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1. Introduction

Throughout this note K denotes a compact Hausdorff space. By a Radon measure μ on K we mean a finite measure
defined on the Borel σ -algebra Bor(K ) of K which is inner regular, that is

μ(B) = sup
{
μ(F ): F = F̄ ⊆ B

}
,

for any B ∈ Bor(K ). We denote by P (K ) the space of all probability Radon measures on K . The space P (K ) is always
equipped with the weak∗ topology inherited from P (K ) ⊆ C(K )∗ , where C(K ) is the Banach space of continuous functions
on K . When we treat a given measure μ ∈ P (K ) as a functional on C(K ) we write μ(g) rather than

∫
K g dμ.

We say that a measure μ ∈ P (K ) is of Maharam type κ and write mt(μ) = κ if L1(μ) has density character κ . Except for
some trivial cases, mt(μ) can be defined as the minimal cardinality of a family D ⊆ Bor(K ) such that for any ε > 0 and any
B ∈ Bor(K ) there is D ∈ D such that μ(D � B) < ε.

We consider here nonempty compact and convex subsets M ⊆ P (K ). The dichotomy announced by the title of this note
states, in particular, that every such a space M either has a Gδ point or contains a measure μ of uncountable Maharam
type. Roughly speaking, this means that to build a complicated topological space like M one needs large measures.

Subsequent sections illustrate how our dichotomy works. The condition that μ ∈ P (K ) is a Gδ point in P (K ) is equivalent
to some measure-theoretic property of μ, namely to μ being strongly countably determined. It follows that every compact
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space K either carries a strongly countably determined measure (topologically simple, behaving like measures on metric
spaces) or a Radon measure of uncountable type.

For a given compact space K , the existence of Radon measures on K of uncountable Maharam types is connected with
the existence of continuous surjections from K or P (K ) onto Tichonov cubes. This enables us to derive from our main
theorem some purely topological results on compact spaces of measures.

Finally, we give some applications of our dichotomy to Grothendieck-like properties of Banach spaces of the form C(K ).
Our main theorem arose as a generalization of a result due to Borodulin-Nadzieja [3, Theorem 4.3] and was further

inspired by a theorem due to Haydon, Levy and Odell [7, Corollary 3C]. Although our dichotomy is a generalization of the
latter, its proof seems to be more straightforward.

2. Dichotomy

If X is a topological space and x ∈ X then χ(x, X) denotes the local character of X at x, i.e. the minimal cardinality of a
local base at x. Recall that in a compact space X the local character at x ∈ X agrees with the minimal cardinality of a family
of open sets intersecting to {x}.

In this section we shall present the main result of this paper stated as Theorem 2.2 below. We first recall the following
useful fact due to Douglas (see [4], Theorem 1), which is reproduced here together with its short proof.

Lemma 2.1. Let K be a compact space and let F ⊆ C(K ) be any family of functions. Suppose that measures μ1,μ2 ∈ P (K ) satisfy
μ1 �= μ2 and μ1( f ) = μ2( f ) for every f ∈ F .

If μ = μ1+μ2
2 then F is not dense in L1(μ).

Proof. We have μ = μ1+μ2
2 so μ1 is absolutely continuous with respect to μ, in fact μ1 � 2 · μ. By the Radon–Nikodym

theorem there exists h ∈ L∞(μ) such that dμ1 = h dμ. Note that 1 − h �= 0 since μ1 �= μ2.
For any function f ∈ F we have∫

f (1 − h)dμ =
∫

f dμ −
∫

f h dμ =
∫

f dμ −
∫

f dμ1 = 0,

which proves that F lies in the kernel of a nonzero continuous functional on L1(μ) so is not dense in L1(μ). �
Theorem 2.2. Let K be a compact space and κ be any cardinal number of uncountable cofinality. If M is a nonempty compact and
convex subspace of P (K ) then either

(D1) there exists μ ∈ M, such that χ(μ, M) < κ , or
(D2) there exists μ ∈ M, such that mt(μ) � κ .

Proof. Assuming that for any μ ∈ M we have that χ(μ, M) � κ we shall prove that there is a measure μ ∈ M with
mt(μ) � κ .

We construct inductively a family {μα ∈ M: α � κ} of measures from M and a family { fα: α < κ} of functions from
C(K ) such that, writing for any α < κ ,

Fα = { fξ : ξ � α} ∪ {| fξ − fζ |: ζ < ξ � α
}
,

the following are satisfied

(i) μβ(g) = μα(g) whenever α < β � κ and g ∈ Fα ;
(ii) for every β < κ

εβ = inf
α<β

∫
| fα − fβ |dμβ > 0.

Let us note first that once the construction is done, the measure μ = μκ will have the desired property. Indeed, as κ
has uncountable cofinality, there is ε > 0 such that εβ � ε for β from some set Y ⊆ κ of size κ . Using (i), for any β,β ′ ∈ Y ,
β ′ < β < κ we have∫

| fβ − fβ ′ |dμκ =
∫

| fβ − fβ ′ |dμβ > εβ � ε,

so the family { fβ : β ∈ Y } witnesses that mt(μκ) � κ .
We shall now describe the inductive step: let us assume that we have already constructed measures {μα ∈ M: α < β}

and continuous functions { fα: α < β} so that conditions (i)–(ii) are satisfied.
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Let us denote F ∗ = ⋃
α<β Fα and for every α < β write

Mα = {
ν ∈ M: ν( f ) = μα( f ) for all f ∈ Fα

}
.

It follows from (i) that {Mα: α < β} is a decreasing family of nonempty and closed sets in M so, by compactness, Mβ =⋂
α<β Mα is nonempty, too.
For fixed f ∈ F ∗ and α < β , the set {ν ∈ M: ν( f ) = μα( f )} is a Gδ subset of M . It follows that Mβ is an intersection of

less than κ open sets in M (since |F ∗| < κ ), so Mβ cannot consist of a single point (by our assumption that (D1) does not
hold).

Take ν ′, ν ′′ ∈ Mβ , ν ′ �= ν ′′ and put μβ = ν ′+ν ′′
2 . By Lemma 2.1 F ∗ is not dense in L1(μβ) so there is a continuous function

fβ ∈ C(K ) such that

inf
ξ<β

∫
| fξ − fβ |dμβ > 0,

and we are done. �
Let us note that the alternatives of Theorem 2.2 have rather different content: (D1) is a topological statement on the

space M while (D2) names a measure-theoretic property of elements of M . We shall see below, however, that in fact (D1)
is equivalent to another purely measure-theoretic property. Likewise, we shall mention instances when (D2) has natural
topological consequences.

3. Strongly determined measures

A measure μ ∈ P (K ) is said to be strongly countably determined if there exists a continuous map f : K → [0,1]ω , such
that for any compact set F ⊆ K we have μ(F ) = μ( f −1 f [F ]). Strongly countably determined measures were introduced
by Babiker [1] who gave them the name uniformly regular measures, motivated by considerations related to uniform spaces.
A measure μ is strongly countably determined if and only if there is a countable family Z of closed Gδ subsets of K such
that

μ(U ) = sup
{
μ(Z): Z ∈ Z, Z ⊆ U

}
, (∗)

for every open set U ⊆ K , see [1]. The latter condition seems to justify the name strongly countably determined; note that
if we relax the property to saying that Z is a countable family of closed sets then a measure μ satisfying (∗) is called
countably determined. (Strongly) countably determined measures were considered by Pol [14], Mercourakis [11], Plebanek
[12] and Marciszewski and Plebanek [10].

We shall consider the following more general notion (see [9]).

Definition 3.1. Let us say that a measure μ ∈ P (K ) is strongly κ-determined if there exists continuous map f : K → [0,1]κ
such that for any compact set F ⊆ K we have μ(F ) = μ( f −1 f [F ]). We shall write sd(μ) = κ to denote the least cardinal κ
for which μ is strongly κ-determined.

It can be checked that, as in the case κ = ω, sd(μ) is the minimal cardinality of an infinite family Z of closed Gδ sets
such that for any open set U ⊆ K and any ε > 0, there is Z ∈ Z , Z ⊆ U and μ(U \ Z) < ε.

Clearly mt(μ) � sd(μ), since the family approximating all open sets as in (*) needs to �-approximate all Borel sets by
regularity of a measure. Note that the Dirac measure μ = δx , where x ∈ K , is strongly countably determined if and only if x
is a Gδ point in K ; in fact we always have sd(δx) = χ(x, K ).

In [14] Pol proved that if a measure μ ∈ P (K ) is strongly countably determined then χ(μ, P (K )) = ω. A straightforward
modification of the argument used in [14, Proposition 2] yields the following.

Proposition 3.2. For any compact space K and a measure μ ∈ P (K ) we have χ(μ, P (K )) � sd(μ).

We shall check now that in fact the equality χ(μ, P (K )) = sd(μ) always holds.
For the sake of the next lemma we recall some standard fact concerning finitely additive measures on algebras of sets.

Suppose that A is an algebra of subsets of some space X . If L ⊆ A is a lattice (that is L is closed under finite unions and
intersections) then a finitely additive measure μ on A is said to be L-regular if

μ(A) = sup
{
μ(L): L ⊆ A, L ∈ L

}
,

for every A ∈ A. The following result can be found in Bachman and Sultan [2], Theorem 2.1.

Theorem 3.3. Let A ⊆ P (X) be an algebra of sets. Let L ⊆ A be a lattice and let μ be an L-regular, finitely additive measure on A.
Assume K ⊇ L is also a lattice. Then μ extends to a K-regular, finitely additive measure ν on alg(A ∪ K).
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If f : K → L is a surjective map between compact spaces and μ ∈ P (K ) is a measure on K , then by f [μ] we denote the
image measure f [μ] ∈ P (K ) which is for A ∈ Bor(K ) defined as f [μ](A) = μ( f −1[A]).

Lemma 3.4. Let g : K → L be a continuous surjection between compact spaces K and L and let F ⊆ K be a closed set.
Given λ ∈ P (L), there exists a measure μ ∈ P (K ) such that g[μ] = λ and μ(F ) = λ(g[F ]).

Proof. Let

A = {
g−1[B]: B ∈ Bor(L)

}
, L = {

g−1(H): H = H̄ ⊆ L
}
.

Then A is an algebra of sets, L ⊆ A is a lattice and putting μ0(g−1[B]) = λ(B) we have an L-regular measure μ0 defined
on A.

Let L′ be the lattice generated by L ∪ {F } and A′ = alg(A ∪ {F }). Using Theorem 3.3 we can extend μ0 to a finitely
additive measure μ′ on A′ which is L′-regular. Note that we then have

μ′(F ) = μ∗
0(F ) = inf

{
λ(B): F ⊆ g−1[B]} = λ

(
g[F ]).

Finally, μ′ can be extended to a finitely additive closed-regular measure μ on an algebra of sets containing A′ and all closed
subsets of K . Such μ is then countably additive and extends to a Radon measure by a standard measure extension theorem,
see [2] for details. �
Theorem 3.5. If K is a compact space and μ ∈ P (K ) then χ(μ, P (K )) = sd(μ).

Proof. By Proposition 3.2, we only need to show χ(μ, P (K )) � sd(μ).
Fix μ ∈ P (K ) and denote χ(μ, P (K )) = κ . We can find a family { fξ : ξ < κ} of continuous functions fξ : K → [0,1] such

that whenever ν ∈ P (K ) and ν( fξ ) = μ( fξ ) for all ξ < κ then ν = μ.
Consider now the diagonal mapping

f = �ξ<κ : K → [0,1]κ , f (x)(ξ) = fξ (x).

If we suppose that sd(μ) > κ then there is a closed set F ⊆ K such that μ( f −1 f [F ]) > μ(F ). Let λ = f [μ] ∈ P ([0,1]κ ); by
Lemma 3.4 there is a measure ν ∈ P (K ), such that f [ν] = λ and ν(F ) = λ( f [F ]) = μ( f −1 f [F ]) > μ(F ), which in particular
means that ν �= μ.

On the other hand, λ = f [μ] = f [ν] so for every ξ < κ

fξ [μ] = πξ ◦ f [μ] = πξ ◦ f [ν] = fξ [ν],
where πξ : [0,1]κ → [0,1] is a projection, and therefore

∫
fξ dμ =

1∫
0

t d fξ [μ](t) =
1∫

0

t d fξ [ν](t) =
∫

fξ dν,

which is a contradiction. �
Recall that a topological space K is scattered of every subset of K has an isolated point. Nonscatteredness of the compact

space K is equivalent to the existence of a continuous surjection K → [0,1] and to the existence of a nonatomic measure
on K .

Corollary 3.6. Let κ be a cardinal number of uncountable cofinality. If K is any compact space which is not scattered then either there
a nonatomic measure μ ∈ P (K ) such that sd(μ) < κ or there is a (nonatomic) measure μ ∈ P (K ) with mt(μ) � κ .

Proof. If K is not scattered then there is a continuous surjection g : K → [0,1]. Writing λ for the Lebesgue measure on
[0,1] we consider the set

M = {
μ ∈ P (K ): g[μ] = λ

}
.

Then M is a compact and convex set which is Gδ in P (K ). Applying Theorem 2.2 we get the result. �
For κ = ω1 we get the following generalization of a result due to Borodulin-Nadzieja [3, Theorem 4.6], which was stated

in the context of Boolean algebras or zero-dimensional spaces.
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Corollary 3.7. Every compact nonscattered space either carries a nonatomic strongly countably determined measure or a Radon mea-
sure of uncountable type.

Of course a compact space can carry both strongly countably determined measures and measures of uncountable type.
Note that infinite products such as K = 2κ , κ > ω, are examples of spaces not admitting strongly countably determined
measures. Other examples of K with such a property are mentioned below in connection with the Grothendieck property.

There are several classes of spaces carrying only measures of countable type, which necessarily admit strongly countably
determined measures; this list of such classes includes

(1) Eberlein compacta (i.e. spaces homeomorphic to weakly compact subsets of Banach spaces);
(2) ordered compact spaces;
(3) Corson compacta under MA(ω1);
(4) consistently, all first-countable compact spaces, see Plebanek [12];
(5) Rosenthal compacta, see Todorčević [16], cf. Marciszewski and Plebanek [10].

The reader may consult Mercourakis [11] for basic facts and further references concerning (1)–(3). In connection with
(4) note that it is relatively consistent that every Radon measure on a first-countable compactum is strongly countably
determined [12] but there is an open problem posed by D.H. Fremlin if this is a consequence of MA(ω1).

4. Mappings onto cubes

In [5] Fremlin proved assuming MA(ω1) that if a compact space K carries a Radon measure of type � ω1, then there is a
continuous surjection f : K → [0,1]ω1 ; cf. Plebanek [12] for further discussion. As we have mentioned uncountable products
are typical examples of spaces on which there are no strongly countably determined measures; combining Fremlin’s result
with Theorem 2.2 and Theorem 3.5 we get the following partial converse.

Corollary 4.1. Assuming MA(ω1), if a compact space K admits no strongly countably determined measure then there is a continuous
surjection f : K → [0,1]ω1 .

If there is a continuous surjection from a compact space K onto [0,1]κ for some κ then it can be extended to a
continuous mapping P (K ) → [0,1]κ . The existence of the latter surjection is also closely related to types of measures on K ;
the following is due to Talagrand [15] and requires no additional set-theoretic assumptions.

Theorem 4.2. If κ � ω2 is a cardinal of uncountable cofinality and K is a compact space then there is a continuous surjection P (K ) →
[0,1]κ if (and only if ) K carries a Radon measure of type � κ .

The above result and Theorem 2.2 yield immediately the following.

Corollary 4.3. If κ � ω2 is a cardinal of uncountable cofinality then for a compact space K either

(i) P (K ) has points of character < κ , or
(ii) P (K ) can be continuously mapped onto [0,1]κ .

The reader is referred to a survey paper [13] for further discussion. We shall only mention here a problem related to
Corollary 4.3. Let us recall that the tightness of a topological space X is the minimal cardinal number τ (X) such that
whenever A ⊆ X and x ∈ Ā then there is I ⊆ A such that |I| � τ (X) and x ∈ Ī .

If K is such a compact space that P (K ) has tightness � ω1 then P (K ) cannot be continuously mapped onto [0,1]ω2

because the tightness of the latter space is ω2 and tightness is not increased by continuous surjections between compact
spaces; hence Theorem 4.2 implies in particular that then every measure μ ∈ P (K ) has the Maharam type at most ω1. We
do not know if the following holds true.

Question 4.4. Assume that K is such a compact space that P (K ) has countable tightness. Does this imply that every measure
μ ∈ P (K ) has countable Maharam type?

It seems that the only result in that direction, requiring no additional set-theoretic assumptions, is a theorem stating
that if K is Rosenthal compact then K admits only measures of countable type; the result was obtained by Jean Bourgain
but the first published proof is due to Todorčević [16]; see also [10].
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5. On Haydon–Levy–Odell result

If (vn)n is a sequence in some vector space then a sequence (wn)n is said to be a convex block subsequence of (vn)n if
for some sequence of natural numbers k1 < k2 < · · · , every wn is a convex combination of vectors vi for kn � i < kn+1. The
following result was proved by Haydon, Levy and Odell (see [7], Corollary 3C).

Theorem 5.1. If K is compact and in P (K ) there is a sequence (λn), with no weak* convergent convex block subsequence, then there is
μ ∈ P (K ) such that mt(μ) � p.

Recall that the cardinal number p mentioned here is the largest cardinal having the property:

If κ < p and (Mα)α<κ is a family of subsets of ω with
⋂

α∈F Mα infinite for all finite F ⊆ κ , then there exists an infinite M ⊆ ω
with M \ Mα finite for all α < κ .

Theorem 5.1 has several interesting consequences, for instance it is one of the main ingredients of the proof that as-
suming p = c > ω1, for every infinite compact space K , the Banach space C(K ) has either l∞ or c0 as a quotient, see [7],
cf. Koszmider [8] for more information.

We note here that one can easily derive Theorem 5.1 from our dichotomy as follows.

Proof of Theorem 5.1. Set

M =
∞⋂

n=1

conv{λk: k � n}.

By Theorem 2.2 applied to such a set M and κ = p it is sufficient to check that χ(μ, M) � p for every μ ∈ M . But if we
suppose that χ(μ, M) < p for some μ ∈ M then μ is a limit of some convex block subsequence of (λn)n , which can be
derived from the definition of p, as indicated in Lemma 5.2 below. �
Lemma 5.2. Let (Mn)n be a decreasing sequence of separable topological spaces and let M = ⋂∞

n=1 Mn. If x is a nonisolated point in
M and χ(x, M) < p, then there is a sequence (xn)n in M1 , convergent to x and such that for any k ∈ ω, xn ∈ Mk for all but finitely
many n.

Proof. Since each Mn is separable, there is a countable set D ⊆ M1, such that for any n ∈ ω, D ∩ Mn is dense in Mn . Let
{Uα: α < χ(x, M)} a family of open subsets of M1 such that {Uα ∩ M: α < χ(x, M)} is a local base at x ∈ M . Consider

C = {
Uα ∩ D: α < χ(x, M)

} ∪ {Mn ∩ D: n < ω}.
Since χ(x, M) < p, there exists an infinite A ⊆ D with A \C finite for any C ∈ C . Now elements of A form a desired sequence
converging to x. �

Recall that a Banach space X is called a Grothendieck space if every weak∗ convergent sequence in the dual space X∗ is
also weakly convergent. Note that if K is an infinite compact space and the Banach space C(K ) is Grothendieck then for
every sequence (μn)n from C(K )∗ which is weak∗ convergent to μ ∈ C(K )∗ one has μ(B) = limn μn(B) for all B ∈ Bor(K ).

It follows from Theorem 5.1 that mt(μ) � p for some μ ∈ P (K ): indeed, if (xn)n is a sequence of distinct elements of
K then it is not difficult to check that the sequence of measures (δxn )n has no convex block subsequence which converges
weakly. Hence, by the Grothendieck property and Theorem 5.1, K must carry a Radon measure of type � p; this fact is a
particular case of Haydon’s result from [6].

Proposition 5.3. If K is a compact space without isolated points and C(K ) is a Grothendieck space then

(a) sd(μ) � ω1 for every μ ∈ P (K ); and
(b) sd(μ) � p for every μ which is supported by a separable subspace of K .

Proof. We shall discuss (b); one gets (a) by a simple modification of an argument below. Suppose that κ = sd(μ) < p for
some μ ∈ P (K ).

Let μ have an atom, say c = μ({x0}) > 0 for x0 ∈ K . If U is an open set containing x0 then there is an open set V with
x0 ∈ V ⊆ U and μ(V \ {x0}) < c/2. It follows that if Z is a family of closed Gδ sets witnessing that sd(μ) = κ then there
is Z ∈ Z such that Z ⊆ V and ν(V \ Z) < c/2 which implies x0 ∈ Z ⊆ V . Using this remark we conclude that χ(x0, K ) � κ ;
as κ < p and x0 is not isolated, there is a sequence xn ∈ K \ {x0} converging to x0, a contradiction with the Grothendieck
property.

Let μ be nonatomic and μ(K0) = 1 for some separable K0 ⊆ K ; take a countable dense subset A of K0. Then μ is in the
closure of a countable set
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{
n∑

i=1

riδai : ri ∈ Q,ai ∈ A

}
,

which in view of κ = sd(μ) = χ(μ, P (K )) implies that μ is a weak∗ limit of a sequence of purely atomic measures;
a contradiction since such a sequence cannot converge weakly. �
Acknowledgement

This paper was partially inspired by a series of lectures given by Piotr Koszmider at the Institute of Mathematics of the
University of Wrocław in November–December 2010; notes from those lectures can be found in [8].

References

[1] A.G. Babiker, On uniformly regular topological measure spaces, Duke Math. J. 43 (1976) 775–789.
[2] G. Bachman, A. Sultan, On regular extensions of measures, Pacific J. Math. 86 (1980) 389–394.
[3] P. Borodulin-Nadzieja, Measures on minimally generated Boolean algebras, Topology Appl. 154 (2007) 3107–3124.
[4] R.G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964) 243–246.
[5] D.H. Fremlin, On compact spaces carrying Radon measures of uncountable Maharam type, Fund. Math. 154 (1997) 295–304.
[6] R. Haydon, An unconditional result about Grothendieck spaces, Proc. Amer. Math. Soc. 100 (1987) 511–516.
[7] R. Haydon, M. Levy, E. Odell, On sequences without weak* convergent convex block subsequences, Proc. Amer. Math. Soc. 100 (1987) 94–98.
[8] P. Koszmider, Set-theoretic methods in Banach spaces, preprint, 2010, http://www.im0.p.lodz.pl/~pkoszmider/dydaktyka/2010settheory.html.
[9] M. Krupski, Miary na przestrzeniach zwartych spełniaja̧cych pierwszy aksjomat przeliczalności, Master Thesis, University of Wrocław, 2010.

[10] W. Marciszewski, G. Plebanek, On measures on Rosenthal compacta, preprint, 2010.
[11] S. Mercourakis, Some remarks on countably determined measures and uniform distribution of sequences, Monats. Math. 121 (1996) 79–101.
[12] G. Plebanek, Approximating Radon measures on first–countable compact spaces, Colloq. Math. 86 (2000) 15–23.
[13] G. Plebanek, On compact spaces carrying Radon measures of large Maharam type, Acta Univ. Carolinae 43 (2002) 87–99.
[14] R. Pol, Note on the spaces P (S) of regular probability measures whose topology is determined by countable subsets, Pacific J. Math. 100 (1982)

185–201.
[15] M. Talagrand, Sur les espace de Banach contenant lτ , Israel J. Math. 40 (1981) 324–330.
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