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The dynamics of a tachyon attached to a Dvali, Gabadadze and Porrati (DGP) brane is investigated.
Exponential potential and inverse power law potential are explored, respectively. The quasi-attractor
behavior, for which the universe will eventually go into a phase similar to the slow-roll inflation, is
discovered in both cases of exponential potential and inverse power law potential. The equation of state
(EOS) of the virtual dark energy for a single scalar can cross the phantom divide in the branch θ = −1
for both potentials, while the EOS of the virtual dark energy for a single scalar cannot cross this divide
in the branch θ = 1.
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1. Introduction

E8 × E8 heterotic string emerges when one compacts the 11-
dim super gravity on an S1/Z2 orbifold (Horava–Witten proposal)
[1]. The behavior of the string theory in the energy region be-
low the unification scale is not sensitive to the fine structure of
the inner Calabi–Yau space, that is, the universe can be effectively
described by some 5-dim theory, in which the standard model par-
ticles are confined to the 3-brane, while the gravitation can prop-
agate in the whole spacetime. Such string-inspired phenomeno-
logical model, called brane world, has been set up and studied
extensively [2], especially in the fields of high energy physics and
cosmology. According to their behavior in different energy scales,
brane world models can be classified into two main categories.
One is “high energy theory”, that is, its phenomenology becomes
different in high energy (ultra-violet) region from general relativ-
ity (GR), but recovers to GR in low energy (infrared) region, for
example Randall–Sundrum (RS) model [3]. On the contrary, the
other type of brane world, “low energy theory”, concentrates on
the modification in low energy region. Dvali, Gabadadze and Por-
rati (DGP) model [4] is a leading model in the low-energy-theory
models, which is mainly applied to the late time universe (see,
however, [5]). Great interest has been aroused in the researches of
late time universe since the discovery of cosmic acceleration.
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The present cosmic acceleration is one of the most significant
cosmological discoveries over the last century [6]. The physical na-
ture of this acceleration remains as a mystery. Various explanations
have been proposed, such as a small positive cosmological con-
stant, quintessence, k-essence, phantom, holographic dark energy,
etc., see [7] for recent reviews with fairly complete list of refer-
ences of different models. A cosmological constant is a simple can-
didate for dark energy. However, following the more accurate data
a more dramatic result appears: the recent analysis of the type Ia
supernovae data indicates that the time varying dark energy gives
a better fit than a cosmological constant, and in particular, the
equation of state (EOS) parameter w (defined as the ratio of pres-
sure to energy density) may cross the phantom divide w = −1 [8].
Three roads to cross this divide were summarized in a recent re-
view article [9]:

(i) quintom type (two-field) model, for a review see [10],
(ii) interacting model, for example see [11], and

(iii) model in frame of new gravity, especially brane world, for ex-
ample, see [12].

Inspired by the hopeful unification theory, string/M theory, the
models in frame of modified gravity are duly noted since they offer
much more extensive possibilities for dark energy. A useful exam-
ple is that a single scalar cannot cross the phantom divide while
it can cross the divide in frame of DGP [12]. Brane world model
inherits a key geometric property of 11-dim the Horava–Witten
proposal of string/M, which requires standard model particles con-
fined to a brane, while gravity propagates freely throughout the
whole manifold. On the other hand an exotic matter with nega-
tive pressure, tachyon, coming from string/M theory also has been
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widely applied in cosmology, as inflaton in the early universe [13],
and as dark energy in the late time universe [14]. Thus, it is inter-
esting to study the dynamics of a tachyon attached to a brane.

Tachyon is a field at the top of its potential, which has a fairly
long history in particle physics. It returns with the studies of
string/M recently. It was found that the tachyon modes of open
string attached to a Dp-brane described the inherent instability of
the Dp-brane [15]. A tachyon field has negative pressure, therefore
it may be a proper candidate to drive the universe to accelerate.
Generally speaking, a tachyon is always associated to a brane. The
behavior of a tachyon in RS type brane world has been investi-
gated in [16], which is concerned with the early universe. In this
Letter, we will study the behavior of a tachyon field in DGP. We
focus on the late time evolution of the universe in the present Let-
ter. In the standard model (4-dim GR), the equation of state (EOS)
of a tachyon is always in the interval (−1,0). However, we will
show that the effective EOS of the dark energy in the tachyon-DGP
model can cross the phantom divide, which satisfies the amazing
possibility of the crossing behavior of dark energy implied by re-
cent observations.

To find an attractor solution is an important method in cosmol-
ogy, which is helpful to alleviate the coincidence problem. If there
does not exist an attractor in a system, the commonsensible lore
tells us that the orbits of the phase portrait never converge: it will
look like a turbulent flow. However, we discover the quasi-attractor
in the dynamical system without any critical point. The orbits with
different initial conditions will converge to a quasi-de Sitter evo-
lution. A useful analogy of this quasi-attractor is the slow-roll in-
flation. We find that the quasi-attractor behavior is rather robust,
which will appear in the cases of different potentials of a tachyon.

The outline of this Letter is as follows. In Section 2 we present
our set up of the model. In Section 3, we study the evolution of
this system via a dynamical system analysis. In Section 4, we con-
clude this Letter.

2. The model

Let’s start from the action of the DGP model

S = Sbulk + Sbrane, (1)

where

Sbulk =
∫

M

d5 X
√

−(5)g
1

2κ2
5

(5)R, (2)

and

Sbrane =
∫
M

d4x
√−g

[
1

κ2
5

K ± + Lbrane(gαβ,ψ)

]
. (3)

Here κ2
5 is the 5-dim gravitational constant, (5)R is the 5-dim cur-

vature scalar. xμ (μ = 0,1,2,3) are the induced 4-dim coordinates
on the brane, K ± is the trace of extrinsic curvature on either side
of the brane and Lbrane(gαβ,ψ) is the effective 4-dim Lagrangian,
which is given by a generic functional of the brane metric gαβ and
matter fields ψ on the brane.

Consider the brane Lagrangian consisting of the following terms

Lbrane = μ2

2
R + Lm + LT , (4)

where μ is 4-dimensional reduced Planck mass, R denotes the cur-
vature scalar on the brane, and LT represents the Lagrangian of
a tachyon attached to the brane, Lm stands for the Lagrangian of
other matters on the brane. Then, assuming a mirror symmetry in
the bulk, we have the Friedmann equation on the brane [17],
H2 + k

a2
= 1

3μ2

[
ρ + ρ0 + θρ0

(
1 + 2ρ

ρ0

)1/2]
, (5)

where H � ȧ/a is the Hubble parameter, a is the scale factor, k is
the spatial curvature of the three-dimensional maximally symmet-
ric space in the FRW metric on the brane, and θ = ±1 denote the
two branches of DGP model, ρ denotes the total energy density,
including dust matter and tachyon, on the brane,

ρ = ρT + ρdm. (6)

The term ρ0 relates the strength of the 5-dim gravity with respect
to the 4-dim gravity,

ρ0 = 6μ2

r2
c

, (7)

where the cross radius is defined as rc � κ2
5 μ2.

A no-go theorem shows that a single field with reasonable con-
ditions in GR cannot cross the phantom divide. We will show that
in our model only one field is enough for this crossing behavior via
the effect of the 5-dim gravity. In fact, the accelerated expansion
of the universe is a joint effect of the tachyon and the competition
between 4-dim gravity and the 5-dim gravity.

In the brane world model, the surplus geometric terms rela-
tive to the Einstein tensor play the role of the dark energy in GR
in part. However, almost all observed properties of dark energy
are obtained in frame of GR with a dark energy. To explain the
observed evolving EOS of the effective dark energy, we introduce
the concept “equivalent dark energy” or “virtual dark energy” in
the modified gravity models [9]. We derive the density of virtual
dark energy caused by the tachyon and induced gravity term by
comparing the modified Friedmann equation in the brane world
scenario with the standard Friedmann equation in general rela-
tivity. The Friedmann equation in the 4-dimensional GR can be
written as

H2 + k

a2
= 1

3μ2
(ρdm + ρde), (8)

where the first term of RHS in the above equation represents the
dust matter and the second term stands for the dark energy. Com-
paring (8) with (5), one obtains the density of virtual dark energy
of DGP,

ρde = ρT + ρ0 + θρ0

(
1 + 2ρ

ρ0

)1/2

. (9)

Since the dust matter obeys the continuity equation and the
Bianchi identity keeps valid, dark energy itself satisfies the conti-
nuity equation

dρde

dt
+ 3H(ρde + peff) = 0, (10)

where peff denotes the effective pressure of the dark energy. And
then we can express the equation of state for the dark energy as

wde = peff

ρde
= −1 − 1

3

d lnρde

d ln a
. (11)

Observing the above equation, we find that the behavior of wde

is determined by the term d lnρde
d ln a . d lnρde

d ln a = 0 (cosmological con-
stant) bounds phantom and quintessence. More intuitively, if ρde
decreases and then increases, or increases and then decreases with
the expansion of the universe, we are certain that EOS of dark en-
ergy crosses phantom divide. A more important reason why we use
the density to describe property of dark energy is that the density
is more closely related to observables, hence is more tightly con-
strained for the same number of redshift bins used [18].
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3. Dynamics of tachyon-DGP

In this section, we will analyze the dynamics of a tachyon in
the late time universe on a DGP brane with two different poten-
tials, respectively. We show that the quasi-attractor (which we will
explain in detail later) appears in both of the two cases.

For a tachyon field in a curved background, the action in LT of
(4) takes a Dirac–Born–Infeld (DBI) form,

LT = −V (T )
√

1 + X, (12)

where

X = gμν∂μT ∂ν T . (13)

One sees that a tachyon has a dimension of [length] rather than
[mass], which is different from an ordinary scalar. The equation of
motion for tachyon reads,

1

V (T )

dV (T )

dT
−

(
1√−g

∂μ
√−g

)
gμν∂ν T

+ 1

2(1 + X)
gμν∂ν T

(
∂μgαβ∂αT ∂β T + 2gαβ∂α∂μT ∂β T

)
− ∂μgμν∂ν T − gμν∂μ∂ν T = 0, (14)

which degenerates to

T̈

1 − Ṫ 2
+ 3H Ṫ + 1

V (T )

dV (T )

dT
= 0, (15)

in an FRW universe, where a dot denotes the derivative with re-
spect to time. Note that our result (14) is different from the result
in [19], which cannot degenerate to (15) in an FRW universe.

Varying the action with respect to the metric tensor we obtain
the energy momentum of the tachyon field,

T μν = −V
[

gμν(1 + X)1/2 − (1 + X)−1/2∂μT ∂ν T
]
, (16)

which reduces to

ρ = V (T )√
1 − Ṫ 2

, (17)

p = −V (T )
√

1 − Ṫ 2, (18)

in an FRW universe. Thus the (local) equation of state of tachyon
reads,

w = Ṫ 2 − 1. (19)

The reality conditions for ρ and Ṫ require 0 � Ṫ 2 � 1, which
yields,

−1 � w � 0. (20)

For a more detailed research of the evolution of the variables
in this model we write them in a dynamical system, which can be
derived from the Friedmann equation (5) and continuity equation
(10). We first define some new dimensionless variables,

x � Ṫ , (21)

y �
√

V√
3μH

, (22)

l �
√

ρdm√
3μH

, (23)

b �
√

ρ0√ . (24)

3μH
The physical meanings of these new variables are clear: x denotes
kinetic energy of the tachyon, y marks the relative strength of po-
tential energy to the Hubble parameter, l represents the relative
strength of the dust density to the Hubble parameter, and b stands
for the Hubble parameter. The exact form of the potential of a
tachyon is still under research. In the following two subsections,
we will discuss two examples of potentials, say, exponential po-
tential and inverse power law potential.

3.1. Exponential potential

The exponential potential is an important example which can
be solved exactly in the standard model for a scalar. We first study
the dynamics of a tachyon with an exponential potential,

V = V 0e−λT , (25)

where V 0 and λ are two constants. With the evolution of the uni-
verse, the tachyon rolls down, which can be described by,

x′ = 3
(
1 − x2)(−x + jb), (26)

y′ = 3

2
αy − 3

2
jbxy, (27)

l′ = 3

2
αl − 3

2
l, (28)

b′ = 3

2
αb, (29)

where

j = μλ√
3ρ0

, (30)

and

α �
[
l2 + x2 y2(1 − x2)−1/2]

×
[

1 + θ

(
1 + 2

y2(1 − x2)−1/2 + l2

b2

)−1/2]
, (31)

and a prime stands for derivation with respect to s � ln a. α has
significant physical sense in a dynamical universe. In fact it is just
the slow-roll parameter in the language of inflation,

α = − 2Ḣ

3H2
. (32)

α � 1 implies the universe enters a quasi-de Sitter phase.
In the above system we have set k = 0, which is implied either

by theoretical side (inflation in the early universe), or observational
side (CMB fluctuations [20]). One can check this system degener-
ates to a tachyon with dust matter in standard GR. Note that the 4
equations (26), (27), (28), (29) of this system are not independent.
By using the Friedmann constraint, which can be derived from the
Friedmann equation,

y2(1 − x2)−1/2 + l2 + b2

+ θb2
(

1 + 2
y2(1 − x2)−1/2 + l2

b2

)1/2

= 1, (33)

the number of the independent equations can be reduced to 3.
There are two critical points of this system satisfying x′ = y′ = l′ =
b′ = 0 appearing at

x = y = l = b = 0; (34)

x = 1, y = l = b = 0. (35)
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Fig. 1. The evolution of a tachyon on a DGP in the branch θ = 1. The different initial conditions for the curves are x(s = 0) = 0.1, x(s = 0) = 0.08, x(s = 0) = 0.05, x(s = 0) =
0.03, x(s = 0) = 0.01 from the left to the right, respectively.
It is easy the check that neither of them satisfies the Friedmann
constraint (33). So there is no de Sitter type attractor in this sys-
tem.

However, through a detailed numerical investigation, we find a
future “quasi-attractor” in this system. The physical picture is that
for a fairly large space of the initial conditions, the tachyon on a
DGP will enter such a quasi-de Sitter space, where the tachyon
rolls down the potential very slowly such that its kinetic energy is
effectively zero and the background space is in fact a de Sitter one.
One can make an analogy to the situation of slow-roll inflation,
where we omit the kinetic energy of the inflaton and we treat the
spacetime as a de Sitter.

It is difficult to obtain the analytical solution of the quasi-
attractor. We show the typical obits of this system in the two
branches, respectively. Since l is an explicit function of b,

l ∼ ba−3/2 = be−3s/2, (36)

we just plot 3-dim phase portraits in the subspace x–y–l in Fig. 1.
To show it more clearly, the projections on x–y, x–l and y–l planes
are also plotted in Fig. 2.

Fig. 1 illustrates the evolution of a tachyon attached to a DGP
brane in the phase space x–y–l. One clearly see that the orbits
with different initial conditions converge to one orbit, which is
helpful to explain the present amplitude of the cosmological con-
stant. In this converging flow of orbits, different initial conditions
yield almost the same universe. But we have proved that it does
not exist a strict attractor in this system. Thus, it is only a quasi-
attractor. Different orbits are associated with different initial con-
ditions. Fig. 1 describes the evolution of the universe from s = −1
to s = 3. The slow-roll parameter α ≈ 8.6 × 10−6 � 1 at the quasi-
attractor. Therefore, slow-roll is a perfect approximation and the
universe is effectively a de Sitter one. The detailed parameters
for this quasi-attractor are listed as follows: j = 0.01, Ωdm0 = 0.3,
Ωrc = 0.2. Ωdm0 and Ωrc are present partitions of the dust matter
and geometric term, which are defined as

Ωdm0 � ρdm0

ρc
, (37)

and
Ωrc � ρ0

ρc
, (38)

where ρdm0 labels the present density of dust matter and ρc de-
notes the present critical density.

For the branch θ = −1, we have a similar conclusion. We show
the phase portraits of x–y–l in Fig. 3 and its projections in Fig. 4.
Fig. 3 describes the evolution of the universe from s = −1 to s = 3.
For comparison, the parameters in Figs. 3 and 4 are adopted as the
same of the branch θ = 1. From the panel l–y in Fig. 2, one sees
that the different curves almost coincide, which implies that the
phase space is almost reduced to a lower dim subspace.

From Fig. 3, one sees that the quasi-attractor appears again
in the branch θ = −1. α ≈ 3.2 × 10−5 � 1 at the quasi-attractor,
which marks slow-roll of the tachyon. The corresponding density
and pressure read,

ρT

ρc
= 1.72106, (39)

and

pT

ρc
= −1.72101 ≈ −ρT

ρc
. (40)

Though it looks the tachyon is a perfect approximation of vac-
uum, we stress that the density ρde and peff in (10) are differ-
ent from ρT and pT . The evolution of the universe around the
quasi-attractor is determined by the joint effect of the tachyon and
geometric contribution, for the dust matter has been completely
diluted away.

So, we further study the behavior of the virtual dark energy,
which carries the combining effect of the tachyon and geometric
term. We find that on the way to the quasi-attractor the crossing
−1 behavior of the EOS of the virtual dark energy will appear in
the branch θ = −1. We show a concrete numerical example of this
crossing behaviors in Fig. 5, in which we take the parameter set as
j = 0.01, Ωdm0 = 0.3, Ωrc = 0.2.

Fig. 5 explicitly illuminates that the EOS crosses −1 at s ∼ −0.2.
Also, we plot the evolution of the deceleration parameter q. It
is one of the most significant parameters from the viewpoint of
observations, which carries the total effects of cosmic fluids. q is
defined as,
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Fig. 2. The projections of Fig. 1 on x–y, x–l, l–y planes, respectively.

Fig. 3. The evolution of a tachyon on a DGP in the branch θ = −1. The different initial conditions for the curves are x(s = 0) = 0.1, x(s = 0) = 0.08, x(s = 0) = 0.05,
x(s = 0) = 0.03, x(s = 0) = 0.01 from the left to the right, respectively.
q � − äa

ȧ2
= −1 + 3

2
α. (41)

Fig. 6 illuminates the evolution of the deceleration parameter
for a tachyon on a DGP in the branch θ = −1 with the same pa-
rameters in the above figure.
From Figs. 5 and 6, clearly, the EOS of effective dark energy
crosses −1. At the same time the deceleration parameter is con-
sistent with observations. It is well known that the EOS of a single
scalar in standard GR never crosses the phantom divide. Therefore,
the induced term, through the “energy density” of rc , ρ0, plays a
critical role in this crossing.
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Fig. 4. The projections of Fig. 3 on x–y, x–l, l–y planes, respectively.

Fig. 5. Density of virtual dark energy and its EOS in the branch θ = −1 for an exponential potential. Left panel: The evolution of the density of virtual dark energy as a
function of s = ln a. Right panel: The evolution of the EOS of the virtual dark energy as a function of s. The present epoch is denoted by s = 0.
Fig. 6. The deceleration parameter as a function of s corresponding to Fig. 5.
For the branch θ = 1, this crossing behavior is impossible. We
demonstrate this point by using (11) and the explanation following
it. In the branch θ = 1, the virtual dark energy density ρde in (9)
becomes,

ρde = V (T )√
1 − Ṫ 2

+ ρ0 + ρ0

(
1 +

2(
V (T )√
1−Ṫ 2

+ ρdm)

ρ0

)1/2

. (42)

Clearly, every term in RHS of the above equation is decreasing in
an expanding universe (ρT will decrease since its w > −1, and ρdm
decreases with the scale factor). This conclusion is unchanged for
the θ = 1 branch of DGP with an essence whose w > −1 and dust
matter confined to it. It is also independent of the concrete form
of the potential (for a positive potential).
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Fig. 7. The evolution of a tachyon on a DGP in the branch θ = 1. The parameters used for this figure are μ/A = 0.1, Ωdm0 = 0.3, Ωrc = 0.2. The different initial conditions for
the curves are x(s = 0) = 0.1, x(s = 0) = 0.08, x(s = 0) = 0.05, x(s = 0) = 0.03, x(s = 0) = 0.01 from the left to the right, respectively.
3.2. Inverse power law potential

The discussions of this subsection is parallel to the last subsec-
tion.

Exponential potential is an important case in the standard
model. Some researches imply that an analogy of exponential po-
tential in the context of tachyon dynamics is inverse square poten-
tial. Here we set

V = 4A2

3T 2
, (43)

where A is a constant. The dynamics of the universe can be de-
scribed by the following dynamical system with the dimensionless
variables x, y, l, b,

x′ = 3
(
1 − x2)(−x + μ

A
y

)
, (44)

y′ = 3

2
αy − 3μ

2A
xy2, (45)

l′ = 3

2
αl − 3

2
l, (46)

b′ = 3

2
αb, (47)

where the definition of α is the same as in (31). Similarly, we can
prove that there does not exist a strict critical point in this system.
Note that a critical point in this system must be a de Sitter one
if it exists because of the definition of the variable b. If we define
different variables, the result may become different.

We see that neither for the case of exponential potential nor
the inverse power law potential the attractor does not exist in the
tachyon-DGP system. In fact, it was shown that for a positive po-
tential the Born–Infeld type scalar has a critical point only if it has
a nonvanishing minimum, which corresponds to the de Sitter at-
tractor of the system [21]. Our results can be treated as examples
of the above conclusion, for no minimum appears at an exponen-
tial potential or an inverse power law potential.

Like the case of an exponential potential, a quasi-attractor ap-
pears again in this system, which suggests the universality of the
quasi-attractor behavior.
Following the discussions of the last subsection, we plot 3-dim
phase portraits in the subspace x–y–l in the branch θ = 1 and
θ = −1 respectively, and their the projections on x–y, x–l and y–l
planes.

Fig. 7 displays the evolution of a tachyon attached to a DGP
brane in the phase space x–y–l. The converging orbits indicate
the same final state for different initial conditions. However, we
showed that there was no strict attractor in this system. It is just a
quasi-attractor. Different orbits correspond to different initial con-
ditions. In this case, the slow-roll parameter α ≈ 5.5 × 10−4 � 1
at the quasi-attractor. Therefore, the case is very similar to what
happens in slow-roll inflation and the universe is effectively a de
Sitter one. Fig. 7 and the following Fig. 8 describe the evolution of
the universe from s = −0.6 to s = 3.

For the branch θ = −1, we have almost the same conclusion.
The phase portraits of x–y–l and its projections are displayed in
Figs. 9 and 10, respectively. We set the same parameters in Figs. 9
and 10 as in the branch θ = 1.

From Fig. 9, the quasi-attractor appears again as we expected.
In branch θ = −1, α ≈ 0.029 � 1 at the quasi-attractor. The corre-
sponding density and pressure read,

ρT

ρc
= 2.20, (48)

and

pT

ρc
= −2.15 ≈ −ρT

ρc
. (49)

We see that tachyon finally evolves as cosmological constant. How-
ever, the evolution of the universe is not determined by the
tachyon only, but by the joint effect of the tachyon and geometric
term. In the following we will study the evolution of the virtual
dark energy, which carries the total effect of the tachyon and the
geometric effect and determines the destiny of the universe.

We find that when the universe is approaching the quasi-
attractor the EOS of the virtual dark energy can cross the phantom
divide in the branch θ = −1. A concrete numerical example of this
crossing behaviors is displayed in Fig. 11, in which we take the
parameter set as μ/A = 0.25, Ωdm0 = 0.3, Ωrc = 0.2.
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Fig. 8. The projections of Fig. 7 on x–y, x–l, l–y planes, respectively.

Fig. 9. The evolution of a tachyon on a DGP in the branch θ = −1, where the parameters and initial conditions are the same as in the branch θ = 1.
Fig. 11 clearly displays that the EOS crosses −1 at s ∼ −0.3. At
the same time we plot the corresponding deceleration parameter
in Fig. 11, which is determined by the total fluids in the universe.
Fig. 12 illuminates the evolution of the deceleration parameter
for a tachyon on a DGP in the branch θ = −1 with the same pa-
rameters in the above figure.
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Fig. 10. The projections of Fig. 9 on x − y, x − l, l − y planes, respectively.

Fig. 11. Density of virtual dark energy and its EOS in the branch θ = −1 for an inverse power law potential. Left panel: The evolution of the density of virtual dark energy as
a function of s. Right panel: The evolution of the EOS for the virtual dark energy as a function of s.
From Figs. 11 and 12, one sees the EOS of effective dark energy
crosses −1. Also, the deceleration parameter is consistent with ob-
servations.

From the conclusion which we obtained in the last subsection,
the crossing does not appear in the θ = 1 branch.

4. Conclusions and discussions

In this Letter, the dynamics of a tachyon attached to a DGP
brane is studied. Two kinds of potentials of the tachyon field, ex-
ponential potential and inverse power law potential, are explored,
respectively.

In the investigation of tachyon-DGP, we find the quasi-attractor
behavior. Traditionally, if a dynamical system does not permit crit-
 Fig. 12. The deceleration parameter as a function of s corresponding to Fig. 11.
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ical points, we just stop, imagining that the orbits in this system
must be disordered and never converge. However, we find that
the orbits with different initial conditions converge even though
there is no real critical points. This quasi-attractor is full of vital-
ity, which can appear in both of the two branches, and for both
of the two kinds of potentials. The converging evolution of the or-
bits in the phase portraits offers a new view on the cosmological
constant problem and coincidence problem.

In the branch θ = −1, we find that the EOS of the virtual dark
energy, which is caused by the tachyon and geometric term, can
cross the phantom divide for both of exponential potential and
inverse power law potential. This provides a new theoretical pos-
sibility for the extraordinary observation of dark energy. We find
that the geometric term plays a significant role in this crossing.
Contrarily, the crossing behavior do not appear in the branch θ = 1.
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