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Abstract

For two graphs G and H, let the mixed anti-Ramsey numbers, max R(n; G, H), (min R(n; G, H)) be the maximum (minimum)
number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to
G and no totally multicolored (rainbow) subgraph isomorphic to H. These two numbers generalize the classical anti-Ramsey and
Ramsey numbers, respectively.

We show that max R(n; G, H), in most cases, can be expressed in terms of vertex arboricity of H and it does not depend on the
graph G. In particular, we determine max R(n; G, H) asymptotically for all graphs G and H, where G is not a star and H has vertex
arboricity at least 3.

In studying min R(n; G, H) we primarily concentrate on the case when G=H =K3. We find min R(n; K3, K3) exactly, as well
as all extremal colorings. Among others, by investigating min R(n; Kt , K3), we show that if an edge-coloring of Kn in k colors has

no monochromatic Kt and no rainbow triangle, then n�2kt2
.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An edge-colored graph is called monochromatic if all its edges have the same color. An edge-colored graph is called
rainbow or totally multicolored if all its edges have distinct colors. For graphs G and H, we say that an edge-coloring
of Kn is (G, H)-good if it contains neither a monochromatic copy of G nor a rainbow copy of H. The following
proposition, see [19] characterizes the pairs of graphs for which (G, H)-good colorings exist for arbitrary large n.

Proposition 1 (Jamison, West [19]). For any large enough n, there is a (G, H)-good coloring of E(Kn) if and only if
the edges of G do not induce a star and H is not a forest.

We call a (Ks, Kt )-good coloring simply (s, t)-good. Let max R(n; G, H) (min R(n; G, H)) be the maximum
(minimum) number of colors in a (G, H)-good coloring of Kn.

We call these two functions mixed Ramsey numbers. They are closely related to the classical anti-Ramsey func-
tion AR(n, H) and the classical multicolor Ramsey function Rk(G), respectively. Here AR(n, H) is defined to be the
largest number of colors in an edge-coloring of Kn not containing a rainbow copy of H. This function was introduced by
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Erdős et al., see [13], see also [2,6,22]. The classical multicolor Ramsey function Rk(G) is defined to be the smallest n
such that any coloring of E(Kn) in k colors contains a monochromatic copy of G, see for example [15,16]. Therefore,
we see that studying max R(n; G, H) is similar to studying AR(n, H) and forbidding monochromatic G. Studying
min R(n; G, H) is similar to investigating Rk(G) and forbidding rainbow H. Mixed Ramsey numbers are also related
to various generalized Ramsey numbers. A (k, p, q)-coloring of E(Kn) is a coloring such that each copy of Kk uses at

least p and at most q colors. Thus, a
(
k, 2,

(
k
2

)
− 1

)
-coloring is simply a (Kk, Kk)-good coloring. The properties of

(k, p, q) colorings with respect to maximum or minimum number of colors have been addressed in [3,5,8,11,24]. On
the other hand, the problem of finding unavoidable rainbow H or monochromatic G in any coloring of Kn for n large
enough, has been studied in [19], when H is a forest and G is a star, see also [18].

Observe that functions max R(n; G, H) and min R(n; G, H) are not defined for all graphs. To find all graphs for
which these functions are defined, we shall need the following version of the Canonical Ramsey Theorem. Here, we
say that c is a lexical edge-coloring of a graph F if its vertices can be ordered v1, . . . , vm, and the colors can be renamed
such that c(vi, vj ) = min{i, j}, for all vivj ∈ E(F).

Theorem 1 (Deuber [10] and Erdős and Rado [12]). For any integers m, �, r , there is an integer n = n(m, �, r) such
that any edge coloring of Kn contains either a monochromatic copy of Km, a rainbow copy of Kr , or a lexically colored
copy of K�.

The smallest integer n, satisfying the conditions of Theorem 1 is called the Erdős–Rado number and is denoted
ER(m, �, r). In general, the best bounds for symmetric Erdős–Rado numbers were provided by Lefmann and Rödl
[21], in the following form:

2c1�
2 �ER(�, �, �)�2c2�

2 log �

for some constants c1, c2.
To state and prove our results we need the following definitions. The vertex arboricity, a(H), of a graph H, is the

smallest number of vertex sets partitioning V (H), such that each of these sets induces a forest in H. The extremal
function ex(n, H), for a graph H, is the largest number of edges in an n-vertex graph not containing H as a subgraph.
The Turán graph T (n, k) is an n-vertex complete k-partite graph with parts of almost equal sizes (different by at most
one). The Turán theorem, [25], states that ex(n, Kk+1) = |E(T (n, k))|. In general, the Erdős–Stone theorem, [14],
states that ex(n, H) = |E(T (n, k))|(1 + o(1)), if the chromatic number of H, �(H), is equal to k + 1, k�2. For all
other graph theoretic notions we refer the reader to [26].

Theorem 2. Let G be a graph whose edges do not induce a star. Let H be a graph.

(1) If a(H)�3 then

max R(n; G, H) = n2

2

(
1 − 1

a(H) − 1

)
(1 + o(1)) .

(2) If a(H) = 2 then

max R(n; G, H)�cn2−(1/s),

where s = s(|V (G)|, |V (H)|).
(3) If a(H) = 1 then max R(n; G, H) is not defined.

Thus, in particular, Theorem 2 determines max R(n; G, H) for graphs H with vertex arboricity at least three. In the
following theorem, we collect some partial results dealing with several classes of graphs H with vertex-arboricity 2.
As follows from these results, max R(n; G, H) can take a wide range of values, from linear to subquadratic; the value
depends heavily on the structure of H.
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Theorem 3. Let G be a graph whose edges do not induce a star. Let H be a graph such that a(H) = 2.

(1) If each edge-cut of H contains a star with three edges or at least four vertices of degree 2; and �(G)�3 then

1
4 n log n� max R(n; G, H).

(2) If �(G)�3 then

max R(n; G, Ck) = n

(
k − 2

2
+ 1

k − 1

)
+ O(1).

(3) If H contains a subgraph isomorphic to Kr,r , r �4 then for a constant c,

cn2− 2
r−2 �ex(n, Kr−2,r−2)� max R(n; G, H).

(4) If V (H) can be split into two sets inducing forests with one forest of order at most 2 then

max R(n; G, H)�n5/3(1 + o(1)).

Theorem 3 parts (1) and (4) implies, in particular, that ( 1
4 )n log n� max R(n; K4, K4)�n5/3(1+o(1)). Determining

this mixed Ramsey number remains one of the most interesting open problems in this area.
The next few results are concerned with function min R(n; G, H). The following result was proved in [9].

Theorem 4 (Chung and Grinstead [9]). Let min R(n; K3, K3) = k, then

n =
{√

5
k
, k is even,

2
√

5
k−1

, k is odd.

The main contribution of this paper in studying min R is to describe all extremal colorings corresponding to these
mixed Ramsey numbers (see Section 3) and give all corresponding extremal colorings. As a corollary of this classifi-
cation, we obtain the following results.

Theorem 5. ER(3, n, 3) = √
5
n−1 + 1 if n is odd. ER(3, n, 3) = 2

√
5
n−2 + 1 if n is even.

We also note that if one considers classical multicolor Ramsey problem and imposes an additional constraint of not
having a rainbow triangle, then the modified Ramsey number will be relatively small. In our terminology, we have the
following:

Theorem 6. If min R(n; Kt, K3) = k then n�2kt2
.

We prove Theorem 2 in Section 2. We prove Theorems 4–6 in Section 3. Finally, in Section 4, we study some
miscellaneous problems related to the mixed Ramsey numbers. We study the colorings avoiding rainbow K4 and
monochromatic K3 by analyzing the lexically colored subgraphs and provide some bounds on max R(n; K3, K4). We
also try to relate the classical multicolor Ramsey numbers for triangles with min R(n; K3, K3) in the last section. In
doing so, we show that there are colorings of E(Kn) where each subset of log n vertices contains a rainbow triangle.
For an edge-coloring c of a graph G, we shall use the following notation: if A, B ⊆ V (G), A and B disjoint, then
c(A) is the set of all colors spanned by a set A; c(A, B) is a set of colors present on the edges between A and B under
coloring c.

2. Proof of Theorems 2 and 3

We first need the following lemmas and constructions.

Lemma 1. Let F be a forest on n vertices. Let c be a lexical coloring of K = Kn. Then K contains a rainbow copy of
F under c.
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Proof. We use induction on n, which holds trivially for n = 2. Assume that the statement holds true for any smaller n.
Let F ′ = F − v, where v is a leaf or an isolated vertex of F. Let v1, . . . , vn be an ordering of vertices of K such that,
without loss of generality, c(vi, vj ) = i, 1� i < j �n. Then, we have a rainbow copy of F ′ in K − v1 under coloring c.
Note that this copy of F ′ does not use color 1. Now, consider a copy F ∗ of F in K formed by F ′ and v1 corresponding
to v. There is a single edge incident to v1 in F ∗ and it has color 1. Thus F ∗ is rainbow. �

Lemma 2. Let G be a graph on g vertices whose edges do not induce a star; let H be a graph on h vertices. Let one
of the following hold:

(1) H is a graph with vertex arboricity a, a�2, and c is an edge-coloring of Kn using at least ex(n; T (qa, a)) + 1
colors, q = ER(g, a(ah2 + 2), h), or

(2) V (H) = V1 ∪ V2, where |V1|�2, V2 induces a forest in H, and c is an edge-coloring of Kn using at least
ex(n; K3,t ) + 1 colors, where t = ER(g, 3h + 3, h) + 3.

Then c contains either a monochromatic copy of G or a rainbow copy of H.

Proof. (1) Assume that there is a (G, H)-good coloring, c, of Kn with at least ex(n; T (qa, a)) + 1 colors. Then there
is a rainbow subgraph, R, of Kn such that |E(R)|�ex(n; T (qa, a)) + 1. Thus R contains T = T (qa, a) as a subgraph.
Note that T is rainbow in c with partite sets U1, U2, . . . , Ua , |Ui | = q, 1� i�a. By the Canonical Ramsey theorem,
we have that each Ui induces either a monochromatic copy of Kg , thus containing a monochromatic copy of G; or a
rainbow copy of Kh, thus containing a rainbow copy of H; or a lexically colored Ka(ah2+2). Since the first two options
are not possible, we have that each Ui , i = 1, . . . , a contains a lexically colored Ka(ah2+2). Then there are subsets

Vi ⊆ Ui , |Vi |=ah2 +2, i=1, . . . , a such that Vis induce pairwise disjoint sets of colors. Let T ′=T [V1 ∪V2 ∪· · ·∪Va].
Let B be the set of edges of T ′ whose colors appear on some edges inside Vi for some i, i.e.,

B = {{x, y} ∈ E(T ′) : c(xy) = c(zz′), for some z, z′ ∈ Vk, 1�k�a}.

Claim. There exist Wi ⊆ Vi with |Wi |�h, i = 1, . . . , a such that T ′′ = T ′[W1 ∪ W2 ∪ · · · ∪ Wa] has no edges from B.

Otherwise for any choice of subsets W ′
i ⊆ Vi , |W ′

i |�h, T ′[W ′
1 ∪ · · · ∪ W ′

a] contains an edge from B. Let s = |Vi | =
ah2 + 2, i = 1, . . . , a. Then we have that

|B|�
(

s
h

)a(
s−1
h−1

)2(
s
h

)a−2
= s2

h2
.

On the other hand, |B|�a (s − 1), (here the expression on the right corresponds to |c(V1) ∪ c(V2) ∪ · · · ∪ c(Va)|).
Thus a (s − 1) �s2/h2, implying that ah2 �s, a contradiction which proves the Claim.

Thus, T ′′ defined above has all edges between the parts Wi totally multicolored and the edges inside the parts Wis
lexically colored with new, pairwise disjoint sets of colors, not used on edges of T ′′. Since a(H) = a, V (H) can be
partitioned into a parts each inducing forests F1, . . . , Fa . By Lemma 1 for any i = 1, . . . , a, Wi contains a rainbow
forest Fi , thus Kn[W1 ∪ W2 ∪ · · · ∪ Wa] contains a rainbow copy of H, a contradiction.

(2) Let c be a (G, H)-good coloring of Kn with more than ex(n, K3,t ) colors. Then, there is a rainbow K3,t with
parts A, B of sizes 3 and t, respectively. There are at most three edges of colors from c(A) between A and B, and thus,
by deleting at most three vertices from B, one can find a set B ′ ⊆ B, such that c(A)∩c(A, B ′)=∅, |B ′|� |B|−3. Since
|B ′|�ER(g, 3h + 3, h) and c has no monochromatic G and no rainbow H, we have that B ′ contains a set B ′′ spanning
a lexically colored K3h+3. Again, by deleting at most three vertices from B ′′, one can find B ′′′ ⊆ B ′′, |B ′′′|� |B ′′| − 3,
such that c(B ′′′)∩c(A)=∅. Since all edges between A and B ′′′ have distinct colors, there are two vertices, say x, y ∈ A

incident to at most 2|c(B ′′′)|/3 = 2(|B ′′′| − 1)/3 edges of color from c(B ′′′) in Kn[B ′′′ ∪ A]. Thus there is a set of
vertices, B∗ ⊆ B ′′′, |B∗|� |B ′′′|/3,such that c({x, y}, B∗) ∩ (

c(A) ∪ c(B ′′′)
) = ∅. Since |B∗|�h, and B∗ spans any

rainbow forest on h vertices, B∗ ∪ {x, y} spans a rainbow H, a contradiction.
This argument can be made more precise for H = K4 allowing t to be smaller by a somewhat tedious case analysis,

see for example [5]. This concludes the proof of Lemma 2. �
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Consider a graph G whose edges do not span a star. Let H be a graph, let a = a(H), be the vertex arboricity of H,
let h = |V (H)|, g = |V (G)|.

Construction 1. For a�3, let Q be a Turán graph T (n, a − 1) with parts V1, . . . , Va−1. Construct an edge-coloring,
c, of Kn by totally multicoloring the edges of Q and lexically coloring the complete graph induced by each Vi ,
i = 1, . . . , a − 1 with pairwise disjoint sets of new colors.

For any copy of H in Kn, there is i ∈ {1, . . . , a−1} such that H [Vi] contains a cycle. This cycle has at least two edges
of the same color under c. Thus there is no rainbow copy of H in coloring c. On the other hand, there is no monochromatic
copy of a graph G since all color classes in c are stars. Using the following: |E(T (n, k))|�n2/2(1 − (1/k)) − n/8, we
have that the total number of colors in this coloring is |E(T (n, a − 1))| + n − a + 1�n2/2(1 − 1

a−1 ) − (n/8) + n −
a + 1 = n2/2(1 − 1

a−1 )(1 + o(1)).

Construction 2. Let k be the smallest integer such that n�2k . We shall first describe a coloring, c, of KN , where
N=2k . Label the vertices of KN by binary vectors of length k, color the edges corresponding to the edges of a hypercube
(i.e., the ones with Hamming distance one on corresponding vectors), with distinct colors from the set {0, −1, −2, . . .}.
For any other edge, let its color be the smallest index of the position where the vectors corresponding to the endpoints
differ.

This coloring uses exactly 1
2N log N + log N colors. Each color class in this coloring corresponds to a bipartite

graph thus there is no monochromatic G with �(G)�3. On the other hand, one can show by induction on k that this
coloring does not have any rainbow H such that each of its edge-cuts has either a vertex of degree at least three or four
vertices of degree at least two. Indeed, the basis is trivial; for a step, assume that there is a rainbow copy of H with
V (H) = S0 ∪ S1, such that the vertices in Si have corresponding binary vectors with i in the first position, i = 0, 1. If
one of Sis is empty, we apply induction, otherwise, we see that there are at least two edges of color 1 between S0 and
S1. Thus H is not rainbow, a contradiction. Now, consider a complete subgraph of KN on n vertices using the largest
number, s, of colors under c. Since N/2�n�N , we have that s�N log N/4�(n log n)/4.

The following construction was given in [13], we include it here for completeness.

Construction 3. Let t =
n/(k−1)�. Let the vertex set, V, of a complete graph G be a disjoint union of V0, V1, . . . , Vt ,
such that |V1| = · · · = |Vt | = k − 1, 0� |V0| < k − 1. Let the color of any edge with one endpoint in Vi and another
endpoint in Vj , for i < j , be i. Color the edges spanned by each Vi , i =0, . . . , t , with new distinct colors using pairwise
disjoint sets of colors for each Vi .

The total number of colors in this coloring is at least(
k − 1

2

)
t +

(
n − t (k − 1)

2

)
+ t − 1 =

(
k − 2

2
+ 1

k − 1

)
n + O(1).

This coloring does not have any rainbow cycle of length at least k and does not have any monochromatic graph G,
�(G)�3.

Construction 4. This construction is similar to Construction 2. Let k be the smallest integer such that n�2k . We shall
first describe a coloring, c, of KN , where N =2k . Let r be an integer, r �4. Label the vertices of KN by binary vectors of
length k, let the color of an edge be the smallest index of the position where the vectors corresponding to its endpoints
differ. Now, let S0 and S1 be the sets of vertices whose first positions are encoded 0 and 1, respectively. Let Q be a
bipartite graph with parts S0 and S1 which contains no subgraph isomorphic to Kr−2,r−2 and having largest possible
number of edges. Lets recolor the edges of Q with new distinct colors.

The total number of colors used is ex(N, Kr−2,r−2)(1 + o(1)). Since each color class corresponds to a bipartite
graph, the coloring does not contain any monochromatic G with �(G)�3. Let H be a graph containing Kr,r as a
subgraph. Assume that the coloring has a rainbow copy of H, then it has a rainbow copy of Kr,r with parts A and
B. Let A = A0 ∪ A1, B = B0 ∪ B1, where A0, B0 ⊆ S0, A1, B1 ⊆ S1. Lets assume without loss of generality that
|A0|�r/2�2. Since the complete subgraphs induced by Si , i = 0, 1 do not have rainbow cycles, we see that |B0|�1.
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Thus |B1|�r − 1 and |A1|�1, so |A0|�r − 1. Since Q does not contain a subgraph isomorphic to Kr−2,r−2, there
are at least two edges colored 1 between A0 and B1. Thus H is not rainbow, a contradiction. As in Construction 2
we can choose a complete subgraph on n vertices which, in this coloring, has at least c1 ex(n, Kr−2,r−2) colors, for a
constant c1.

Proof of Theorem 2. Case 1: a(H)�3. Construction 1 gives the lower bound. The upper bound follows from
Lemma 2 and the Erdős–Stone theorem stating that, for fixed s and a,

ex(n, T (s, a)) =
(

n

2

) (
1 − 1

a − 1

)
(1 + o(1)).

Case 2: a(H) = 2.
The bound follows from Lemma 2 and Kövari–Sós–Turán theorem, [20], see for example [7], that states that, for a

fixed s,

ex(n, T (s, 2)) = ex(n, Ks,s)�cn2−1/s(1 + o(1)).

Case 3: a(H) = 1. Proposition 1 shows that, for large n, there is no (G, H)-good coloring in this case, thus
max R(n; G, H) is not defined.

This concludes the proof of Theorem 2. �

Proof of Theorem 3. (1) It follows from Construction 2.
(2) Construction 3 provides the lower bound. For the upper bound, we observe that max R(n; G, H)�AR(n; H) =

AR(n; Ck) = n(k−2
2 + 1

k−1 ) + O(1), as was recently proved in [23].
(3) The bound follows from Construction 4.
(4) This bound follows from Lemma 2 and the fact that ex(n, K3,t )�cn5/3 for a constant c, see, for

example, [7]. �

3. Colorings with small number of colors avoiding rainbow and monochromatic triangles

Recall that a (3, 3)-good coloring is simply a (K3, K3)-good coloring. For convenience, instead of minimizing the
number of colors in a (3, 3)-good coloring ofKn, we shall investigate a dual problem of determiningf ′(k), wheref ′(k)=
max{n : there is a (3, 3)-good coloring of E(Kn) using k colors}. Observe that if f ′(k)=n then min R(n; 3, 3)=k. At
the same time we shall study the following function: f (k) = max{n : there is a (3, 3)-good coloring of E(Kn)with no
lexically colored Kk+1}. Observe that f (k) = ER(3, k + 1, 3) − 1. Below, we provide two sets of edge-colorings of
complete graphs, which we shall prove to be all extremal colorings corresponding to the functions f and f ′.

3.1. Construction of G(n), G′(n)

We define Pent, to be the set of all 2-edge colorings of K5 such that each color class induces a 5-cycle. We define
Bip to be the set of all edge-colorings of K2. Next we define two products of sets of colorings. Let C and C′ be two
sets of edge-colorings of complete graphs. We say that a coloring c of a complete graph G is in

C × C′

if there are, for some m:

(a) a partition of vertices V (G) = V1 ∪ V2 ∪ · · · ∪ Vm,
(b) c′ ∈ C′, a coloring of a complete graph on vertices v1, . . . , vm, such that all edges between Vi and Vj have color

c′(vi, vj ), 1� i < j �m,
(c) c1, c2, . . . , cm ∈ C such that c restricted to G[Vi] is equal to ci , i = 1, . . . , m,
(d) c(Vi) ∩ c′({v1, . . . , vm}) = ∅.

We define C⊗C′, a set of edge-colorings of G similarly to C×C′ with an additional requirement that c(Vi)=c(Vj ),
1� i < j �m.
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G(3)

G(5)

G(7)

Fig. 1. G(n), n is odd.

Note that each coloring in C × C′ is obtained by “blowing up” the vertices from some coloring in C′ and using a
coloring from C in each resulting part such that the colors inside the parts and between the parts do not overlap; each
coloring in C ⊗ C′ is obtained by “blowing up” the vertices from some coloring in C′ and using some coloring from
C in each resulting part such that each part uses the same set of colors and such that the colors inside the parts and
between the parts do not overlap. Now we shall define the set of colorings G(n) recursively.

G(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bip, n = 2;
Pent, n = 3;
(G(n − 2) × Pent) ∪ (G(n − 1) × Bip), n is even, n�4;
G(n − 2) × Pent, n is odd, n�5.

Define G′(n) similarly. Let G′(i) = G(i), i = 2, 3.

G′(n) =
{

(G′(n − 2) ⊗ Pent) ∪ (G′(n − 1) ⊗ Bip), n is even, n�4;
G′(n − 2) ⊗ Pent, n is odd, n�5.

See Figs. 1 and 2 for examples of colorings from G(n). Observe that all colorings in G(n) and G′(n) are defined on
a complete graph with N(n) vertices, where,

N(n) =
{√

5
n−1

for n odd;
2
√

5
n−2

for n even.
(1)

Theorem 7. (1) Let c be a (3, 3)-good coloring of KN avoiding lexically colored Kn+1 and N is as large as possible.
Then c ∈ G(n).

(2) Let c be a (3, 3)-good coloring of KN with n colors and N is as large as possible. Then c ∈ G′(n).

Theorem 7 provides a description of any (3, 3)-good coloring with restricted number of colors and any (3, 3)-good
coloring with restricted size of the lexically colored complete subgraphs. It shows that the restriction of having a fixed
number, s, of colors and a restriction on the order, t, of largest lexical subgraph in (3, 3)-good colorings gives a very
similar extremal graph coloring and the same corresponding Ramsey-type numbers, when t = s + 1. In particular, we
have the infinite family of exact Canonical Ramsey numbers as follows:
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32

Fig. 2. G(n), n is even.

B’
A’

A’’ B’’

A

B’’

B’

Fig. 3. A mixed pair (Vi , Vj ).

Corollary 1. ER(3, n, 3) = √
5
n−1 + 1 if n is odd, ER(3, n, 3) = 2

√
5
n−2 + 1, if n is even. Moreover any color-

ing of KN avoiding rainbow and monochromatic triangles and lexically colored Kn, with n as large as possible,
is in G(n − 1).

While proving Theorem 7, we determine precisely the structure of the coloring between the monochromatic neigh-
borhoods of a fixed vertex, giving a “local” perspective into the coloring. Note, that Theorem 7 can also be proved
using a result of Gyárfás and Simonyi [17] stating that any coloring with no rainbow triangles can be obtained by
“substituting” complete graphs with no rainbow triangles into vertices of 2-colored complete graphs thus describing
Gallai colorings, see [16]. We prove Theorem 7 using a “local” argument in Section 3.2 and we prove it using the result
of Gyárfás and Simonyi in Section 3.3. Both approaches are valuable: the first gives an understanding of a coloring
structure in each vertex’s neighborhood, which is promising for generalizations; on the other hand, the second proof is
shorter.

3.2. Proof of Theorem 7

A pair (A, B) is monochromatic of color i if c(A, B) = {i}. A pair (A, B) is mixed of colors {i, j} if A = A′ ∪ A′′,
B = B ′ ∪ B ′′, c(A′, B ′) = c(B ′, B ′′) = c(B ′′, A′′) = {i} and c(A′, B ′′) = c(A′, A′′) = c(A′′, B ′) = {j}. In a mixed pair,
either A′ or B ′ might be empty, but not both, see Fig. 3. If c(A, B)={i}, we shall write c(A, B)= i. We can accurately
describe the properties of (3, 3)-good colorings using monochromatic and mixed pairs as follows, see also Fig. 4.
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mixed

mixed

mixed

mixed

mixed

mixed

vvv

Fig. 4. All possible mixed pair configurations in extremal (3, 3)-good colorings with odd number of colors incident to v.

Lemma 3. Let c be a (3, 3)-good coloring of a complete graph G with colors 1, 2, . . . . Let v ∈ V (G) and let
Vi = {u ∈ V (G) : c(uv) = i}, i = 1, 2, . . . , k. Assume that Vi = ∅, i = 1, . . . , k. Then the following holds for an
appropriate ordering of colors:

(a) c(Vi, Vj ) ∈ {i, j} and (Vi, Vj ) is either monochromatic or mixed,
(b) if (Vi, Vj ) is monochromatic then c(Vi, Vj ) = i, i < j ,
(c) if (Vi, Vj ) is a mixed pair, then j = i + 1,
(d) if (Vi, Vi+1) is a mixed pair, then neither (Vi−1, Vi) nor (Vi+1, Vi+2) is a mixed pair.

Proof. Part (a) of the lemma is easy and has been proved in [4], as well as the fact that if (Vi, Vj ) is a mixed pair then
(Vi, Vl) is not a mixed pair for any l = j , which immediately implies part (d). We prove part (b) by induction on k,
which trivially holds for k = 2. Assume that sets V1, V2, . . . , Vk−1 are ordered so that conclusion of part (b) holds.
Observe that if c(Vi, Vk) = i then for all j, 1�j < i, c(Vj , Vk) = j . Let i be the largest index such that c(Vi, Vk) = i.
If no such i exists, define i = 0. If i = k − 1, we are done. Otherwise, for all j > i, we have c(Vk, Vj ) = k or (Vk, Vj )

is a mixed pair. Let us relabel Vi+1, Vi+2, . . . , Vk−1 to Vi+2, Vi+3, . . . , Vk , and relabel Vk to Vi+1, respectively. The
resulting ordering satisfies (b). To prove part (c), consider i, j , 1� i < j −1�k −1 and assume that (Vi, Vj ) is a mixed
pair. Then there are vertices vi ∈ Vi, vi+1 ∈ Vi+1, vj ∈ Vj , such that c(vi, vj )= j, c(vi, vi+1)= i, c(vi+1, vj )= i + 1,
giving a rainbow triangle, a contradiction. �

Lemma 3 implies that in a (3, 3)-good coloring, the coloring of the edges between the monochromatic neighborhoods
of any vertex corresponds to a “blown up” lexical coloring with possible exceptional (mixed) pairs of consecutive sets.

Let c be a (3, 3)-good coloring of a complete graph G such that it has no lexical subgraph of order larger than n and
such that G has as many vertices as possible, i.e., |V (G)| = f (n). Let c′ be a (3, 3)-good coloring of a complete graph
G′ such that it uses n colors and G′ has as many vertices as possible, i.e., |V (G′)| = f ′(n). Let’s choose vertices v, v′
incident to the largest number, k, k′, of colors in c, c′, respectively. Let V1, V2, . . . , Vk be defined with respect to v and
c, and U1, . . . , Uk′ be defined with respect to v′ and c′ as in Lemma 3. In the following lemma we shall analyze the
structure of colorings induced by Vis and Uis in c and c′, respectively.

Lemma 4.

(a) If 1� i�k and Vi is not a part of a mixed pair in c then |Vi | = |Vi+1 ∪ Vi+2 ∪ · · · ∪ Vk ∪ {v}| = f (n − i).
(a′) If 1� i�k′ and Ui is not a part of a mixed pair in c′ then |Ui | = |Ui+1 ∪ Ui+2 ∪ · · · ∪ Uk′ ∪ {v′}| = f ′(n − i).
(b) If 2� i�k and (Vi−1, Vi) is a mixed pair in c then |V ′

i−1| = |V ′′
i−1| = |V ′

i | = |V ′′
i | = |Vi+1 ∪ Vi+2 ∪ · · · ∪ Vk ∪

{v}| = f (n − i).
(b′) If 2� i�k′ and (Ui−1, Ui) is a mixed pair in c′ then |U ′

i−1| = |U ′′
i−1| = |U ′

i | = |U ′′
i | = |Ui+1 ∪ Ui+2 ∪ · · · ∪ Uk ∪

{v′}| = f ′(n − i).

Proof. We shall prove part (a), the other parts can be proven in a very similar manner. Observe first that c(Vi) ∩
{1, 2, . . . , i} = ∅ and c(Vi+1 ∪ Vi+2 ∪ · · · ∪ Vk ∪ {v}) ∩ {1, 2, . . . , i} = ∅. Let Ti ⊆ Vi be the largest set of vertices
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spanning a lexically colored complete subgraph. If |Ti | > n − i consider Si = {v1, v2, . . . , vi−1, v} ∪ Ti . We have that
Si is a set on more than n vertices spanning a lexically colored complete subgraph. On the other hand, if |Ti | < n − i

then we can enlarge Vi , thus contradicting the maximality of the number of vertices in the original graph. Thus, we
have that |Vi | = f (n − i). Similarly, we have that |Vi+1 ∪ Vi+2 ∪ · · · ∪ Vk ∪ {v}| = f (n − i). �

Observe that if Vk is not a part of a mixed pair then |Vk| = 1, otherwise a vertex in Vk will be incident to more than
k colors, a contradiction. If (Vk−1, Vk) is a mixed pair, we have similarly, that |V ′

k| = |V ′′
k | = 1. Using Lemma 4, we

have that |Vk| = 1 = n − k or that |V ′
k| = 1 = n − k, i.e.,

n = k + 1.

Lemma 4(a) and (b) give us the following recursion: if V1 is not a part of a mixed pair, we have that f (n)= 2f (n− 1);
if (V1, V2) is a part of a mixed pair, we have that f (n) = 5f (n − 2).

f (n) = 5f (n − 2) = 5 · · · 5f (n − 2i) = 5 · · · 5 · 2f (n − 2i − 1) =
m︷ ︸︸ ︷

5 · · · 5 ·
s︷ ︸︸ ︷

2 · · · 2 .

This expression is clearly maximized when m is largest possible, namely equal to 
k/2�. Therefore, when k is even,
all pairs (V1, V2), (V3, V4), . . . , (Vk−1, Vk) being mixed. For k odd, exactly one set, Vi , for some i, is not a part of
a mixed pair and (V1, V2), (V3, V4), . . . , (Vi−2, Vi−1), (Vi+1, Vi+2), . . . , (Vk−1, Vk) are mixed pairs. This shows that
c ∈ G(n).

A very similar argument shows that c′ ∈ G′(n). This concludes the proof of Theorem 7.

3.3. Proof of Theorems 7 and 8 using structure of Gallai colorings

In [17], Gyárfás and Simonyi proved a theorem first suggested by the work of Gallai in [16] which we will restate
here as follows.

Proposition 2 (Gyárfás and Simonyi [17]). Let c be an edge coloring of Kn with no rainbow triangles. Then c ∈ C×C′,
where C is a set of all 2-colorings and C′ is a set colorings of a complete graph with less than n vertices with no rainbow
triangle.

This Proposition gives us the following proof for Theorem 7.

Proof of Theorem 7. Let c be a (3, 3)-good coloring of a complete graph G with maximum number, N, of vertices
such that it does not contain lexically colored Kn+1. We shall prove by induction on n, that c ∈ G(n). If n = 2 then
c ∈ G(2); if n=3, G ∈ G(3). Let n�4. Proposition 2 implies that c ∈ C1 ×C2, where C1 is a set of all 2-colorings with
no monochromatic triangle and C2 is the set of all (3, 3)-good colorings of complete graphs on less than N vertices.
We have, for some c1 ∈ C1, a coloring of a complete graph on vertices v1, . . . , vm, V (G) = V1 ∪ · · · ∪ Vm, where
c(Vi, Vj ) = c1(vivj ), 1� i < j �m and c defined on G[Vi] is in C2, 1� i�m. We have, in particular that m�5 since
c1 is a 2-coloring with no monochromatic triangles.

Case 1: c1 uses one color. Then c1 ∈ G(2), and c defined on G[Vi] has no lexically colored Kn and has as many
vertices as possible, i = 1, 2. Thus c, defined on G[Vi], is in G(n − 1), i = 1, 2.

Case 2: c1 uses two colors. Then, since N is maximum, c1 ∈ Pent =G(3), and m= 5. We have also that c defined on
G[Vi] has no lexically colored Kn−1, i = 1, . . . , 5, thus, again by maximality of N, c, defined on G[Vi], is in G(n− 2).

Using the number of vertices N(n) in any coloring from G(n), see (1), we have that in Case 1,

|V (G)| = 2N(n − 1) =
{

2 · √
5
n−2

, n is even;
4 · √

5
n−3

, n is odd.

In Case 2, we have

|V (G)| = 5N(n − 2) =
{√

5
n−1

, n is odd;
2 · √

5
n−2

, n is even.
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If n is odd, Case 2 gives more vertices, and we have c ∈ Pent × G(n − 2). If n is even, both Cases give the same
number of vertices and we have c ∈ (Pent×G(n−2))∪(Bip×G(n−1)). Therefore, c ∈ G(n) and |V (G)|=N =N(n).
This concludes the proof of the first part of the Theorem. �

The proof of the second part is very similar and can be carried out using induction on the number of colors in the
coloring.

Proof of Theorem 6. We shall prove the following stronger statement. Let R(s, t) be a classical Ramsey number
corresponding to the smallest number of vertices in a complete graph such that any coloring of its edges in two colors,
Red and Blue, contains either a Red Ks or a Blue Kt . Let mixR(t1, t2, . . . , tk; 3) be the largest integer n such that there
is a coloring of E(Kn) with colors {1, 2, . . . , k} containing no rainbow triangle and no monochromatic Kti in color i,
ti �3, i = 1, . . . , k.

Claim. mix R(t1, t2, . . . , tk; 3)�max1� i<j �k(R(ti , tj ) − 1)(t1+t2+···+tk)/2.

To prove the Claim, consider such a coloring c. Since it does not have rainbow triangles, we have, applying Propo-
sition 2, that the vertices of Kn are split into sets V1, . . . , Vm such that all edges between any two sets have the same
color and there are at most two colors, say, i and j, altogether used on them. Thus, we have that m < R(ti, tj ), where
R(ti, tj ) is the classical two-color Ramsey number. If there is only one color, i, used between the sets V1, . . . , Vm,
then m = 2 and neither V1 nor V2 induce Kti−1 in color i, thus n�2 mixR(t1, . . . , ti−1, ti − 1, ti+1, . . . , tm; 3). If
there are two colors, i and j, used between the sets V1, . . . , Vm, then because of maximality of n, we have that
m = R(ti, tj ) − 1 and each Vi does not induce Kti−1 in color i and does not induce Ktj −1 in color j. Therefore
|V�|�mixR(t1, t2, . . . , ti−1, ti −1, ti+1, . . . , tj−1, tj −1, tj+1, . . . , tk; 3), 1���m. Thus we have that n�(R(ti , tj )−
1)mixR(t1, t2, . . . , ti−1, ti − 1, ti+1, . . . , tj−1, tj − 1, tj+1, . . . , tk; 3). This recursion proves the claim.

Now, if we have a coloring of E(Kn) with no monochromatic Kt and no rainbow K3 using k colors, the Claim
implies that

n�R(t, t)tk/2 �(4t )tk/2 = 2t2k. �

Note: Since there is no general description of colorings with no rainbow Ks , s�4 known to the best of our knowledge,
the above technique does not extend to other graphs H, but K3.

4. Miscellaneous

4.1. On (K3, K4)-colorings and the structure of lexically colored subgraphs

In this section, we investigate the structure of (3, 4)-good colorings with respect to lexically colored subgraphs. First,
we establish that two complete lexically colored subgraphs in a (3, 4)-good colored complete graph can not have “too
many” colors on the edges between them.

Lemma 5. Let A,B be disjoint sets. Let c be a (3, 4)-good coloring of a complete graph G with vertex set A ∪ B. Let
A and B span lexically colored complete graphs using disjoint sets of colors in c. Then any rainbow cycle in c uses
colors from c(A) ∪ c(B). Moreover, the number of colors in c on the edges between A and B which are different from
the colors in c(A) ∪ c(B) is at most |A| + |B| − 1.

Proof. Let C be a rainbow cycle in c not using colors from c(A) ∪ c(B). We shall show that this is impossible by
induction on the length of C. Observe first that any such cycle has no edges in G[A] or in G[B]. It is clear that C can
not have length 4, otherwise, since c(A) ∩ c(B) = ∅, the vertices of C will span a rainbow K4. Suppose there is a
rainbow cycle, C, of length 2n + 2, not using colors from c(A) ∪ c(B). Let {a1, a2, . . . , an+1} = A ∩ V (C), and let
{b1, b2, . . . , bn+1} = B ∩ V (C), in lexical order, i.e., such that c(aiaj ) = �i , c(bibj ) = �i , if 1� i < j �n + 1, for
distinct �1, �1, . . . , �n, �n. Now consider the smallest m such that a1bm ∈ E(C). Let a1bq and apbm be the other two
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edges of C incident to a1 and bm, respectively. Consider an edge e = apbq . In order for {a1, ap, bm, bq} not to induce a
rainbow K4, we must have c(e) ∈ {c(a1bm), c(a1bq), c(apbm), �1, �m}. Then C′ = C − {a1, bm} ∪ e is rainbow cycle
of length 2n with colors not used in c(A\a1) ∪ c(B\bm). Applying the induction hypothesis to a coloring c restricted
to G[A ∪ B\{a1, bm}] and a cycle C′, we obtain a contradiction. Now, consider a maximal bipartite subgraph G′ of
G with partite sets A and B which does not have edges of colors from c[A] ∪ c[B]. Since G′ is acyclic, we have that
|E(G′)|� |A| + |B| − 1. �

Lemma 6. Let c be a (3, 4)-good coloring of a complete graph with vertex set A ∪ B, such that A and B induce
vertex-disjoint lexically colored graphs, |A|� |B|. Then |c(A, B)\(c(A) ∪ c(B))|�6|A| + |B|.

Proof. Let c(A) ∩ c(B) = I . Let A′ ⊆ A, B ′ ⊆ B be the vertices “carrying” colors from I, i.e., c(A′) = c(B ′) = I .
Thus c(A\A′) ∩ c(B) = ∅, c(A′) ∩ c(B\B ′) = ∅. We also have that

c(A, B) = c(A\A′, B) ∪ c(A′, B\B ′) ∪ c(A′, B ′). (2)

Using Lemma 5, we have that

|c(A\A′, B)\(c(A) ∪ c(B))|� |A\A′| + |B| − 1 = |A| − 1,

|c(A′, B\B ′)\(c(A) ∪ c(B))|� |B\B ′| + |A′| − 1 = |B| − 1.

Now, we only need to estimate the number of colors between A′ and B ′. For a subset S, S ⊆ A′, let S∗ ⊆ B ′ such that
c(S) ∩ c(S∗) = ∅ and |S| + |S∗| = |A′| + 1 = |B ′| + 1. Then again, from Lemma 5, we have that |c(S, S∗)\(c(A) ∪
c(B))|� |S| + |S∗|− 1 = |A′|. Thus, we can count over all such subsets S of A′ of size 
|A′|/2� to find an upper bound
on the number of colors between A′ and B ′.

|c(A′, B ′)\(c(A) ∪ c(B))|�
∑

S⊆A′,|S|=
|A′|/2�

|c(S, S∗)\(c(A) ∪ c(B))|( |A′|−2

|A′|/2�−1

) + |A′|

=
( |A′|


|A′|/2�
) |A′| − 1( |A′|−2


|A′|/2�−1

) + |A′|�5|A′|�5|A|.

Using all these bounds in (2), we have

|c(A, B)\(c(A) ∪ c(B))|� |A| − 1 + |B| − 1 + 5|A|�6|A| + |B|. �

Theorem 8. Let c be a (3, 4)-good coloring of Kn. Let V (Kn) = L1 ∪ L2 ∪ · · · ∪ Lk , where Lis are disjoint sets
inducing lexically colored complete subgraphs. Then the total number of colors in c is at most 6kn.

Proof. By Lemma 6, |c(Li, Lj )|\(c(Li) ∪ c(Lj ))|�6(|Li | + |Lj |), 1� i < j �k. Moreover |c(Li)| = |Li | − 1, i =
1, . . . , k. Therefore, the total number of colors is at most∑

1� i<j �k

6(|Li | + |Lj |) +
∑

1� i �k

(|Li | − 1)

�6(k − 1)
∑

1� i �k

|Li | +
∑

1� i �k

|Li |�6k
∑

1� i �k

|Li | = 6kn. �

4.2. Colorings containing a rainbow triangle induced by each subset of size at least c ln n

In this section we show that there are colorings in which it is difficult to avoid rainbow triangles.

Lemma 7. For any k�3, n large enough, there is a coloring of E(Kn) with k colors such that each subset of vertices
of size at least C log n induces a rainbow triangle.
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Proof. Let G be a complete graph on n vertices. Consider a random k-coloring, c, of E(G) with k colors 1, 2, . . . , k

such that Prob(c(e) = i) = 1/k for any edge e and any color i, 1� i�k. We need to estimate the following:

Prob(∀S ⊆ V, |S| = s, G[S]has a rainbow triangle in c)

= 1 − Prob(∃S ⊆ V, |S| = s, G[S] has no rainbow triangle)

�1 −
(n

s

)
Prob(fixed S, S ⊆ V, |S| = s, G[S]has no rainbow triangle). (3)

For a fixed subset, S, of s vertices, let f (S) = Prob(G[S] has no rainbow triangle in c). Let T1, . . . , T( s
3 )

be triples
of vertices in S. Let Bi be the event that Ti induces a rainbow triangle in coloring c. Then, using generalized Janson’s
inequality, see for example [1],

f (S) = Prob

⎛
⎝( s

3 )∧
i=1

Bi

⎞
⎠ � exp(−�2/�),

where

� =
( s

3 )∑
i=1

Prob(Bi), � =
( s

3 )∑
i=1

∑
i∼j

Prob(Bi ∧ Bj ).

Here i ∼ j if Bi and Bj are not independent events, i.e., in the above situation, Bi ∼ Bj when Ti and Tj share two
vertices.

Prob(Bi) = (k − 1)(k − 2)

k2
, Prob(Bi ∧ Bj ) = 2

(k − 1)2(k − 2)2

k4
,

if i ∼ j . We have the following values of � and �.

� =
( s

3 )∑
i=1

Prob(Bi) =
( s

3

) (k − 1)(k − 2)

k2
,

� =
( s

3 )∑
i=1

∑
i∼j

Prob(Bi ∧ Bj ) =
( s

3

)
3(s − 3)2

(k − 1)2(k − 2)2

k4
.

Therefore,

�2

2�
�c1s

2

for a constant c1, and

f (S)� exp(−c1s
2).

Coming back to (3), we have

Prob(∀S ⊆ V, |S| = s, G[S] has a rainbow triangle in c)

�1 −
(

n

s

)
e−c1s

2

> 0,

if 1 >
(

n
s

)
e−c1s

2
, which holds if for s > c′ ln n, where c′ �40. �

Note that this proof can be carried out using several other methods.
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Remarks. We have determined max R(n; G, H) in most cases. The only open problem left is to determine this
function when the vertex arboricity of H is equal to two. In particular, one of the most intriguing problems is to find
max R(n; K4, K4). Recently Daniel Kral, Veselin Jungic and Tomas Kaiser announced that they have improved the
upper bound to n3/2. The problem of determining min R(n; Kt, Ks) is wide open for all t > 3, s > 3.
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