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a b s t r a c t

Based on Biot’s fully dynamic poroelastic theory, the dynamic responses of the poroelastic half-space soil
medium due to quasi-static and dynamic loads from a moving train are investigated semi-analytically.
The dynamic loads are assumed to be generated from the rail surface irregularities. The vehicle dynamics
model is used to simulate the axle loads (quasi-static loads) and the dynamic loads from a moving train.
The compatibility of the displacements at wheel–rail contact points couple the vehicle and the track–
ground subsystem, and yield equations for the dynamic wheel–rail loads. A linearized Hertzian contact
spring between the wheel and rail is introduced to calculate the dynamic loads. Using the Fourier trans-
form, the governing equations for the poroelastic half-space are then solved in the frequency–wavenum-
ber domain. The time domain responses are evaluated by the fast inverse Fourier transform. Numerical
results show that the dynamic loads can make important contribution to dynamic response of the poro-
elastic half-space for different train speed, and the dynamically induced responses lie in a higher fre-
quency range. The ground vibrations caused by the moving train can be intensified as the primary
suspension stiffness of the vehicle increases.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The ground vibrations caused by moving trains have been
intensified as the trains run faster. Thus, there is a strong desire
to predict the train-induced ground vibration accurately as it can
disturb the living of inhabitants along the line. More and more
numerical models have been proposed for the prediction of the
train-induced ground vibration.

Krylov (1995) proposed a model to investigate the dynamic re-
sponses of the track generated by a superfast train. The ground was
treated as an elastic half-space, and an approximate expression for
Green’s function of the elastic soil medium was used, by taking the
Rayleigh-wave’s contribution into account only. Kargarnovin and
Younesian (2004), Kargarnovin et al. (2005) investigated the Tims-
henko beam vibration generated by moving loads on the Pasternak
visco-elastic half space and nonlinear visco-elastic half space suc-
cessively. Using a sandwich beam-structure track model consist
of rail tracks, continuous sleepers and the ballast, Picoux and Le
Houédec (2005) and Sheng and Jones (1999) studied the ground
vibration generated by train loads. The soil medium was modeled
as a layered elastic half-space. Vostroukhov and Metrikine (2003)
ll rights reserved.
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and Takemiya and Bian (2005) studied the dynamic response of a
rail beam on a visco-elastic half-space, and the effects of the dis-
crete masses of sleepers on the dynamic response were investi-
gated. In these works, the train loads were generally treated as a
series of constant loads (axle loads). However, during the operation
of the train, the dynamic loads may be caused by irregularities,
such as wheel flats, rail surface irregularities and wheel eccentric-
ity. Several researchers (Knothe and Grassie, 1993; Zai and Cai,
1997; Zai et al., 1994; Sheng et al., 2004, 2003) extended the above
works by considering the dynamic loads caused by the rail irregu-
larities. A Hertizian contact spring was introduced between the
wheelset and rail. It was obtained that the dynamic loads played
an important role for the train-induced ground vibration and
should be taken into consideration in the study of train-induced
ground vibration. Metrikine et al. (2005) studied the stability of a
moving train bogie on the track, and the bogie was modeled as a
two-degree-of freedom system. Recently, Lombaert and Degrand
(2009) and Katou et al. (2008) studied the ground vibration caused
by both the quasi-static and dynamic loads at a subcritical train
speed by numerical method. The numerical results were verified
by the in situ experiments, and it was obtained that the free-field
vibration response was dominated by the contribution of dynamic
load. For all the works above, the soil was treated as an elastic or
visco-elastic medium. However, as there is under-ground water
in the considered soil medium, which affects the wave propagation
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Fig. 1. The model of vehicle–track–ground coupling system: (a) the vehicle–track–
ground system, and (b) the Hertzian contact spring between the wheelset and the
rail.
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apparently, the fully saturated poroelastic soil model is closer to
the actual situation.

Biot (1956, 1962) pioneered the development of an elastody-
namic theory for a fluid-filled elastic porous medium. Later, many
researchers applied Biot’s theory to deal with dynamic responses of
a fully saturated soil under moving load (Burke and Kingsbury,
1984; Siddharthan et al., 1993; Theodorakopoulos, 2003; Theodo-
rakopoulos et al., 2004; Jin, 2004; Lu and Jeng, 2007). Applying
Biot’s theory, Cai et al. (2008, 2009) studied the dynamic responses
of the track–ground system subjected to the train loads using a
sandwich beam-structure track model. The effects of the character-
istics of poroelastic soil medium on the dynamic responses were
studied in detail. It was found that the dynamic characteristics of
the poroelastic soil medium were quite different from that of the
elastic soil medium when the train speed exceeded the critical
speed of the track–ground system. The major limitation in these
works is that the dynamic wheel–rail force was not considered in
these investigations.

In consideration of the two aspects above, a more realistic vehi-
cle–track-poroelastic half-space coupling model is needed to
investigate the ground vibration caused by moving trains. On the
other hand, some researchers (Chai and Miura, 2002) focused their
study on the permanent deformation of the subsoil, which is an
important factor controlling the service life as well as the mainte-
nance cost of the railway lines, due to train load using an elastic
soil model. However, it is well known that the deformation of sub-
soil is caused by the effective stress in the poroelastic soil medium.
Thus, it is desirable to calculate the effective stress in subsoil using
a poroelastic soil model in consideration of the dynamic wheel–rail
force.

In this paper, a vehicle–track–ground coupling model, consist-
ing of vehicles, a track and a poroelastic half-space, is proposed
for the study of train-induced ground vibration. The dynamic
wheel–rail forces are considered by introducing a Hertizian contact
spring between each wheelset and the rail. The vehicles and track–
ground subsystem are coupled by the displacement compatibility
at wheel–rail contact points. Biot’s dynamic poroelastic theory is
used to characterize the poroelastic half-space soil medium con-
sidering the coupling of soil particles and pore water of the soil
medium. Using the double Fourier transform, the governing equa-
tions of the track–ground system are solved analytically in the fre-
quency–wavenumber domain. The time-domain results are
obtained by the fast inverse Fourier transform. The quasi-statically
induced and dynamically induced displacements, pore water pres-
sures and effective stresses (caused by the axle load and dynamic
load, respectively) are calculated for train speeds below and above
the Rayleigh-wave speed of the half-space. The effects of the pri-
mary suspension stiffness of the vehicle and the soil permeability
on the quasi-statically and dynamically induced responses are
investigated. Furthermore, the different frequency components of
the quasi-statically and dynamically induced responses are
investigated.
2. Governing equations of the vehicle and track–ground system

2.1. Receptances of the track–ground system at the wheel–rail contact
points

The receptance herein denotes the displacement amplitude of
the rail at the wheel–rail contact point due to a unit vertical har-
monic load with exciting frequencyX. The vehicle–track–ground
coupling system is shown in Fig. 1a, and the Hertizian contact
spring between the wheel and rail is shown in Fig. 1b.

The track model of Sheng and Jones (1999) is introduced in this
paper. The rails, sleepers and ballast are modeled as an infinite
Euler beam, continuous mass and Cosserat model, respectively. In
order to calculate the receptance of the track–ground system, a
unit vertical harmonic load eiXt is applied on the rail, which is
pointing downwards and located at x = 0 when t = 0. The load
moves along the rails at speed c. The governing equation for a rail
represented by an Euler beam is written as:

EI
@4uRðx; tÞ

@x4 þmR
@2uR

@t2 þ kP½uRðx; tÞ � uSðx; tÞ� ¼ eiXtdðx� ctÞ ð1Þ

in which uR is the vertical displacement of the Euler Beam, EI is the
bending stiffness of the rail beam, mR is the mass of the rail per unit
length, kP denotes the spring constant of the rail pads, and uS is the
vertical displacement of the sleepers.

A continuous mass model is used for the sleepers:

mS
@2uSðx; tÞ

@t2 þ kP½uSðx; tÞ � uRðx; tÞ� ¼ �FSðx; tÞ; ð2Þ

where mS is the mass of the sleeper per unit length, FS is the load
between the sleepers and the ballast.

The ballast is first considered as Cosserat model by Suiker et al.
(1999). The system is written at the top and bottom of the ballast
as:

mB

6
2
@2uSðx; tÞ

@t2 þ@
2uBðx; tÞ
@t2

" #
þkB½uSðx; tÞ�uRðx; tÞ� ¼ FSðx; tÞ; ð3Þ

mB

6
@2uSðx; tÞ

@t2 þ2
@2uBðx; tÞ

@t2

" #
þkB½�uSðx; tÞþuBðx; tÞ� ¼�FBðx; tÞ; ð4Þ
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in which mB is the mass of the ballast per unit length, kB is the
spring constant between ballast and sleepers, FB is the ballast load
on the soil, and uB is the vertical displacement of the ballast.

Based on the assumption of neglecting the apparent mass den-
sity, the linearized dynamic equations of motion for a fully satu-
rated poroelastic soil medium are given by Biot (1956) as:

lui;jj þ ðkþ a2M þ lÞuj;ji þ aMwj;ji ¼ q€ui þ qf €wi; ð5Þ
aMuj;ji þMwj;ji ¼ qf €ui þm €wi þ b _wi; ð6Þ

where, ui, wi (i = x, y, z) are the solid displacement components and
fluid displacement relative to solid displacement along the x, y, and
z directions; dots on ui and wi indicate the differential with respect
to time t; k and l are Lame constants; a and M are Biot’s parameters
accounting for compressibility of the two-phased material;
q = nqf + (1 � n)qs, where qf and qs are the mass densities of the
fluid and solid and n is the porosity; m is a density-like parameter
that depends on qfand the geometry of the pores; b is a parameter
accounting for the internal friction due to the relative motion be-
tween the solid and the pore fluid. The parameter b equals to the
ratio between the fluid viscosity and the intrinsic permeability of
the medium (b = 0 for the neglect of internal friction). The constitu-
tive relations can be expressed as:

rij ¼ kdijhþ lðui;j þ uj;iÞ � adijp; ð7Þ
p ¼ �aMhþM1; ð8Þ
1 ¼ �wi;i; ð9Þ

where h = ui, i is solid strain; rij is the total stress component of bulk
material; p is the pore water pressure.

In this article, the dimensionless variations are adopted. All the
displacements are non-dimensionalized with respect to the unit
length a. Pore water pressures and stresses are non-dimensional-
ized with respect to the shear modulus l. The load between the
rail, sleeper, ballast, and ground are non-dimensionalized with re-
spect to la2. All variables are then replaced by appropriate dimen-
sionless quantities, denoted by the superscript asterisk (*). The
dimensionless time is defined as:

s ¼ ðt=aÞ
ffiffiffiffiffiffiffiffiffi
l=q

p
: ð10Þ

The following non-dimensional parameters are also introduced:
k�B ¼

kB
la ; k�P ¼

kP
la ; k� ¼ k

l ; M� ¼ M
l ; q� ¼ qf

q ; m� ¼ m
q ; b� ¼ abffiffiffiffiffi

qlp ; d ¼
EI

la2 ; m�R ¼
m�R
qa2 ; m�S ¼

m�S
qa2 ; c0 ¼ c=V s; V s is the shear wave velocity

of the half-space, expressed as V s ¼
ffiffiffiffiffiffiffiffiffiffiffi
l=qs

p
, c is the vehicle speed.

The governing equations of the track and poroelastic half-space
are solved by Fourier transform. The details of the process to solve
the governing equations are given in Cai et al. (2008). The expres-
sion of the rail and the ground surface in the transformed domain
is obtained as:

�~u�Rðn;xÞ

¼
�ða2ðn;xÞa4ðn;xÞ2�a2ðn;xÞa3ðn;xÞa5ðn;xÞ�a4ðn;xÞ

�eF �Bðn;xÞk�pÞ
ða1ðn;xÞa4ðn;xÞ2�a1ðn;xÞa3ðn;xÞa5ðn;xÞþa5ðn;xÞk�2p Þ

;

ð11Þ

��~uzðn;g;z�;xÞ ¼�
�PðgÞ
2aB

eF �Bðn;xÞ/ðn;g;z�;xÞ; ð12Þ

where

eF �Bðn;xÞ
¼

a2ðn;xÞa4ðn;xÞk�p
a1ðn;xÞa6ðn;xÞa2

4ðn;xÞ�ða3ðn;xÞa1ðn;xÞ�k�2p Þð1þa5ðn;xÞa6ðn;xÞÞ
ð13Þ

n, g, x are variations in the transformed domain corresponding to
x*, y*, s in the physical domain. The variations of a1, a2, a3, a4, a5,
a6, /(n, g, z*, x) are presented in the Appendix A.
The Fourier spectrum of the rail displacement can be obtained
by applying inverse Fourier transform to Eq. (11) with respect to
n, and the Fourier spectrum of the ground surface displacement
can be obtained by applying inverse Fourier transform to Eq. (12)
with respect to n and g. The Fourier spectrums can be expressed as:

~u�Rðx;xÞ ¼
1
c0

�~u�R
X�x

c0
;x

� �
e

i X�x
c0

� �
x
; ð14Þ

~uzðx; y;0;xÞ ¼
1

2pc0

Z 1

�1
�PðgÞ

2aB

eF �B X�x
c0

;x
� �

� /
X�x

c0
;g;0;x

� �
dg � e

i X�x
c0

� �
x
: ð15Þ

The displacement of the rail and ground in the time domain can
be expressed as follows:

u�Rðx�;sÞ ¼
1

2p

Z 1

�1

�~u�Rðn;X
�;�nc0Þeinðx��c0sÞdn �eiX�s; ð16Þ

u�zðx�;y�;z�;sÞ ¼
1

4p2

Z 1

�1

Z 1

�1

��~u�zðn;g;X
�;�nc0Þeigy�einðx��c0sÞdgdn �eiX�s:

ð17Þ

By introducing an auxiliary spatial coordinate x�t ¼ x� � c0s, Eqs.
(16) and (17) can also be expressed as:

u�Rðx�; sÞ ¼ uX
R ðx�t Þ � eiX�s; ð18Þ

u�zðx�; y�; z�; sÞ ¼ uX
z ðx�t ; y�; z�Þ � eiX�s: ð19Þ

Eqs. (18) and (19) denote that in the auxiliary spatial coordi-
nate, the displacement of the track–ground system are harmonic
and have the same frequency as the dynamic load. Thus, the recep-
tance at the jth wheel–rail contact point due to a unit load at the
kth wheel–rail contact point on the rail is determined by

DR
jk ¼ uX

R ðl
�
jkÞ; ð20Þ

where

l�jk ¼ a�j � a�k ð21Þ

is the dimensionless distance between the two contact points.
The amplitudes of the displacements at the wheel–rail contact

points on the rails are given by

z0�R ðX
�Þ ¼ DRP0�ðX�Þ; ð22Þ

where P
0
*(X*) is the dynamic wheel–rail contact force vector and

DR ¼

DR
11 DR

12 � � � DR
1N

DR
21 DR

22 � � � DR
2N

..

. ..
. ..

. ..
.

DR
N1 DR

N2 � � � DR
NN

2666664

3777775 ð23Þ

N is the number of wheelsets of the vehicle. The receptance matrix
is non-symmetric due to the load motion.

z0�R ðX
�Þ ¼ ðz0�R1ðX

�Þ; z0�R2ðX
�Þ; z0�R3ðX

�Þ; . . . ; z0�RNðX
�ÞÞT ð24Þ

represents the displacement vector of the rail at the wheel–rail con-
tact points observed in the auxiliary spatial coordinate.

2.2. Receptances of the vehicle at the wheelsets

The vehicle model used in Sheng et al. (2004) is introduced
herein. The vehicles are represented as multiple rigid body systems
and the vertical dynamics of the vehicles are coupled to the track
ground model by introducing a Hertzian contact spring (Jenkins
et al., 1974) between each wheelset and the rail. The differential
equation of motion for a single vehicle is given by

MV
€ZVðtÞ þ KVZVðtÞ ¼ �BPðtÞ; ð25Þ
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where MV and KV denote the mass and stiffness matrices of the
vehicle, ZV(t) denotes the displacement vector, P(t) denotes the
wheel–rail force vector and B is a matrix of unit and zero elements
(see Appendix B).

The dynamic loads are assumed to be caused by a sinusoidal
railhead profile. The profile of the corrugated rail is denoted by
zðxÞ ¼ Aeið2p=k1Þx, where k1 denotes the wavelength and A is the
amplitude. The roughness-induced dynamic loads between the
wheel–rail are harmonic loads with angular frequency X, where
X = 2pc/k1, c is the vehicle speed. As being expressed in Sheng
et al. (2004), {P(t)} and {ZV(t)} can be expressed as:
PðtÞ ¼ P0ðXÞeiXt ; ZVðtÞ ¼ Z0VðXÞeiXt . Eq. (25) yields

Z0VðXÞ ¼ �ðKV �X2MVÞ�1BP0ðXÞ: ð26Þ

The receptance between the jth and kth wheelsets within a
vehicle is denoted by DW

jk (‘W’ means wheelset), where, j; k ¼ 1;2;
. . . ;N; DW

jk denotes the displacement amplitude of the jth wheelset
due to a unit vertical harmonic load with exciting frequency X ex-
erted at the kth wheelset. The displacement vector of wheelsets in
the vehicle are expressed as

Z0WðXÞ ¼ ðZ
0
W1ðXÞ; Z

0
W2ðXÞ; Z

0
W3ðXÞ; . . . ; Z0WNðXÞÞ

T ð27Þ
Table 1
Dimensionless parameters for the Mk 3 passenger coach.

Mass of the car body, M�C 14.36
Pitch inertia moment of the car body, J�C 557.05
Mass of each bogie, M�B 1.82
Pitch inertia moment of each bogie, J�B 1.32
Secondary vertical stiffness per bogie, k�2 0.027
Secondary vertical viscous damping, c�2 0.32
Primary vertical stiffness per axle, k�s1 0.0119
Primary vertical viscous damping per axle, c�s1 0.0036

Primary damper stiffness per axle, k0�s1 0.47
Distance between bogie centers 2 � 8
Bogie wheelbase 2 � 1.3
Mass of each wheelset, M�W 0.92
Wheel diameter 0.914

Table 2
Dimensionless parameters for railway track.

Mass of the beam per unite length of track, m�R 0.08
Bending stiffness of the rail beam, d 0.42
Loss factor of the rail 0.01
Rail pad stiffness, k�P 11.67
Rail pad loss factor 0.15
Mass of the sleeper per unit length of the track, m�S 0.328
Mass of the ballast per unit length of the track, m�B 0.84
Ballast stiffness per unit length of the track, k�B 10.5
Loss factor of the ballast 1.0
Contact width of ballast and ground, 2aB 2.7
The Hertz contact stiffness, k�Hl 90

Table 3
Dimensionless parameters for fully water-saturated poroelastic soil medium.

Lame constant, l* 1
Lame constant, k* 2
Water density, q�f 0.67
Solid density, q�s 1.22
Parameter of soil structure, m* 1.68
Coefficient of material damping, D 0.02
Ratio between the fluid viscosity and the intrinsic permeability, b* 10
The parameter for the compressibility of the soil particle, a 0.97
The parameter for the compressibility of the fluid, M* 12
and

P0ðXÞ ¼ ðP01ðXÞ; P
0
2ðXÞ; P

0
3ðXÞ; . . . ; P0NðXÞÞ

T ð28Þ

is the wheel–rail force vector for a single vehicle.
The displacement vector of the wheelsets is part of that for the

corresponding vehicle. Therefore, it may be written as

Z0WðXÞ ¼ AZ0VðXÞ; ð29Þ

where A is a constant matrix and A = BT (see the Appendix A). Thus

Z0WðXÞ ¼ �DWP0ðXÞ ¼ �AðKV �X2MVÞ�1BP0ðXÞ; ð30Þ

DW ¼
DW

11 � � � DW
1N

..

.
� � � ..

.

DW
N1 � � � DW

NN

2664
3775 ¼ AðKV �X2MVÞ�1B: ð31Þ

Eq. (31) gives the receptance matrix at the wheelsets for a single
vehicle.

2.3. Coupling of the vehicles and the track–ground system

The vertical profile of the rail irregularities may be decomposed
into a spectrum of discrete harmonic components. In this study, a
single harmonic component is selected, thus the rail profile can be
Fig. 2. Comparison with existing work: (a) comparison with Sheng et al. (2004), and
(b) comparison with Cai et al. (2008).
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express as zðxÞ ¼ Aeið2p=k1Þx. The system is assumed to be linear, so
that the displacement input of the sinusoidal rail surface is gener-
ated at the excitation frequencyf = c/k1 = X/2p. At time t, the lth
wheelset arrives at x = al + ct, thus the displacement input at the
lth wheel–rail contact point is

zlðtÞ ¼ z0lðXÞeiXt ¼ Aeið2p=k1ÞðalþctÞ ¼ Aeið2p=k1Þal ei2pðc=k1Þt: ð32Þ

The coupling of a wheelset with rail is illustrated in Fig. 1b,
where z0WlðXÞeiXt denotes the displacement of the lth wheelset.
The rail and wheel deform locally according to the Hertz theory un-
der the action of the contact force. Thus a Hertzian contact spring is
inserted between the wheelset and the rail. Assuming that the dy-
namic contact force is much smaller compared with the axle load,
the Hertz spring can be taken to be linear. The stiffness of the
Hertzian contact spring is denoted bykHl. It is assumed that the
wheelset is always in contact with the rail, thus

z0WlðXÞ ¼ z0RlðXÞ þ z0lðXÞ þ P0ðXÞ=kHl: ð33Þ

From Eqs. (22) and (30), the following can be derived

z0RlðXÞ ¼
XN

k¼1

DR
lkP0kðXÞ; ð34Þ

z0WlðXÞ ¼ �
XN

k¼1

DW
lk P0kðXÞ: ð35Þ
Fig. 3. The effects of the vehicle’s primary suspension stiffness k�s1 on the dynamic
wheel–rail force.
By non-dimensionlizing the above equations, the variables are
replaced by appropriate dimensionless quantities, denoted by the
superscript asterisk (*). And the following non-dimensional param-
eters are also introduced:

K�V ¼
KV

la
; M�

V ¼
MV

qa3 ; k�Hl ¼
kHl

la
: ð36Þ

Substituting Eqs. (34) and (35) into Eq. (33), the following equa-
tion can be obtained

XN

k¼1

ðDW
lk þ DR

lkÞP
0�
k ðX

�Þ þ P0�l ðX
�Þ=k�Hl ¼ �z0�l ðX

�Þ: ð37Þ

The unknowns Po
0
*(X*) can be obtained by solving Eq. (37). The

displacements of the ground and the rails generated by the dy-
namic wheel–rail forces are given by applying the superposition
principle.

u�Rðx�; sÞ ¼
XN

l¼1

uX
R ðx�t � a�l ÞP

0
lðX

�ÞeiX�s; ð38Þ

u�zðx�; sÞ ¼
XM

l¼1

uX
z ðx�t � a�l ; y

�; z�ÞP0lðX
�ÞeiX�s: ð39Þ
Fig. 4. The effects of the vehicle’s primary suspension stiffness on the dynamically
induced ground surface displacements: (a) c0 = 0.2 and (b) c0 = 1.0.
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3. Results and discussion

For the sake of calculation efficiency and precision, a bogie
model is used to calculate the dynamic wheel–rail force in this pa-
per. Assuming that all axles experience the same excitation, apart
from a time delay, the dynamic responses of the track system and
poroelastic half-space subjected to a single Mk 3 passenger coach
are investigated. The parameters for the Mk 3 passenger coach
are listed in Table 1 and the parameters for the track are listed in
Table 2, corresponding to those used in Sheng et al. (2004). A sat-
urated poroelastic half-space is specified by parameters in Table 3,
which are selected refer to Cai et al. (2008). The parameters are se-
lected according to Tables 1–3 if not being denoted in the figures.
3.1. Comparison with existing work

To validate the accuracy of this work, some comparisons with
existing work are presented following. In Fig. 2a, the dynamic
wheel–rail forces obtained by present model are compared with
that given by Sheng et al. (2004). The dynamic wheel–rail force
is calculated by single axle vehicle model and the case of an ideal
elastic half-space soil medium is simulated by choosing negligibly
Fig. 5. The comparison between the displacements for poroelastic half-space and
elastic half-space: (a) the quasi-statically induced displacement, and (b) the
dynamically induced displacement.
small values for the poroelastic parameters ðq�f ; b�; M�, and a are
set to 10�4). It can be observed that the two results are in good
agreement at the train speed of 60 m/s. In Fig. 2b, the displace-
ments of the poroelastic half-space generated by three X2000 train
vehicles are compared with that of Cai et al. (2008) at dimension-
less train speed c0 = 1.05. The ground surface displacements are
calculated considering the axle load only. The results are normal-
ized with respect to the magnitude of the axle load of locomotive
vehicle. Excellent agreement can be observed between the two
results.

3.2. The dynamic wheel–rail force

The effects of the primary suspension stiffness of the vehicle on
the dynamic wheel–rail forces are investigated in Fig. 3 against the
excitation frequency (f = c/k1). In Fig. 3a, the magnitudes of the dy-
namic wheel–rail force against the excitation frequency for c0 = 0.2
and three kinds of primary suspension stiffness ðk�s1Þ are presented.
It can be seen that the magnitude of the dynamic force increases as
the excitation frequency increases and reaches the maximum value
at the critical excitation frequency of about 0.55, then decreases
rapidly as the excitation frequency increases further. The primary
suspension stiffness can affect the dynamic wheel–rail forces
Fig. 6. The quasi-statically induced ground surface displacements for different y*:
(a) c0 = 0.2 and (b) c0 = 1.0.
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apparently. The peak value of the dynamic wheel–rail forces in-
creases by 25% as the suspension stiffness increases from 0.01 to
0.006. When the train speed increases to c0 = 1.0, it is shown in
Fig. 3b that the magnitude of the dynamic wheel–rail force in-
creases slightly, but the critical excitation frequency increases to
0.6.

3.3. The ground surface displacement response

In order to identify the maximum contribution of the dynamic
force to the total response levels, the dynamically induced re-
sponses following are all calculated using the maximum dynamic
force and its corresponding excitation frequency as input. The to-
tal response levels can be obtained by superposition of the
dynamically induced components and quasi-statically induced
components. In Fig. 4, the effects of the primary suspension stiff-
ness of the vehicle on the dynamically induced ground surface
displacement response are investigated, and the quasi-statically
induced ground surface displacements are also presented for
the sake of comparison. In view of Fig. 4a for c0 = 0.2, a quasi-sta-
tic deflection appears for the quasi-statically induced displace-
ments and reaches a peak value at the wheel–rail contact point.
The dynamically induced displacement fluctuates apparently
along the x�t axis. The suspension stiffness has considerable effect
Fig. 7. The dynamically induced ground surface displacements for different y*: (a)
c0 = 0.2 and (b) c0 = 1.0.
on the magnitude of the dynamically induced displacement. The
maximum value of the dynamically induced displacement in-
creases by about 25% as the suspension stiffness k�s1 increases
from 0.01 to 0.06. However, compared with the quasi-statically
induced displacement, the dynamically induced displacement is
much smaller, about 20% of the quasi-statically induced one.
When c0 = 1.0, as shown in Fig. 4b, the quasi-statically induced
displacement become much larger and is the dominant compo-
nents for the displacement responses. The dynamically induced
displacement is about 10% of the quasi-statically induced one,
and increases as k�s1 increases.

In Fig. 5, the displacements of the ground surface predicted by
poroelastic soil model and elastic soil model are compared to show
their different characteristics. The results are presented at the train
speed c0 = 1.0. It can be seen in Fig. 5 that both the quasi-statically
induced and dynamically induced displacement responses for the
poroelastic half-space are larger than those for the elastic half-
space. This phenomenon is due to the dispersion of Rayleigh-wave
of the poroelastic half-space (Jin, 2004). Thus, using the elastic soil
model will underestimate both the quasi-statically induced and
dynamically induced ground response level.

In order to investigate the different dissipation properties of the
quasi-statically and dynamically induced components, the ground
surface displacements are presented for various y* in Figs. 6 and 7,
Fig. 8. Fourier amplitudes of quasi-statically induced ground surface displacement
for different y*: (a) c0 = 0.2 and (b) c0 = 1.0.
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respectively. y* is the distance from the track center. In Fig. 6 for
the quasi-statically induced displacement, the associated quasi-
static deformation appears on the free-field off the track at
c0 = 0.2, but deceases in an exponential decay within a short dis-
tance. For instance, at the position of y* = 10, only a small deflection
remains. However, as the train speed exceeds the critical speed at
c0 = 1.0, the free-field response is rather conspicuous with less
damping and substantially large at y* = 20. This phenomenon is
due to the fact that the body wave and Rayleigh wave are strongly
excited by the axle load when the train speed exceeds the critical
speed of the track–ground system. The Rayleigh wave is the dom-
inant contribution to the response in a region near the ground sur-
face, which dissipates slowly in the ground. In Fig. 7, the
dynamically induced displacements are presented for different y*.
When c0 = 0.2, the dynamically induced displacement is about
20% of the quasi-statically induced displacement at y* = 0 while
50% at y* = 20. Thus, the dynamically induced displacement dissi-
pates more slowly at c0 = 0.2. As the train speed increases to
c0 = 1.0, the dynamically induced displacements are much smaller
than the quasi-statically induced displacements for various y*. But
it should be noted that the dynamically induced displacements
also dissipate slowly at this train speed. This is because that the
energies generated by the dynamic load transmit away in the
Fig. 9. Fourier amplitudes of dynamically induced ground surface displacement for
different y*: (a) c0 = 0.2 and (b) c0 = 1.0.
ground mainly through the Rayleigh-wave for both train speed be-
low and above the critical speed.

The Fourier spectrum are also computed and shown for the
quasi-statically induced displacement and the dynamically in-
duced displacement in Figs. 8 and 9, respectively. In Fig. 8, the
Fourier spectrums of quasi-statically induced ground surface dis-
placement are presented. It is observed that quasi-static response
distributes in the frequency range below 2.5 Hz at the train speed
c0 = 0.2. The peaks of the spectrum in the figure are associated
with the train weight, the train geometry and the distances of bo-
gie position in the vehicles, which are explained specifically in
Takemiya and Bian (2005). The amplitude of the Fourier spectrum
decreases rapidly as y* increases and the frequency content of the
quasi-statically induced displacement shows a strong shift to
lower frequencies with increasing y*. As the train speed increases
to c0 = 1.0, the frequency component shifts proportionally to the
train speed, and distribute in the frequency range about 0–15
Hz. The Fourier spectrum of the displacement decreases with dis-
tance more slowly for c0 = 1.0. The vibration transmission in the
y* direction is apparent.

In Fig. 9, the Fourier amplitudes of dynamically induced
ground surface displacements are presented. From Fig. 9a, when
c0 = 0.2, it can be seen that the frequency components of the
Fig. 10. The effects of the vehicle’s primary suspension stiffness on the dynamically
induced ground surface accelerations: (a) c0 = 0.2 and (b) c0 = 1.0.
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dynamically induced displacement concentrate around the fre-
quency 65 Hz, which is the excitation frequency of the maximum
dynamic load at the train speed c0 = 0.2. The Fourier amplitude of
the dynamically induced displacement is smaller than that of the
quasi-statically induced displacement, but lies in a broader fre-
quency range of about 63–68 Hz. As the train speed increases to
c0 = 1.0, the predominant frequency components of the dynami-
cally induced displacement concentrate around 75 Hz, corre-
sponding to the excitation frequency of the maximum dynamic
load at c0 = 1.0, and distributes in the range of 70–80 Hz. Thus,
the dynamically induced displacement distributes in a much
higher frequency range compared with that of quasi-statically in-
duced displacement. It can also be obtained that the Fourier
amplitude of the dynamically induced displacement decreases
as the train speed increases from c0 = 0.2 to c0 = 1.0. The signifi-
cant vibration transmissions in y* direction are clearly visible in
Fig. 8 for both c0 = 0.2 and c0 = 1.0.
3.4. The ground surface acceleration response

For environmental protection of the area on the line-side, the
train induced ground acceleration response is investigated. In
Fig. 10, the effects of the primary suspension stiffness k�s1 on the
Fig. 11. The quasi-statically induced ground surface accelerations for different y*:
(a) c0 = 0.2 and (b) c0 = 1.0.
dynamically induced ground surface accelerations are presented,
and the quasi-statically induced accelerations are also shown for
comparison. When c0 = 0.2, The dynamically induced accelerations
fluctuate apparently within the load area. The suspension stiffness
has an apparent effect on the magnitude of dynamically induced
accelerations. The magnitude of the dynamically induced accelera-
tions can increases by 30% as k�s1 increases from 0.01 to 0.06. Com-
pared with the quasi-statically induced accelerations, the
dynamically induced accelerations are much larger and are the
dominant components for the ground vibration. The total acceler-
ation responses decrease apparently as the suspension stiffness de-
creases. Thus, in view of the train-induced ground vibration, it is of
great significance to reduce the primary suspension stiffness if pos-
sible. When c0 = 1.0, as shown in Fig. 10b, large ground vibrations
are generated by the axle load. The quasi-statically induced accel-
erations become enormously large and fluctuate conspicuously.
They are the dominant components for the ground vibration at this
train speed. However, the dynamically induced accelerations can
not be neglected at this train speed. The maximum dynamically in-
duced acceleration is about 25% of the maximum quasi-statically
induced acceleration. The effect of the suspension stiffness k�s1 on
the dynamically induced acceleration is also apparent at c0 = 1.0.

In Fig. 11, the quasi-statically induced ground surface accelera-
tions are presented at different y*. The quasi-statically induced
Fig. 12. The dynamically induced ground surface accelerations for different y*: (a)
c0 = 0.2 and (b) c0 = 1.0.
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accelerations at y* = 0 gets peak values at the wheel–rail contact
point when c0 = 0.2, and the magnitude of the accelerations decays
to a very small value within short distance off the track. At train
speed c0 = 1.0, the quasi-statically induced accelerations of the
ground surface become enormously large and dissipate more
slowly in the ground. The ground vibrates apparently even at the
place far off the track.

In Fig. 12, the dynamically induced ground surface accelerations
are presented at different y*. For the case of c0 = 0.2, it can be obtained
that the acceleration responses fluctuate apparently along the x�t .
Compared with the quasi-statically induced acceleration, the
dynamically induced accelerations are much larger, what is more,
the dynamically induced accelerations decay more slowly in the soil.
Thus, they become the dominant components for the free-field
acceleration responses at the train speed c0 = 0.2. However, as the
train speed increases to c0 = 1.0, the dynamically induced accelera-
tions are smaller compared with the quasi-statically induced ones
for various y*. The quasi-statically induced acceleration is the
dominant components for the train-induced ground vibration at
c0 = 1.0. However, the dynamically induced accelerations can not
be neglected, about 20% of the quasi-statically induced accelerations
for various y*. Thus, for low train speed condition, the dynamic load
plays a dominant role for the ground surface acceleration response,
Fig. 13. Fourier amplitudes of quasi-statically induced ground surface accelerations
for different y*: (a) c0 = 0.2 and (b) c0 = 1.0.
while as the train speed exceeds the critical speed of the track–
ground system, the contribution of dynamic load for the acceleration
response is much reduced,, but can not be neglected.

The Fourier spectrum of the quasi-statically and dynamically in-
duced ground surface acceleration is presented in Figs. 13 and 14,
respectively. It is noted in Fig. 13 that, for c0 = 0.2, the predominant
frequencies of the ground surface acceleration are concentrated at
several Hz. However, these frequency components disappear
immediately off the track. In the case of c0 = 1.0, the predominant
frequencies increase proportionally and distribute in the frequency
range of 10–30 Hz, and the above predominant frequencies still
dominate the acceleration response as the distance from the track
increases. What is more, the Fourier amplitude of the acceleration
decreases slowly as y* increases.

In Fig. 14, the Fourier spectrum of the dynamically induced
acceleration is presented. It is seen that the dynamically induced
acceleration are dominated by the frequency components of 65–
75 Hz at the train speed c0 = 0.2. As the train speed increases to
c0 = 1.0, the ground surface acceleration response at y* = 0 distrib-
utes in a broad frequency range, while the dynamically induced
acceleration off the track are more dominated by frequencies 60–
90 Hz than other frequencies. This may be caused from the dy-
namic track interaction with the Rayleigh wave propagation at
Fig. 14. Fourier amplitudes of dynamically induced ground surface accelerations
for different y*: (a) c0 = 0.2 and (b) c0 = 1.0.
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the site. And the Rayleigh wave excited by the dynamic load con-
centrates at the frequency range about 60–90 Hz.

3.5. The pore water pressure and effective stress response

The different contributions of the axle load and dynamic load to
the pore water pressure responses are also investigated in Figs. 15
and 16, and the effects of the soil permeability on the excess pore
water pressure responses are also investigated. Fig. 15 shows the
vertical variation of the quasi-statically induced excess pore water
pressure for three kind of b*. The maximum pore water pressure
occurs at the depth about z* = 1, then diminishes rapidly with
depth to a nearly constant value. The pore water pressures increase
apparently as b* increases from 1 to 100. For the depth larger than
z* = 10, the pore water pressure responses are small and the effects
of b* on the responses are reduced. It can also be seen that the pore
water pressure responses become much lager as the train speed
exceeds the critical speed of the track–ground system.

In Fig. 16, the dynamically induced excess pore water pressure
is presented. The pore water pressure diminishes rapidly with
depth to a constant value after its maximum value has been at-
tained at about z* = 1. It is interesting to note that, at the train
Fig. 15. The quasi-statically induced pore water pressures for different b*: (a)
c0 = 0.2 and (b) c0 = 1.0.
speed c0 = 0.2, the peak values of the dynamically induced pore
water pressure are larger than that of the quasi-statically induced
one for b* = 1 and b* = 10 while smaller for b* = 100. The dynami-
cally induced pore water pressure responses are reduced as the
train speed increases from c0 = 0.2 to c0 = 1.0. Compared with the
quasi-statically induced pore water pressure, the dynamically in-
duced one at c0 = 1.0 is much smaller. As shown in Fig. 16, It is
interesting to note that the effect of the parameter b* on the
dynamically induced pore water pressure is different from that
on the quasi-statically induced pore water pressure. The dynami-
cally induced pore water pressure near the ground surface in-
creases rapidly with increasing b*. However, in the ground
deeper than z* = 3, the dynamically induced pore water pressure
decreases with increasing b*. This phenomenon is due to the fact
that the energy generated by the dynamic load mainly transmits
away by the Rayleigh-wave. Thus, the pore water pressure near
the ground surface increasing rapidly as b* increases (the soil per-
meability decreases). But as the depth increases, the effect of the
surface wave is much reduced. The pore water pressure in the dee-
per soil is mainly excited by the water flow from the upper soil. It
becomes more difficult for the water to flow through the soil
skeleton with increasing b*.
Fig. 16. The dynamically induced pore water pressures for different b*: (a) c0 = 0.2
and (b) c0 = 1.0.
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The quasi-statically induced and dynamically induced effective
stresses are presented in Figs. 17 and 18, respectively. In Fig. 17
for the quasi-statically induced stress, the effective stress gets
the maximum value at the ground surface and decreases rapidly
with increasing depth z* at c0 = 0.2. The effect of b* on the effec-
tive stress is not obvious. As the train speed increases to
c0 = 1.0, the effective stresses become much larger and decrease
rapidly as b* increases from 1 to 100 in the region near the
ground surface. As the depth increases, the effective stresses are
smaller and the effect of b* on the effective stress is not obvious.
For the dynamically induced effective stress, it can be seen in
Fig. 18 that the values of the dynamically induced effective stress
at the ground surface are about 40% of the quasi-statically in-
duced effective stress at c0 = 0.2, as the train speed increases to
c0 = 1.0, the percent of the dynamically induced effective stress
is reduced, about 25%. The dynamically induced effective stresses
decrease to smaller value at the depth z* = 10. Thus, the dynamic
load plays an important role for the train-induced effective stress
in the subsoil and should not be neglected when predicting the
train-induced effective stress.
Fig. 17. The quasi-statically induced effective stress for different b*: (a) c0 = 0.2 and
(b) c0 = 1.0.

Fig. 18. The dynamically induced effective stress for different b*: (a) c0 = 0.2 and (b)
c0 = 1.0.
4. Conclusions

In this paper, dynamic responses of the poroelastic half-space
soil medium subjected to the quasi-static and dynamic loads from
moving train are investigated using a vehicle–track–ground cou-
pling model. The governing equations are solved by Fourier trans-
form and the time-domain results are calculated by fast inverse
Fourier transform. The different roles of the axle loads and dy-
namic loads for the ground vibration are identified at the vehicle
speed below and above critical speed. The effects of primary sus-
pension stiffness and the soil permeability on the dynamic re-
sponses are investigated systematically. The frequency contents
of the quasi-statically and dynamically induced response are also
studied. The main conclusions of this study can be summarized
as follows:

1. For the train speed below the critical speed, the axle loads are
the dominant excitations for the ground displacement
responses. While the dynamic loads are the dominant excita-
tions for the ground surface acceleration responses, especially
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at free field off the track as the dynamically induced accelera-
tions dissipate more slowly in the ground. However, as the
train speed exceeds the critical speed, the contributions of
the dynamic loads to the ground displacement and accelera-
tion responses are much smaller than that of quasi-static
loads.

2. The increase of the primary suspension stiffness can intensify
the dynamic interaction between the wheel and rail. Further-
more, the ground surface accelerations increase apparently as
the primary suspension stiffness increases. For the train speed
below the critical speed, reducing the primary suspension
stiffness can lessen the train-induced ground vibration
efficiently.

3. The quasi-statically induced displacement lies in the low fre-
quency range about 0–15 Hz. But the dynamically induced dis-
placement distributes in a much higher frequency range of
above 60 Hz, which depends on the train speed. The predomi-
nant frequencies of the quasi-statically induced acceleration
concentrate at several Hz for the train speed c0 = 0.2 and 15–
35 Hz for c0 = 1.0, while the predominant frequencies of dynam-
ically induced acceleration distributes in the frequency range of
65–75 Hz at c0 = 0.2 and 60–90 Hz at c0 = 1.0.

4. The dynamic loads make significant contribution to the pore
water pressure and effective stress response in the subsoil at
both the train speed below and above the critical speed, and
cannot be neglected for the prediction of the train-induced
effective stress in the subsoil.
Acknowledgments

The work presented in this paper is supported by the National
Natural Science Foundation of China (Grant No. 50778136) and
the Nature Science Foundation of Zhejiang Province (Grant No.
R1080819).
Fig. 19. The details of the vehicle dynamics model.
Appendix A

a1ðn;xÞ ¼ dn4 �m�Rx2 þ k�P
a2ðn;xÞ ¼ 2pdðxþ ec0 �XÞ
a3ðn;xÞ ¼ �m�Bx2=2þ k�P þ k�B �m�Sx2

a4ðn;xÞ ¼ �m�Bx2=6� k�B
a5ðn;xÞ ¼ �m�Bx2=3þ k�B
a6ðn;xÞ ¼ Wðn; 0;xÞ

9>>>>>>>>>=>>>>>>>>>;
; ðA:1Þ

Wðn; 0;xÞ ¼ 1
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Z 1

�1
�P2ðgÞ/ðn;g;0;xÞeigy�dy; ðA:2Þ

/ðn;g; z�;xÞ ¼ 1
D
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3 þ n2 þ g2Þðc2a2e�c2z� � c1a1e�c1z� Þ

þ ðc1g5 � c2g6Þe�c3z� �; ðA:3Þ

ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 � b2

i

q
i ¼ 1;2; ðA:4Þ

c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2 þ D2

q
; ðA:5Þ

a1 ¼ ðm
�x2�ib�xÞðk�þa2M�þ2ÞþM�x2�2aM�q�x2

ðk�þ2ÞM�

a2 ¼ ðm
�x2�ib�xÞx2�ðq�Þ2x4

ðk�þ2ÞM�

9=;; ðA:6Þ

D ¼ ðg4 � g3Þðc2
3 þ n2 þ g2Þ � 2c3ðc1g5 � c2g6Þ; ðA:7Þ

gi ¼ Ei þ ð2n2 � b2
i ÞFi i ¼ 1;2; ðA:8Þ

g3 ¼ k�E1 � 2c2
1F1 � a

g4 ¼ k�E2 � 2c2
2F2 � a

g5 ¼ g1 þ 2g2a1

g6 ¼ g2 þ 2g2a2

9>>>=>>>;; ðA:9Þ
Ei ¼
#M�b2

i � q�x2

q�X2ða� #ÞM� i ¼ 1;2; ðA:10Þ

Fi ¼
k�Ei þ Ei � aþ #

D2 � b2
i

i ¼ 1;2; ðA:11Þ

b2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 � 4a2

q
2

; b2
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a1 �
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1 � 4a2

q
2

; ðA:12Þ

D2 ¼ ð1� q�#Þx2; ðA:13Þ

# ¼ q�x2=ðm�x2 � ib�xÞ: ðA:14Þ

The explanations of these expressions can be found in detail in
Cai et al. (2008).
Appendix B

The details and parameters of the vehicle are shown in Fig. 19.
The displacement vector of the vehicle is defined as

ZVðtÞ ¼ ðZCðtÞ;uCðtÞ; ZB1ðtÞ;uB1ðtÞ; ZB2ðtÞ;uB2ðtÞ; ZW1ðtÞ; ZW2ðtÞ;
ZW3ðtÞ; ZW4ðtÞÞ: ðB:1Þ

Corresponding to this displacement vector, the external load vector
is determined as

FVðtÞ ¼ ð0;0;0;0;0;0;�P1ðtÞ;�P2ðtÞ;�P3ðtÞ;�P4ðtÞÞT

¼ �BPðtÞ: ðB:2Þ

where

B ¼
06�4

I4�4

� �
ðB:3Þ

and

PðtÞ ¼ ðP1ðtÞ; P2ðtÞ; P3ðtÞ; P4ðtÞÞT ðB:4Þ

is the vertical wheel–rail load vector.
The wheelset displacement vector can be written as

ZWðtÞ ¼ AZVðtÞ; ðB:5Þ

where

A ¼ ½04�6 I4�4� ¼ BT: ðB:6Þ

The mass matrix is given by

MV ¼ diagðMC; JC;MB; JB;MB; JB;MW;MW;MW;MWÞ: ðB:7Þ
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The stiffness matrix is given by

½KV� ¼

2k2 0 �k2 0 �k2 0 0 0 0 0
0 2k2l2

B �k2lB 0 k2lB 0 0 0 0 0
�k2 �k2lB k2þ2k1 0 0 0 �k1 �k1 0 0

0 0 0 2k1l2
W 0 0 �k1lw k1lw 0 0

�k2 k2lB 0 0 k2 þ2k1 0 0 0 �k1 �k1

0 0 0 0 0 2k1lW2 0 0 �k1lw k1lw

0 0 �k1 �k1lw 0 0 k1 0 0 0
0 0 �k1 k1lw 0 0 0 k1 0 0
0 0 0 0 �k1 �k1lw 0 0 k1 0
0 0 0 0 �k1 k1lw 0 0 0 k1

26666666666666666664

37777777777777777775

:

ðB:8Þ

The structure of primary suspension is shown in Fig. 20

k1 ¼
kS1k0S1 þ iXcS1ðkS1 þ k0S1Þ

k0S1 þ iXcS1
: ðB:9Þ

The hysteretic damping of second suspension can be incorpo-
rated into the suspension by introducing complex spring stiffness.

k2 ¼ kS2 þ iXcS2: ðB:10Þ
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