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REPORT

Recurrent 10q22-q23 Deletions: A Genomic Disorder on 10q
Associated with Cognitive and Behavioral Abnormalities
Jorune Balciuniene,* Ningping Feng,* Kelly Iyadurai,† Betsy Hirsch, Lawrence Charnas,
Brent R. Bill, Mathew C. Easterday, Johan Staaf, LeAnn Oseth, Desiree Czapansky-Beilman,
Dimitri Avramopoulos, George H. Thomas, Åke Borg, David Valle, Lisa A. Schimmenti,
and Scott B. Selleck

Low-copy repeats (LCRs) are genomic features that affect chromosome stability and can produce disease-associated re-
arrangements. We describe members of three families with deletions in 10q22.3-q23.31, a region harboring a complex
set of LCRs, and demonstrate that rearrangements in this region are associated with behavioral and neurodevelopmental
abnormalities, including cognitive impairment, autism, hyperactivity, and possibly psychiatric disease. Fine mapping of
the deletions in members of all three families by use of a custom 10q oligonucleotide array-based comparative genomic
hybridization (NimbleGen) and polymerase chain reaction–based methods demonstrated a different deletion in each
family. In one proband, the deletion breakpoints are associated with DNA fragments containing noncontiguous sequences
of chromosome 10, whereas, in the other two families, the breakpoints are within paralogous LCRs, removing ∼7.2 Mb
and 32 genes. Our data provide evidence that the 10q22-q23 genomic region harbors one or more genes important for
cognitive and behavioral development and that recurrent deletions affecting this interval define a novel genomic disorder.
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Chromosomal stability is highly influenced by DNA se-
quence features. Low-copy repeats (LCRs), one of these
features, are repetitive DNA segments 10–500 kb in size,
with 195% sequence identity.1 LCRs constitute ∼4% of the
human genome2–4 and may encompass genes, repeat
gene clusters, or pseudogenes. Various genomic changes
can be catalyzed by LCRs, including deletions, duplica-
tions, and inversions, which can give rise to large-scale
structural polymorphisms5–9 and/or disease-causing
rearrangements.1,10–12

Chromosomal rearrangements can produce disease in
many ways, including by altering the expression of a dos-
age-sensitive gene, disrupting the coding sequence, cre-
ating a new fusion product, or influencing gene function
through position effects.13 Disorders associated with chro-
mosome rearrangements resulting from genomic features,
such as LCRs, have been referred to as “genomic disor-
ders.”14 The list of recognized genomic disorders is grow-
ing quickly, as the technology to identify them improves.12

Here, we report a detailed molecular analysis of interstitial
deletions in the 10q22.3-q23.3 region for three unrelated
families with neurobehavioral abnormalities who pre-
sented to the University of Minnesota and Johns Hopkins
Hospital clinics. Blood samples and clinical information

from all patients analyzed were obtained with approval of
the institutional review boards of the University of Min-
nesota and Johns Hopkins University.

The 3-generation pedigree of a family designated
UM10qDel-01 is shown in figure 1A. The proband (III:7)
received a diagnosis of autism at age 3 years and 6 mo.
The diagnosis was based on a neuropsychologic evaluation
that revealed a score of 19 on the Autism Diagnostic Ob-
servation Schedule (ADOS),15 with subscores of 7 for com-
munication and 12 for social interaction. On the Bayley
Scales of Infant Development,16 he achieved a standard score
of !50, which is the age equivalent of 14 mo. Evaluation
of language by use of the Preschool Language Scale, Third
Edition (PLS-3)17 indicated an age equivalent of 8 mo for
both auditory comprehension and expressive communi-
cation. His head circumference measured 54 cm (195 per-
centile), and he has minor dysmorphic features. His hear-
ing is normal.

All other family members with the deletion exhibit cog-
nitive and behavioral abnormalities of varying degrees.
The deletion traces back to the maternal grandfather (I:
1), who transmitted it to six of the seven offspring avail-
able for this study. It was reported that he had writing
and spelling difficulties in school but maintained em-
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Figure 1. Pedigree of family UM10qDel-01 and mapping of the 10q deletion by G-banding and FISH. A, Pedigree structure. The arrow
identifies the autistic proband. Blackened symbols indicate individuals with the deletion at 10q22.3-q23.31. The dotted line indicates
a family member who has not been evaluated. Triangles indicate spontaneous miscarriage. III:3 died of presumed sudden infant death
syndrome and was found to have a cardiac defect. B, G-banding and FISH. The left and middle panels show G-banded partial karyotype
from one affected individual. The arrow points to the deleted band (10q23.31) (“n” denotes normal chromosome 10; “del” denotes the
deletion-bearing chromosome). In the right panel is an example of FISH results from a BAC probe (RP11-926D9) mapping to the
breakpoint region that shows a complex pattern of hybridization to the normal and deletion-bearing chromosomes. The normal chro-
mosome 10 shows two closely spaced signals from 10q and an additional signal in a region near the centromere. In the deleted
chromosome, the 10q signal is reduced to a single region, and the centromere-associated signal remains. C, Summary of FISH analysis.
Chromosome 10 is represented, with a magnification of the region of interest surrounding 10q22.3-q23.31. In the bar representing the
deletion map, LCR-containing regions are shown as green boxes, and the deleted sequences are in red. BACs (listed below the map)
that did not hybridize to the affected chromosome are in red, BACs that gave the same signal from normal and deleted chromosomes
are in black, and BACs from the breakpoint regions that gave multiple signals from normal chromosomes and altered signals from the
affected chromosome 10 are in green. The mouse syntenic regions are also represented, with the arrows denoting the orientation of
the mouse gene order. Note that breaks in the synteny correspond with the LCR positions.

ployment and supported his family. All four aunts carrying
the deletion (II:2, II:7, II:8, and II:9) report having diffi-
culty with school, but all maintain employment outside
of the home, and two have been married. Two maternal
uncles (II:1 and II:6) have a history of special education,

do not maintain employment, and do not live outside of
the parental home. School-age first cousins (III:1 and III:
2), who are heterozygous for the same chromosomal de-
letion, were confirmed to have speech and language de-
lays, as well as attention-deficit/hyperactivity disorder
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Figure 2. Organization and intrachromosomal distribution of LCRs on 10q22.3-q23.31, along with a map of identified deletions. A,
LCRs are grouped into four clusters (LCR1–LCR4). LCR3 and LCR4 flank the 10q22.3-q23.31 deletion in the UM10qDel-01 pedigree and
in JHU10qDel-01. Blocks with the same color and/or pattern denote homologous sequences. The degree of sequence identity reflects
evolutionary distance and ranges from 90.8% to 99.8%. Genomic position (in Mb) is shown on a scale below the LCRs. Exact chromosome
position of depicted LCRs is available from the authors upon request. B, Map of deletions predicted by oligonucleotide array CGH. Three
deletions are shown: that in JHU10qDel-01, that in JHU10qDel-02, and a consensus deletion for the two related individuals II:7 and
III:6 (from family UM10qDel-01). The gray bar indicates intact DNA sequence. Hemizygous deletions are represented by red dashed
lines. The gray dashed lines indicate genomic area that contains the telomeric breakpoints for JHU10qDel-01 and family UM10qDel-
01. Genes residing in this genomic region are shown below the deletion map. Full names of the genes shown are given in table 1.

(ADHD [MIM 143465]) but do not meet the ADOS criteria
for autism. Patient III:1 has a full-scale intelligence quo-
tient (IQ) of 70, by use of Wechsler Intelligence Scale for
Children, Third Edition (WISC-III).18 His sibling (III:2) had
a full-scale IQ of 78, by use of Wechsler Preschool and Pri-
mary Scales of Intelligence, Third Edition (WPPSI-III).19

Speech and language assessment of patient III:1, including
the comprehensive assessment of spoken language,
showed scores of 75 and 86 for grammatical morphemes
and pragmatic judgment, respectively. Patient III:2, who
was assessed with PLS-3, received a total language score
of 74. The sister (III:6) of the autistic proband (III:7) did
not have autism but had a history of speech and language
delay. The uncle (II:4) who does not carry the deletion has
a history of high achievement.

JHU10qDel-01 is an 18-mo-old African American male;
the 3,200-g infant was born to a 16-year-old primagravida
whose 38-wk pregnancy was complicated by glucose in-
tolerance and detection of fetal hydrocephalus in the 3rd
trimester. His family history is unremarkable. His head
circumference at birth was 39 cm (97th percentile). The
remainder of his physical examination was normal, except
for the presence of a white forelock. There were no other

phenotypic features of the patient or his relatives that
were suggestive of Waardenburg syndrome, type 3 (WS3
[MIM 148820]). Cranial magnetic resonance imaging re-
vealed a retrocerebellar cyst with a small cerebellum, com-
pression of the 4th ventricle, and dilatation of the 3rd and
lateral ventricles. A ventriculoperitoneal shunt was placed.
A G-banded karyotype analysis was remarkable for an in-
terstitial deletion of 10q23.2-q24.1. On examination at
age 8 mo, his physical growth was normal, but he had
mild developmental delay.

JHU10qDel-02 is an 11-year-old male who has been de-
scribed elsewhere.20 In brief, he presented to the Genetics
Clinic of the Johns Hopkins Hospital at age 18 mo for
evaluation of presumptive Bannayan-Riley-Ruvalcabasyn-
drome (BRRS [MIM 153480]), with a history of macro-
somia at birth, persistent macrocephaly due to megen-
cephaly, subcutaneous lipomas, gastrointestinal polyps,
and developmental delay. A G-banded karyotype analysis
revealed an interstitial deletion of 10q23, and FISH with
a probe complementary to sequence in the PTEN gene
(MIM 601728) confirmed the deletion. Arch et al.,20 noting
the involvement of PTEN in this patient and the overlap
in the phenotypic features of BRRS and Cowden syndrome
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Figure 3. Whole-genome mapping of deletions in family
UM10qDel-01 by use of 100K SNP array and 32K BAC array CGH
analyses. A, 100K SNP array analysis. The panel represents SNP
copy-number estimates for individual II:1 (fig. 1A). SNP copy num-
ber is derived from comparison of SNP intensities for the affected
individual with those for unaffected controls by use of the chro-
mosome copy-number tool (Affymetrix). B, 32K BAC array CGH
analysis. Log2 intensity ratios for the same individual (II:1) show
the correspondence of the copy-number measures obtained with
this methodology. An idiogram of chromosome 10 is represented
below the array data.

(MIM 158350), suggested that these two syndromes are
allelic. The patient underwent colectomy at age 3 years.
Currently, he has mild learning disabilities but is attending
regular classes.

High-resolution G-banding analysis of family UM10qDel-
01 revealed a small interstitial deletion spanning 10q23.2
and 10q23.32, with alternative breakpoint assignment at
10q22.3 and 10q23.2, in the autistic proband (III:7) and
other affected family members (fig. 1B, left panel). To fur-
ther characterize the deletion, FISH was performed using
BAC probes (CHORI BACPAC Resources) mapping to
10q22.2-q23.32. This analysis demonstrated that the cen-
tromeric boundary region spans from BAC probe RP11-
715A21 to RP11-768K1 and that the telomeric boundary
region spans from RP11-1043B16 to RP11-57C13 (fig. 1C).
BACs from either the centromeric or telomeric boundaries
of the deletion gave a doublet pattern of signals on each
normal chromatid in the 10q22.2-q23.3 region and a sin-
gle signal (of variable intensity) on each chromatid near
the centromere (fig. 1B, right panel). The doublet signals
at the 10q22.2-q23.3 boundaries were reduced to a single
signal on the deleted homolog. These findings demon-
strate a deleted segment at 10q22.3-q23.31 of ∼7.2 Mb
flanked by homologous sequences.

BLAST analysis of the BACs that gave multiple signals
from the normal chromosome 10 (fig. 1B) demonstrated
that they contain LCRs (University of California–Santa
Cruz Human Genome Browser and Human Genome Seg-
mental Duplication Database), accounting for the FISH
patterns seen with these probes. LCRs flanking the dele-
tion (LCR3 and LCR4 in fig. 2A) exhibit a complex ge-
nomic organization. LCR3, encompassing the centromeric
break region, contains two large (1300 kb), highly ho-
mologous (99.8% identity) segmental duplications (red
blocks in fig. 2A). They are made up of smaller modules
with different orientations that are dispersed elsewhere on
chromosome 10 (fig. 2A), as well as on other chromosomes
(not shown). LCR4 spans the telomeric breakpoint and
harbors ∼170 kb of sequence homologous to LCR3, as well
as 1100 kb of sequence homologous to LCRs located near
the chromosome 10 centromere (LCR1).

To assess the integrity of the whole genome in family
UM10qDel-01, including the presence of other potential
chromosomal abnormalities, we performed 32K BAC
array-based comparative genomic hybridization (array
CGH) (Swegene DNA Microarray Resource Centre), as well
as SNP genotyping by use of both 10K and 100K Affy-
metrix SNP chip arrays. The 10K array analysis of all af-
fected members of the family identified a single region on
chromosome 10q with 36 consecutive homozygous SNPs,
providing a loss-of-heterozygosity (LOH) score of 8 (data
not shown). No other region of the genome for any mem-
ber of this family showed a comparably high LOH score.
We also conducted FISH analysis of 19 chromosomal seg-
ments with a probability of homozygosity between 10�6

and 10�5, and, in all cases, the BAC encompassed by the
interval was present on both chromosomes (data not

shown). We analyzed one affected family member (II:1)
with the 100K SNP array (Affymetrix) that allowed com-
parison with a large set of unaffected control subjects (128
controls) who had been evaluated with this array. The 10q
deletion region encompassed 357 homozygous SNP calls,
a feature not found in any of the control samples. More-
over, the intensity of the SNP hybridization signal was
clearly reduced in the deletion area for the affected in-
dividuals compared with the control subjects (Affymetrix)
(fig. 3A). These data indicate that the identified deletion
is not a common variant. We also evaluated two members
of this family, with a high-density tiled 32K BAC array
(fig. 3B). There was good agreement between the SNP ar-
rays and 32K BAC array CGH analyses, as well as the FISH
mapping. Differences in the breakpoints determined by
these methods were noted only within the LCR regions,
emphasizing that LCR-containing segments are difficult
to evaluate with these whole-genome techniques.

High-density oligonucleotide array CGH technology is
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Figure 4. Deletions mapped by oligonucleotide array CGH in four patients: UM10qDel-01 family members III:6 and II:7, JHU10qDel-
01 (J1), and JHU10qDel-02 (J2). Oligonucleotide probes (vertical colored bars) are arrayed in horizontal strips for each sample analyzed.
In addition to the four patients, array data from three control subjects (C1–C3) are shown. Five different genomic areas (A–E) are
arranged in accordance with their position on chromosome 10. LCRs, if present, are depicted as colored boxes below the corresponding
probes. Size of the LCRs is proportional to the number of probes present and not to the actual genomic length. Log2 intensity ratios
for each probe are represented in different colors and correspond to the degree of difference between experimental and reference signals.
Green, blue, and aqua represent probes with negative log2 intensity ratios (copy loss), and tan, pink, and red represent probes with
positive log2 intensity ratios (copy gain) in the test sample versus the reference. Red arrows indicate plausible breakpoints of predicted
deletions, with genomic position noted above or below the arrows. Panel A shows the region containing the centromeric deletion
breakpoint predicted in JHU10qDel-01 (J1), III:6, and II:7. Panel B shows a 96-kb hemizygous deletion predicted in JHU10qDel-02
(J2), which is centromeric to the cytogenetically identified deletion in this patient. Red block arrows indicate sequences that are
associated with the end points of the telomeric deletion in JHU10qDel-02. Panel C shows the centromeric deletion breakpoint in
JHU10qDel-02 (J2). Panel D contains the telomeric deletion breakpoints for JHU10qDel-01 (J1), III:6, and II:7. Panel E harbors the
distal breakpoint for JHU10qDel-02 (J2).

an efficient tool to detect deletions as short as a few hun-
dred base pairs.21 We employed this technology to fine
map the 10q deletions in representatives of all three fam-
ilies. Fine mapping of deletion breakpoints in family
UM10qDel-01 and JHU10qDel-01 was challenging be-
cause both breakpoints occurred within LCRs. Automated
segmentation analysis for deleted genomic areas within
LCRs in JHU10qDel-02 predicted multiple segments, with
log2 intensity ratios in a wide range, from 0.04 to �0.5.
We therefore compared the signal intensities directly
across all samples for the 12-Mb genomic area that harbors
the deletions (80–92 Mb of chromosome 10) for unaf-
fected control subjects and affected individuals. To facil-
itate the comparison, we color coded the probes for each
sample according to their log2 intensity ratios (fig. 4).

By comparison of probe signals of UM10qDel-01 family
members II:7 and III:6 and JHU10qDel-01 with those of

control subjects (C1, C2, and C3) and JHU10qDel-02,
the oligonucleotide array CGH analysis suggests that
centromeric breakpoints in family UM10qDel-01 and
JHU10qDel-01 lie very close to each other but are not
identical; for UM10qDel-01 family members, it maps to
81.624 Mb, whereas, for JHU10qDel-01, the deletion ap-
pears to start 2 kb downstream at 81.626 Mb (fig. 4A). This
region is located 30 kb centromeric of a gene, LOC387693,
that is predicted to encode a protein similar to BMS1-like,
a ribosome-assembly protein (UCSC Genome Browser)
(fig. 2B).

The telomeric end of the deletion, embedded within
LCR4, displayed a complex pattern of signal intensities
(fig. 4D). Our best estimate of this breakpoint, at 89.211
Mb for family UM10qDel-01 and at 89.250 Mb for
JHU10qDel-01, places it just centromeric of the MINPP1
(MIM 605391) coding sequence (fig. 2B). It is possible,
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Figure 5. Breakpoints and models for the rearrangement in JHU10qDel-02. A, Two deletions with an inversion and a small insertion.
Diagrams of normal (top) and rearranged (bottom) chromosome 10 are represented. Breakpoint locations for the two identified deletions
are indicated by arrows, with nucleotide positions (if known) shown above the arrows. The size of the deletions is indicated between
the breakpoints. Beige boxes represent transcripts, brown boxes represent exons, and green boxes represent LCRs. A black dashed line
symbolizes a deleted genomic region. This model suggests that sequence flanked by the two deletions is inverted, and fragment 3
(inverted relative to its original orientation) is inserted between the telomeric end of the large deletion and the inversion. Gray block
arrows labeled with letters a, b, and c denote sequenced junctions. Sequences containing breakpoints are provided at the bottom of
the figure; bold letters indicate junction sequence. B, Two deletions, with three noncontiguous fragments inserted between the end
points of the larger one. Diagrams of normal (top) and rearranged (bottom) chromosome 10 are represented. Three fragments (blue
block arrow labeled “1,” yellow block arrow labeled “2,” and purple triangle labeled “3”) are inserted between the end points of the
large deletion. Size and chromosomal coordinates of the three fragments (1–3) are shown in the key box below. The question mark (?)
indicates that the junction sequence is not defined. All other designations are the same as in panel A.

however, that the actual telomeric breakpoints are
∼89.140 Mb in both families and that the areas with re-
duced log2 ratios downstream represent a normal struc-
tural variation. A copy-number variant (CNV) was re-
ported for this genomic area (89,160,463–89,177,356 bp)8

(Database of Genomic Variants), and our three control
subjects show decreased signals in this region, supporting
the presence of a common CNV in this location.

Extensive quantitative PCR analysis of DNA from
JHU10qDel-02 placed deletion breakpoints at 84.147–
84.148 Mb and 89.875–89.972 Mb in chromosome 10.
Both breakpoints occurred in unique genomic sequences.
Oligonucleotide array CGH analysis refined the deletion
breakpoints within 100 bp of nucleotides 84,148,579 and
89,875,476 on chromosome 10 for the centromeric (fig.
4C) and telomeric (fig. 4E) boundaries, respectively. The
centromeric deletion breakpoint is in the second intron
of neuregulin 3 (NRG3 [MIM 605533]), an 8-exon gene
that spans 1.2 Mb of the sequence between LCR3 and
LCR4. The telomeric breakpoint is ∼630 kb telomeric of

LCR4 and ∼260 kb telomeric of PTEN (figs. 2B and 5).
Interestingly, array CGH analysis also identified a sec-
ond, smaller deletion (∼96 kb) more centromeric on 10q,
with breakpoints predicted within 2 kb of nucleotides
82,575,044 and 82,671,226 (fig. 4B).

Using long-range PCR primers complementary to se-
quence flanking the predicted breakpoints, we were not
able to amplify a breakpoint fragment. Southern-blot anal-
ysis with unique sequence probes complementary to the
breakpoints identified aberrant DNA segments that dif-
fered in size for centromeric and telomeric Southern
probes (data not shown). This indicated that the break-
points were correctly located but that additional DNA was
inserted between the sequences flanking the deletion. We
used a combination of Southern blotting and inverse PCR
to further characterize this rearrangement. We found that
the actual breakpoints map to 84,148,592 and 89,875,445
bp for the centromeric and telomeric boundaries, respec-
tively, resulting in a 5.73-Mb deletion. We identified at
least three noncontiguous DNA fragments associated with
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Table 1. Genes in the 10q Deletions

Gene or Transcript Name Symbol

Family
UM10qDel-01

and JHU10qDel-01a JHU10qDel-02a

BMS1-like, ribosome assembly protein LOC387693 X
Surfactant, pulmonary-associated protein D SFTPD X
Chromosome 10 ORF 57 C10orf57 X
Placenta-specific 9 PLAC9 X
Annexin A11 ANXA11 X
Hypothetical protein FLJ43836 FLJ43836 X
Methionine adenosyltransferase I, alpha MAT1A X
DPY30 domain–containing 1, hypothetical protein DYDC1 X
DPY30 domain–containing 2, hypothetical protein DYDC2 X
Chromosome 10 ORF 58 C10orf58 X
Tetraspanin 14 TSPAN14 X
SH2 domain–containing 4B SH2D4B X
Neuregulin 3 NRG3 X X
Growth hormone–inducible transmembrane protein GHITM X X
Chromosome 10 ORF 99 C10orf99 X X
Protocadherin 21 PCDH21 X X
Leucine-rich repeat-containing 22 LRRC22 X X
Leucine-rich repeat-containing 21 LRRC21 X X
Retinal G protein-coupled receptor isoform 3 RGR X X
KIAA1128 KIAA1128 X X
Glutamate receptor, ionotropic, delta 1 GRID1 X X
KIAA0261 KIAA0261 X X
Opsin 4 OPN4 X X
Lim domain–binding 3 LDB3 X X
Bone morphogenic protein receptor, type 1A BMPR1A X X
Multimerin 2 MMRN2 X X
Synuclein, gamma SNCG X X
Adipose-specific 2 (C10orf116) APM2 X X
KIAA1975 KIAA1975 X X
Glutamate dehydrogenase 1 GLUD1 X X
Family with sequence similarity 35, member A FAM35A X X
KIAA2020 family with sequence similarity 22, member A FAM22A X X
Multiple inositol polyphosphate histidine phosphatase, 1 MINPP1 X
3′-phosphoadenosine 5′-phosphosulfate synthase 2 PAPSS2 X
ATPase family, AAA domain–containing 1 ATAD1 X
Cofilin pseudogene 1 CFLP X
Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase PTEN X

NOTE.—Genes of a specific importance to neurobehavioral development and function are in bold.
a An “X” indicates the gene was removed by the deletion.

the end points of this deletion. All the fragments come
from neighboring regions of chromosome 10 (fig. 5). Frag-
ment 3 (5.4 kb in length) is located at the telomeric break-
point of the deletion (junction “c” in fig. 5). It originates
from the deleted sequence and contains a part of intron
1 (88,551,077–88,545,607 bp) of the gene for bone mor-
phogenetic protein receptor, type IA (BMPR1A [MIM
601299]). Fragments 1 and 2 are derived from DNA se-
quences flanking the 96-kb centromeric deletion predicted
by oligonucleotide array CGH (fig. 5). We have sequence
information that precisely defines one end of each frag-
ment. The telomeric end of fragment 1 begins at
82,577,240 bp and is juxtaposed with the centromeric
breakpoint of the large deletion that occurred in the sec-
ond intron of NRG3 (junction “a” in fig. 5). The sequence
of fragment 1 extends 166 kb in the centromeric direction.
The centromeric end of fragment 2 begins at 82,692,424
bp and joins fragment 3 (junction “b” in fig. 5). The se-

quence of fragment 2 extends 120 kb in the telomeric
direction. No copy-number gains were predicted for the
oligonucleotide array CGH probes tiling the sequences of
fragments 1 and 2.

The simplest model that is compatible with these data
includes the presence of two deletions, an inversion of the
intervening sequence and an additional insertion at the
telomeric breakpoint of the larger deletion (fig. 5A). The
large telomeric deletion removes 5.73 Mb, with the cen-
tromeric breakpoint in the second intron of NRG3. The
second deletion is too small to detect cytogenetically and
was recognized as a 96-kb deletion in our oligonucleotide
array CGH analysis. It is located ∼1.5 Mb centromerically
and removes DNA sequence that is normally located be-
tween fragments 1 and 2. The intervening sequence be-
tween the two deletions (from fragment 2 to the break-
point in NRG3) is inverted. In addition, 5.4 kb of sequence
(fragment 3) derived from within the large deletion is in-
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serted in an inverted orientation between the telomeric
end of the large deletion and the large inversion. Accord-
ing to this model, three new junctions are generated, and
we identified all of them. An alternative model posits two
deletions and at least three noncontiguous DNA fragments
inserted between the endpoints of the large (5.73-Mb) de-
letion (fig. 5B). According to this second model, there
should be five new junctions, and we were able to define
three of them.

No extensive homology was found between breakpoints
of the three junctions sequenced (fig. 5). Only a 1-nt over-
lap was present between sequences at the breakpoints of
one junction (junction “a” in fig. 5). Three breakpoints
occurred within repetitive sequences: one within an
LIM3A element, another within an AluJb element, and the
third in an AT-rich region. The telomeric breakpoint of
the large deletion is located in unique sequences 81 bp
downstream of an LIMB8 element.

The deletions found in family UM10qDel-01 and
JHU10qDel-01 remove 32 known genes and putative ex-
pressed transcripts, whereas 26 are affected in JHU10qDel-
02 (table 1). The clinical phenotypes observed in individ-
uals carrying the described deletions are variable. Some of
these differences may be explained by differences in the
size of these deletions. For example, JHU10qDel-02 has
BRR syndrome, which is allelic with Cowden disease (also
called “multiple hamartomas syndrome”)20,22 and is at-
tributed to the loss of PTEN function. Several studies re-
port a high frequency of germline mutations in PTEN
among individuals with BRR syndrome22–24 or Cowden
disease.25,26 Recently, four patients who received a diag-
nosis of juvenile polyps and macrocephaly, both features
characteristic of Cowden disease or BRR, were found to
have del(10)(q23.2q23.3), including BMPR1A and PTEN.27

Those reported deletions overlap considerably with the
deletion in JHU10qDel-02 described here, suggesting that
the presence of both juvenile polyps and macrocephaly
can be attributed to deletions in this genomic region.
JHU10qDel-02 also has mild developmental delay, which
was not found in the four patients described as hav-
ing juvenile polyps and macrocephaly. The deletion in
JHU10qDel-02 extends further centromerically and en-
compasses other genes, including NRG3, GRID1 (MIM
610659), GHITM (HUGO Gene Nomenclature Committee
accession number 17281), and PCDH21 (MIM 609502).
Hemizygosity for these genes may account for the devel-
opmental delay observed in JHU10qDel-02. In addition,
some part of his phenotype could result from disruption
of genes around the small centromeric deletion.

UM10qDel-01 family members do not exhibit hamar-
tomatous symptoms but manifest a wide range of cog-
nitive and behavioral phenotypes, from academic diffi-
culties to ADHD and autism. The deletion cosegregates
with a cognitive and behavioral phenotype and appears
to be more pronounced in males than in females.
JHU10qDel-01 has a deletion that is nearly identical to
that in family UM10qDel-01 and has some developmental

delay but is too young to be given a score for other be-
havioral symptoms. Several other patients with deletions
in the 10q23 area have been described,28–31 and, similar to
our patients, they all display developmental delay. The
overlap of neuropathological phenotypes among patients
described here and those described elsewhere suggests that
the 10q23 region harbors genes important for neurodev-
elopment and function. Indeed, several genes in this re-
gion are candidates for neuropsychiatric disorders. For ex-
ample, on the basis of linkage of 10q22 to schizophrenia
(MIM 181500) in Ashkenazi families32 and the association
of NRG1 (MIM 142445) with schizophrenia,33,34 NRG3 is
a candidate gene for schizophrenia.32 The same author
group reported a significant association of schizophrenia
and schizoaffective disorders with the glutamate receptor
delta-1 subunit gene (GRID1),35 also located within this
interval. Other genes with CNS expression that may be
potential candidates include glutamate dehydrogenase 1
(GLUD1 [MIM 138130]), synuclein gamma (SNCG [MIM
602998]), and BMPR1A (Human Genome Browser). There
is mounting evidence that PTEN function plays a signif-
icant role in neural development and autistic spectrum
disorders (ASD).36,37 A recent study of 18 children with ASD
and macrocephaly revealed three individuals with novel
germline mutations in PTEN.38 Although the PTEN coding
region is not deleted in family UM10qDel-01, the PTEN
transcription site is within 0.5 Mb, so it is possible that
PTEN transcription patterns and levels are affected in
members of this family.

We report the fine mapping of deletions in 10q22.3-
q23.32 region in three unrelated families, and their over-
lapping cognitive and behavioral phenotypes indicate
that this interval should be added to the growing list of
genomic regions affected by recurring rearrangements.12

We relate the breakpoint in each family to the organiza-
tion of complex LCRs located in the proximity of the de-
letions. The breakpoints in two of the families map with-
in these LCRs, whereas the deletion in the third family
removes the telomeric LCR (LCR4) and has a complex
noncontiguous structure. We propose that the LCRs
in this region increase susceptibility to chromosomal
rearrangements.
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