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1. INTRODUCTION AND STATEMENT OF RESULTS

All groups that we consider are finite and soluble.

Recall that a formation is a class of groups which is closed under
homomorphic images and subdirect products. Hence, if & is a formation
and G is a group which is a direct product of the subgroups 4 and B, then
G isin & if and only if 4 and B lie in &#. More generally, Doerk and
Hawkes [4, 1V, 1.18] proved that if G is a group such that G = A4 X B,
then G = A7 X B?, where G” is the F-residual of G, that is, the smallest
normal subgroup of G with quotient in . The main purpose of this paper
is the development of this result by means of the concept of F#~subnormal
subgroup.

Suppose that .7 is a saturated formation. A maximal subgroup M of a
group G is called $=normal in G if G/Core;(M) € . A subgroup H of
G is called #~subnormal in G if either H = G or there exists a chain
H=H,<H, < - <H,=G such that H; is an -normal maximal
subgroup of H; , for 0 <i <n. It is clear that if ¥ =.#, the saturated
formation of all nilpotent groups, the “#subnormal subgroups of G are
exactly the subnormal subgroups of G.

Let . be a subgroup-closed saturated formation containing .#. It is
rather easy to see that if % is closed under the product of normal
subgroups, then G© = A”B” for every pair of subnormal subgroups 4 and
B such that G = AB. This result does not remain true if 4 and B are
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F-subnormal in G. Consequently, a natural question arises:

Which are the subgroup-closed saturated formations & of full character-
istic satisfying the following property: if G = HK and H and K are
F-subnormal subgroups of G, then G = H”K”? We have already some
information about this question. The first author [3] proves the following
result:

THEOREM A. Let F be a subgroup-closed saturated formation of soluble
groups containing /4. The following statements are pairwise equivalent:

(1) F satisfies the property
(*) If H and K are two F-subnormal F-subgroups of a group G and
G = HK, then G € &.
(2) 7 satisfies the property

(**) If H is an F-subnormal F-subgroup of a group G and K is a
normal F-subgroup of G and G = HK, then G € &.

(3) If F is the integrated and full formation ﬁmctlon defining &, then for
each prime number p, F(p) =% N.%, , where w(p) = char F(p).

(4)  For each prime number p, there exists a set of primes w(p) with
p <€ mu( p) such that F is locally defined by the formation function f given by

fp) =)

Not every member of the family described in the aforementioned
theorem satisfies the above property. In fact we prove:

THEOREM 1. Let F be a subgroup-closed saturated formation containing
A. The following statements are pairwise equivalent:

(1) F satisfies the property

(*) If H and K are two F-subnormal subgroups of a group G and
G = HK, then GZ = H°K?.

(2) F satisfies the property

(**) If H is an F-subnormal subgroup of a group G and K is a
normal subgroup of G and G = HK, then G~ = H'K”.

(3) For each prime number p, there exists a set of primes w(p) with
p € ( p) such that  is locally defined by the formation function f given by
f(p) =, These sets of primes satisfy the following property: If ¢ € m(p),
then w(q) € 7 (p) for every pair of prime numbers p, q.

Remark. The saturated formations % described in statement (3) of
Theorem 1 are a generalization of the formations of all nilpotent and
p-nilpotent groups (p a prime) in the following sense:
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Let # be a saturated formation of soluble groups containing .#" and
locally defined as in Theorem 1(3). Then a group G €. if and only if G
has a normal Hall 7( p)Y-subgroup for every prime number p.

Proof. Assume G € F = ,cpF STy Then as p € mw(p), we
have G € N,cp S,y Now if g € w(p) then w(q) < w(p) by the
hypotheses. So for every prime number p, we have that & C
Ny < nim ZoTnip COnsequently OTPUG) < N, c (S5 =S,y a@nd we
are done.

On the other hand consider 7= N, < p %,y the class of groups

such that G €.# if G possesses a normal 7( p)-Hall subgroup for all p.
Take G €7\ & a group of minimal order. Then G = NM is a primitive
group with Soc(G) = N a minimal normal subgroup of G and M a
maximal subgroup of G with Core;(M) = 1. Assume p ||N|. By minimal-
ity of G we have M € . Now G ezT(p)y;T(p), so G €5, In particu-
lar, M €%, ,, = f(p), and G € Z, a contradiction.

Let & be a subgroup-closed saturated formation containing .#"and let F
be the full and integrated local formation function defining . In [2,
Theorem 3.3] it is proved that the set of all .#~subnormal subgroups is a
lattice for every group if and only if F can be described in the following
way:

There exists a partition {7}, , of the set of all prime numbers, such
that F(p) =7, , for every prime number p € m; and for every i € L.

We refer to this family of saturated formations as lattice-formations.
The members of this family also enjoy the following property [2, Theorem
4.1]: if H and K are two .#-subnormal .#-subgroups of G, then (H, K) € 7.
This result motivates the following questions:

Suppose that .7 is a lattice-formation. Is it true that G” = (H”, K7 if
H and K are two #~subnormal subgroups of G such that G = (H, K)? In
the affirmative case, is it a characterization of the members of this family?

The following theorem contains the answer to the aforesaid questions.

THEOREM 2. Let F be a subgroup-closed saturated formation containing
A, the class of all nilpotent groups. Then the following statements are pairwise
equivalent:

(1) If H is an F~subnormal subgroup of a group G then:
(*) (H,H®Y = (H" (H8)7) forallg € G.
(2) Let F be the full and integrated local formation function defining &.

Then there exists a partition {mw}, ., of the set of all primes, such that
F(p) =%, , for every prime number p € m; and for every i € L.
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(3) If H and K are two F-subnormal subgroups of a group G, then:
(%) (H,K)" =(H",K”).

We use conventional notions and notation. They have been taken from
the book of Doerk and Hawkes [4].

In order to prove our theorems we need the following preliminary
results:

LEMMA A [4, A, 14.3].  If H is a subnormal subgroup of a finite group G,
then Soc(G) normalizes H.

LEMMA B [5, Lemma 1.1]. Let & be a subgroup-closed saturated forma-
tion. If H is #~subnormalin G and H < U < G, then H is F-subnormal in U.

LEMMA C[4, IV, 3.16].  Let ¢ be one of the closure operations s, s,, or N,.
Let & = LF(F), and assume that & = ¢&. Then F(p) = cF(p) for all prime
numbers p.

LEMMA D [1, Lemma 1.3.2].  Let the finite group G = AB be the product
of two subgroups A and B. If A, B, and G are D_-groups for a set w of
primes, then there exist Hall m-subgroups A, of A and B, of B such that A, B,
is a Hall m-subgroup of G.

2. PROOFS

Proof of Theorem 1. It is clear that (1) implies (2) because .7 is
contained in &% and so every subnormal subgroup of a group G is
F-subnormal in G.

(2) implies (3). By Theorem A we have that for each prime p, there
exists a set of primes 7 (p), with p € w(p), such that .7 is locally defined
by the formation function f given by f(p) =7, ;. Assume now that p and
g are two prime numbers such that ¢ € #(p). Suppose that there exists a
prime r € m(q) \ 7(p) (notice that p # r # q). Let I, be an irreducible
and faithful C-module over GF(q). Denote by X = [V,]IC, the corre-
sponding semidirect product. Then X € 7. By [4, B, 11.7] we can take an
irreducible and faithful X-module V, over GF(p) such that the trivial
C,-module is a quotient module of (V,).. If G =[V,]X denotes the
corresponding semidirect product, we have G7 = V,. Consider the normal
subgroup K = [V,]V, of G and H =[V,]IC,. It is clear that H is an
F-subnormal subgroup of G. Moreover since g € w(p), we have K € .
But H” <[V, C,]1 < V,, a contradiction with the fact G" = H"K”.

(3) implies (1). We see that .7 verifies condition (*).
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Suppose not and take G of minimal order among the groups X having
two F~subnormal subgroups A4 and B with X = AB such that X” # A”B”.
Then there exist two F-subnormal subgroups H and K of G such that
G = HK and G # H”K?. We choose a pair (H, K) such that |H| + | K| is
maximal.

Let M be an S-normal maximal subgroup of G containing H. Then
M =H(KN M) Now H and K N M are F-subnormal subgroups of M.
By minimality of G we have that M7 = H”(K n M)”. Suppose that H is
a proper subgroup of M. Since G = MK, the maximality of the pair (H, K)
yields G~ = MK = H”K”, a contradiction. So H = M is an $-normal
maximal subgroup of G. Arguing in a similar way with K we obtain that
both H and K can be assumed to be maximal #normal subgroups of G.
Thus G < H N K and we have H”K” is a normal subgroup of G”. On
the other hand, by the minimality of G it follows that Soc(G) < G and
G7 = HK7N for each minimal normal subgroup of G. So if N is a
minimal normal subgroup of G and p is the prime dividing |N|, we can
assume that G is a p-group. Otherwise 1 # OP(G”) < H”K”. Since
O*(G”) is normal in G, there would exist a minimal normal subgroup of
G contained in H”K” and we would be done. Moreover Core;( H'K”) =
1.

We reach the contradiction by proving G € . To see this, we prove that
G has a normal Hall 7 (g)-subgroup for every prime g.

Let ¢ be a prime such that p € 7(q). Since G/G” € . and Lemma D,
we have that 7' = GyHW(q),KW(q), is a normal subgroup of G, where H,_
is a Hall 7w(g)-subgroup of H and K,y is a Hall m(q)-subgroup of K
such that H,_ K,y = K,y H,qy is a Hall m(g)-subgroup of G. In
particular 7K = H, ., K and TH = K, H are subgroups of G. We
distinguish two cases:

Casel. H_, <KorK,, <H.

If H .,y <K, then T is a subgroup of K and T < Core;(K). Hence

T < (Core;(K))” < K7. Since (Cores(K))” is contained in

Core;(H”K?) = 1, it follows that 77 = 1 and so T belongs to .Z. There-

fore H, ,yK,y = K,y is a characteristic subgroup of the normal sub-
=gy 18 normal in G and G has a normal

group 7. In particular G,y = K
Hall 7(g)-subgroup. If K_ ., < H, the result follows analogously.

m(q)
Case 2. H,_ is not contained in K and K,y is not contained in H.

In this case G = TH = TK because H and K are maximal subgroups of

m(q)

G. Since H/H” belongs to %, we have that H”H_,, is a normal
subgroup of H. Hence [H'K”, H, 1 <[G” H,,,] < G"nH’H_ ;=

H? because G” is a normal subgroup of G such that H” < G < H and

G” is a p-group. This means that H_, normalizes H”K”. Analogously
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K.y normalizes H”K”. Since G” normalizes H”K”, then so does T.
Since G = TK = TH, it follows that H”K is a normal subgroup of G.
This means that H”K” = 1 because Core;(H”K”) = 1. In particular H
and K belong to . Applying Theorem A, we have G € ¥ and G has a
normal Hall 7(g)-subgroup.

Now let a prime r be such that p does not belong to #(r). Then p
belongs to 7(r) and since G” is a p-group, it follows that G has a normal
Hall 7 (rY-subgroup.

Consequently G belongs to & and 1 = G = H”K”, final contradiction.

Proof of Theorem 2. It is clear that (3) implies (1). We prove
(1) implies (2). We split the proof into the following steps.

(@) For each prime number p, every primitive group G € 9N
b(F(p)) is cyclic.

It is clear that G has a uniqgue minimal normal subgroup N, and
evidently N must be a g-group, where g # p, and g is a prime number.
Therefore there exists an irreducible and faithful G-module V), over
GF(p). We claim that G has a unique maximal subgroup M such that
Core;(M) = 1, which provides the result.

Assume that M, and M, are maximal subgroups of G, M, # M, and
Cores(M,) =1, i =1,2. Then M; € F(p). Consider now the semidirect
product H = [Vp]G with respect to the action of G on V). Clearly H does
not belong to %, so H” = V,. On the other hand, for i = 1,2, V, M, is an
F-normal maximal subgroup of H and V,M; € %,F(p) = F(p) C.. Now
H=<(V,M,V,M,) =V,M,(V,M,)*) for some g € H. So by (*) we
have H” = ((V,M,)”,((V,M,)*)”) = 1, a contradiction.

Arguing as in (2) and (3) of [2, Theorem 3.3] we obtain that if p and ¢
are two prime numbers such that p < char F(q), then char F(p) =
char F(q).

(b) If p,q are two prime numbers and p € char F(q), then .%, C
F(g). Assume there exists P a p-group such that P does not belong to
F(q) and suppose p* is the exponent of the abelian p-group P/P'.
Consider Q = P\ R, where R ={(1,2,..., p®)) is a cyclic group of order
p’ regarded as a subgroup of the symmetric group of degree p°. The above
wreath product is taken with respect to the natural permutation represen-
tation of R of degree p°. It is clear that Q is a p-group. Set D =
{(a,a,...,a)/a € P} the diagonal subgroup of P#, the base group of Q.
Since a”" € P, we have that D is contained in [P#, R] by [4, A, 18.4]. In
particular D < Q" and D is isomorphic to P. So what we have proved is
that there exists a p-group Q such that P < Q'. Let us now consider the
regular wreath product W, = O \ C, of O with C, and denote by V, an
arbitrary faithful W;-module over GF(q). If W =[V, W, denotes the
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corresponding semidirect product, it is clear that W does not belong to .7,
otherwise we would have P € F(q), a contradiction. Since W, is p-group,
we have that W, €. and W7 < V,. Consider now the subgroup of W,
H=V,.C, We have O, (H) =V, and p € char F(q), so H € Z. If we
take g € W, we have that H and H# are two #-subnormal #-subgroups of
W. By condition (*), it follows that {H, H¢Y" = {(H7,(H®)”) =1, and
(H,H¢) e 7.

Repeated application of this argument shows that the normal closure of
H in W, (H"), belongs to 7. Now (H") = V,(C)/') implies that (C,)
€ F(g). Finally since F(q) is a subgroup-closed formation and Q' is
isomorphic to a subgroup of (CPW1>, we have P € F(q), a contradiction.

(©) If p,q are two prime numbers and p € char F(q), then ., F(q)
= F(q). Assume that G is a group of minimal order in ., F(q) \ F(q).
Then G has a unique minimal normal subgroup N, G/N € F(q), and N is
a p-group. Suppose now G € . If M is a maximal subgroup of G and
g € G such that M # M#, we have M and M¢ belong to F(q). Now if 1,
is an irreducible and faithful G-module over GF(q) and H =[V,IG
denotes the corresponding semidirect product, it is clear that H does not
belong to 7. Therefore H” = V,. Moreover V,M €.% F(q) = F(q) c 7.
So V,M and V,M¢ are two F-normal F-subgroups of H such that
H =<V ,M,(V,M)*). By condition (*), H €.%, a contradiction. Hence
every maximal subgroup of G is normal in G. Hence G is a nilpotent
group. Consequently G is a p-group and then G € F(q) because of (b).
Therefore G does not belong to . In particular, N is not contained in
the Frattini subgroup of G. Thus there exists a maximal subgroup R of G
such that G = NR, R € F(q), and G” = N. Now R must be again a
nilpotent group by the above argument. So R = P, X P, X -+ X P, where
P, € Syl (R) and 7(R) = {p,,..., p,}. Now if #(p) = char F(p) for each
prime p, we have R €7, ,, =%, So m(R) is contained in char F(p).
Therefore, by (b), R € F(p) and G €%, F(p) = F(p) C.%, a contradic-
tion.

(d) If pis aprime number and 7 = char F(p), then F(p) =.7,.

Since F(p) is a subgroup-closed formation, it is clear that F(p) C.7,.
On the other hand, assume that F(p) #.7, and let G €.%, \ F(p) be a
group of minimal order. Let N be a minimal normal subgroup of G. Then
N is a g-group, for some q € 7, and G/N € F(p). Thus G €., F(p) =
F(p) because of (c), a contradiction.

(2) implies (3). Suppose now there exists a partition {=}; . ; of the set of
all prime numbers, such that F(p) =.7, , for every prime p € m; and for
every i € L. We see that .# verifies condition (**).
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Suppose not and take G a group of minimal order among the groups X
having two S-subnormal subgroups 4 and B such that (A, B) #
(A?, BY).

Then there exist two #subnormal subgroups H and K of G such that
(H,K)Y # (H”?,K7). Choose H and K with |H| + |K| maximal. Assume
that (H,K) is a proper subgroup of G. Since H and K are also
F=subnormal subgroups of (H, K, it follows that (H, K)” = (H?, K7,
by minimality of G. So we may assume G = (H, K). Again by minimality
of G, we can deduce easily that Soc(G) < G and G = (H”, K )N for
each minimal normal subgroup N of G. So we may assume
Core;((H”, K7)) = 1. On the other hand, since H and K are F-subnor-
mal subgroups of G, it follows by [2, Lemma 3.1] that (H7, K7) is a
subnormal subgroup of G. Therefore N < N;((H?, K7)) for each mini-
mal normal subgroup of G. Consequently Soc(G) normalizes ( H”, K ).
This implies that ( H”, K”) is a normal subgroup of G”.

Arguing as in Theorem 1 we also have that G” is a p-group for some
prime number p.

Assume now that H is a proper subgroup of HG”. Since HG” and K
are F~subnormal subgroups of G and |HG”| + |K| > |H| + |K]| it follows
that G7 = {(HG?)”, K7 ) by the choice of the pair (H, K). Now H and
G” are two .F-subnormal subgroups of HG”. Theorem 1 implies that
(HG”) = H” and G = (H”, K7, a contradiction.

We may assume that G” is contained in H N K. In particular H"K is
a subgroup of G”. Let X be a Hall 7( p)-subgroup of G. Since G/G” € .7,
it follows that X/G” is a normal subgroup of G/G?, by [2, Lemma 3.2],
and so X is a normal subgroup of G.

Suppose that H is a proper subgroup of HX. Since HX is an #subnor-
mal subgroup of G, it follows that G = ((HX)”, K7 ) by the choice of
the pair (H, K). Again (HX)” = H” by Theorem 1 because X belongs to
. This means that G¥ = (H?, K ) = H”K?, a contradiction. Therefore
we may assume that X is contained in H N K. In particular X normalizes
H?K?. On the other hand, by [2, Lemma 32], if H,,, is a Hall
m(p)-subgroup of H, it follows that H, ,, H” is a normal subgroup of H.
Consequently H”K” is a Hall 7 (p)-subgroup of T =(H"K7)H,,y.
Now, since T/H? belongs to .7, we have that H”K” is a normal subgroup
of T by [2, Lemma 3.2]. Hence H,,, normalizes H”K”. Analogously
K.,y @ Hall w(pY-subgroup of K, normalizes H”K”. Therefore G =
(H, K) normalizes H”K” and H”K” is a normal subgroup of G. From
the fact Core;(H”K”) = 1, we deduce that H and K belong to .7. By [2,
Theorem 4.1], G belongs to .#, final contradiction.
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