invariant. Likewise, $w_{\chi} \cdot w = w(\chi) \cdot w_{\chi}$. Given a left χ -semi-invariant $w \in A^*$ such that $w(\chi) = 1$, one concludes that $w = w_{\chi}(\chi) \cdot w = w_{\chi} \cdot w = w(\chi) \cdot w_{\chi} = w_{\chi}$.

Given a functor \mathbb{M} of *G*-modules we will define \mathbb{M}^{χ} to be the functor $\mathbb{M}^{\chi}(S) := \{m \in \mathbb{M}(S) : g \cdot m = \chi(g) \cdot m, \text{ for every } g \in G(T), \text{ and every } S\text{-algebra } T\}.$

Proposition 5.3. Let G = Spec A be an affine R-monoid scheme and let $\chi : G \to \mathcal{R}$ be a multiplicative character. $A^* = \mathcal{R} \times \mathcal{B}^*$ as functors of \mathcal{R} -algebras, where the projection onto the first factor is χ , if and only if there exists the χ -semi-invariant integral on G.

Proof. If there exists the χ -semi-invariant integral on G, w_{χ} , then $A^* = w_{\chi} \cdot A^* \times (1 - w_{\chi}) \cdot A^* = \mathcal{R} \times \mathcal{B}^*$ as functors of \mathcal{R} -algebras, where the projection onto the first factor is χ . Conversely, if $A^* = \mathcal{R} \times \mathcal{B}^*$, where the first projection $A^* \to \mathcal{R}$ is χ , then $w_{\chi} = (1, 0) \in \mathcal{R} \times \mathcal{B}^*$. \Box

By Corollary 2.5 we obtain the following theorem.

Theorem 5.4. Let *G* be an affine monoid scheme and let $\chi : G \to G_m$ be a multiplicative character. *G* is invariant exact if and only if there exists the χ -semi-invariant integral on *G*.

Likewise as in Proposition 3.2, we obtain the following result.

Proposition 5.5. Let G = Spec A be an affine *R*-monoid scheme and assume there exists the χ -semi-invariant integral on *G*, $w_{\chi} \in A^*$. Let \mathbb{M} be a separated functor of A^* -modules. It holds that:

(1) $\mathbb{M}^{\chi} = w_{\chi} \cdot \mathbb{M}.$

(2) \mathbb{M} splits uniquely as a direct sum of \mathbb{M}^{\times} and another subfunctor of *G*-modules, explicitly

 $\mathbb{M} = w_{\chi} \cdot \mathbb{M} \oplus (1 - w_{\chi}) \cdot \mathbb{M}.$

We call the morphism $\mathbb{M} \to \mathbb{M}^{\chi}$, $m \mapsto w_{\chi} \cdot m$, the Reynolds χ -operator.

Example 5.6. Let $G = \operatorname{Spec} A$ be an affine *R*-monoid scheme and let $\chi : G \to \mathcal{R}$ be a multiplicative character. An Ω -process associated with χ (see [5, 3.1]) is a nonzero linear operator $\Omega : A \to A$ such that

 $\Omega(a \cdot g) = \chi(g) \cdot (\Omega(a) \cdot g); \qquad \Omega(g \cdot a) = \chi(g) \cdot (g \cdot \Omega(a))$

for all $a \in A$ and $g \in G$. The composite morphism

 $A \xrightarrow{\Omega} A \xrightarrow{\chi} A$

is a morphism of left and right *G*-modules: $(\chi \circ \Omega)(g \cdot a) = \chi \cdot \chi(g) \cdot (g \cdot \Omega(a)) = (g \cdot \chi) \cdot (g \cdot \Omega(a)) = g \cdot (\chi \cdot \Omega(a))$

 $\operatorname{Hom}_{\operatorname{left-right} G-\operatorname{modules}}(A, A) = \operatorname{Hom}_{\operatorname{left-right} A^*-\operatorname{modules}}(A^*, A^*) = Z(A^*)$

 $(Z(A^*))$ is the center of A^* , then $\chi \cdot \circ \Omega = z \cdot$ for some $z \in Z(A^*)$. If *G* is a linearly reductive monoid and *R* is an algebraically closed field, then A^* is a semisimple algebra scheme and $A^* = \prod_{E_i \in I} \operatorname{End}_R(E_i)$ where *I* is the set of irreducible representations of *G* (up to isomorphism), by [1, 6.2, 6.8], hence $\chi \cdot \circ \Omega \in Z(A^*) = \prod_{i \in I} R$ (on the other hand, see [5, 4.4]).

of *G* (up to isomorphism), by [1, 6.2, 6.8], hence $\chi \cdot \circ \Omega \in Z(A^*) = \prod_{i \in I} R$ (on the other hand, see [5, 4.4]). Assume now that $0 \in G$ (that is an element such that $0 \cdot g = g \cdot 0 = 0$ for all $g \in G$) and that $\Omega(\chi) = 1$ (generally $\chi \cdot \Omega(\chi) = z \cdot \chi = \chi(z) \cdot \chi = \chi \cdot \chi(z), \chi(z) \in R$). The projection $w : A \to R, a \mapsto a(0)$ is left and right invariant and w(1) = 1, then *G* is an invariant exact *R*-monoid and $w = w_G$. The composite morphism $w' = w_G \circ \Omega$ is left and right χ -semi-invariant and $w'(\chi) = 1$, then $w' = w_{\chi}$. Given a rational *G*-module *M*, let us calculate the Reynolds χ -operator of *M*, that is, the morphism $M \to M, m \mapsto w_{\chi} \cdot m$ (on the other hand, see [5, 5.1]). The dual morphism of the multiplication morphism $\mathcal{M}^* \otimes \mathcal{A}^* \to \mathcal{M}^*$ is the comultiplication morphism $\mu : M \to M \otimes A$. If $\mu(m) = \sum_l m_l \otimes a_l$, then $g \cdot m = \sum_l a_l(g) \cdot m_l$, for all $g \in G$. Hence,

$$w_{\chi} \cdot m = \sum_{l} a_{l}(w_{\chi}) \cdot m_{l} = \sum_{l} w_{\chi}(a_{l}) \cdot m_{l} = \sum_{l} \Omega(a_{l})(0) \cdot m_{l}.$$

Acknowledgements

The first and the third authors were partially supported by Junta de Extremadura and FEDER funds.

References

- [1] A. Álvarez, C. Sancho, P. Sancho, Algebra schemes and their representations, J. Algebra 296 (1) (2006) 110-144.
- [2] A. Álvarez, C. Sancho, P. Sancho, Characterization of quasi-coherent modules that are module schemes, Commun. Algebra 37 (5) (2009) 1619–1621.
- [3] M. Brion, G.W. Schwarz, Théorie des invariants et géometrie des variétés quotients, in: Travaux en cours, vol. 61, Hermann, Paris, 2000.
- [4] H. Chu, S.-J. Hu, M.-C. Kang, A variant of the Reynolds operator, Proc. Amer. Math. Soc. 133 (10) (2005) 2865–2871.
- [5] W. Ferrer Santos, A. Rittatore, Generalizations of Cayley's Ω -process, Proc. Amer. Math. Soc. 135 (4) (2007) 961–968.
- [6] D. Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (4) (1890) 473–534.
- [7] C. Sancho de Salas, Grupos algebraicos y teoría de invariantes, Sociedad Matemática Mexicana, México, 2001.