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Abstract 

Cohen-Chesnot, J., On the expressive power of temporal logic for infinite words (Note), Theoretical 

Computer Science 83 (1991) 301-312. 

In this paper, we give an algebraic proof of the equivalence between temporal logic and star-free 

languages on infinite words. The proof is based on a result of Schiitzenberger that characterizes 

the star-free languages of finite words by using particular prefix codes. 

Introduction 

In this paper, we study the languages definable in propositional temporal logic 

(PTL) in relation with w-star-free languages by using algebraic techniques. 

It is known that the equivalence of the PTL definable languages and the w-star-free 

languages follows from the combination of two independent results. First, Kamp 

[8] proved that first-order logic and PTL are equivalent. Secondly, the equivalence 

between star-free languages and first-order definable languages was obtained along 

the works of Thomas [31] and Ladner [ll]. This suggests that it may be possible 

to obtain a direct proof. Such a proof has been proposed by Peikert [17] and Zuck 

[39]. In this paper, we give a self-contained algebraic proof. 

In the case of finite words, Perrin and Pin and the present author [3] gave such 

an algebraic proof using the wreath product and the well known theorem of 

Schiitzenberger which characterizes the star-free languages by their syntactic 

aperiodic monoids. Unfortunately, we were not able to extend this proof to the case 

of infinite words, mainly because of the definition of the wreath product. 
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Our proof now is therefore rather different but is also based on a theorem of 

Schiitzenberger which asserts that the star-free languages can be generated from 

letters using union, concatenation product, and star operations restricted to prefix 

languages with a bounded synchronization delay. In the first part of our proof, we 

give an algorithm to pass from a PTL formula to w-languages, from which we 

deduce that the PTL definable w-languages are star-free. In the second part, we 

prove that the class of PTL definable languages is a Boolean algebra closed under 

left concatenation product with star-free languages of finite words; it follows that 

the class of star-free languages of infinite words is included in the class of PTL 

definable languages. 

1. Preliminaries 

1.1. Propositional temporal logic 

Let A be a finite alphabet. In propositional temporal logic, formulas are built up 

on the following vocabulary: 

l a set P of atomic propositions {Pa 1 a E A}, 
l two constants T and F, 

l Boolean connectives v, A, 1, 

l temporal operators 0 (Next), W (Always), 0 (Eventually) and U (Until). 

The formation rules are: 

T, F and P, are formulas for any a E A; if cp and I/J are formulas then cp A $, cp v $, 

lcp, Oq, Oqo, (Wcp) and cp U I+!I are formulas. 

Semantics are now defined by induction on the formation rules as follows: 

let u E A”, i 2 1; (u, i)l= cp will denote “u satisfies the formula cp at the instant i” 

(u, i>+ P, if the ith letter of u is an a, 

(u, i)kOv if (24, i+ l)l= cp, 

(u, i)+Oq if there exists j, isj, (u,j)!= q, 

(u, 9 + WV if for every j, i Gj, (u, j) F cp, 

(u, i) F cp U Ic, if there exists k, is k, such that (u, k)F $ and for every j, 

isj<k, (u,j)I=(p. 

For example if A = {a, b, c} then (ababab( bc)“, 1) + (P, v Ph) U PC. 
If cp is a temporal formula, u is said to satisfy cp if (u, l)l= cp and L(q) will denote 

the set of all the words satisfying cp. For example, if A = {a, b}, 

L( P,) = aA”‘, L(W[(P,~OP,)A(P,~OP,)]AP,)=(~~)“, 

L(O(P, A OP,,)) = A*abA”. 

There exists a link between temporal operators and operations on sets: 

L( Pa) = aA”, UC%) = AL(v), L(Ov) = A*Up); 
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for the Until operator U, we define the following operation (denoted a): given two 

sets L and K both of finite words or both of infinite words, 

L011K={xEA*Ix=uvwherevEKandu’vEL 

for every right factor of u}. 

The following relation stands: L( cp U I+!J) = L( cp) 011 L( I,!J) for all temporal formulas 

40 and +!I. 

1.2. Semigroups and injinite words 

In this section, we briefly recall the algebraic tools we need to study w-languages. 

More details can be found in [19, 201. 

A semigroup S is a set equipped with an associative multiplication. A finite 

semigroup S is aperiodic if there exists an integer n such that, for every x E S, 
x” = xn+‘. Given two elements s and t of S, we set stC* = {x E Slxt = s}. 

Definition 1.1. Let S be a finite semigroup. (s, e) E S x S is a linked pair of S if se = e 

and e2 = e. Let L(S) denote the set of all the linked pairs of S. Let S be a finite 

semigroup and cp : A+ + S be a morphism. A q-simple subset is a nonempty subset 

of A” of the form sp-‘[ecpP1]” where (s, e) E S x S is a linked pair of S. 

Definition 1.2. Let Lc A”. L is recognized by a finite semigroup S if there exists a 

morphism cp : A++ S such that L is a finite union of q-simple subsets. L is also said 

to be recognized by cp. 

There is a sharper definition. 

Definition 1.3. Let S be a finite semigroup, cp : A++ S a morphism and LC A”. L 

is saturated by cp (or S) if, for every (s, t) E S x S, 

L n scp-‘[ tcp-‘I” = 0 or scp-‘[ tcp-‘I” c L. 

(One can deal with linked pairs only, i.e. use only q-simple subsets). 

It is easy to see that if L is saturated by S then L is recognized by S, but the 

converse is not true. 

The following result is a consequence of Ramsey’s Theorem and will often be 

used in the sequel. 

Lemma 1.4 (Perrin [19]). Let A be a possible inJinite alphabet. Let S be a finite 

semigroup and cp : At + S be a morphism. For each word x E A”, there exists a linked 

pair (s, e) such that x E scpP’[ecp-‘]“. 
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1.3. w-star-free languages 

The notion of star-free language can be extended to infinite words in various 

ways, summarized in the following theorem. 

Theorem 1.5 (Thomas [31], Perrin [20]). Let Lc A”. 7’he following conditions are 

equivalent : 

(1) L is a finite union of languages of type XY” where X and Y+ are star-free 

languages of A*. 

(2) There exists an aperiodic monoid which recognizes L. 

(3) There exists an aperiodic monoid which saturates L. 

(4) L belongs to the smallest Boolean algebra in A” that is closed under left 

concatenation with star-free languages of A*. 

Any w-language which satisfies one of the previous assertions is said to be star-free. 

The first and third characterizations will be used in the second section to prove that 

any PTL definable language is star-free, while the fourth one will be used when 

proving the reverse assertion in the third section. 

1.4. A theorem of Schiitzenberger 

We first recall the definition of a set with a bounded synchronization delay, which 

comes from the theory of codes [l]. 

A language Lc A* has a bounded synchronization delay (b.s.d.) if there exists a 

positive integer d such that for every u E Ld, for every m, , m2 E A*, 

m,um2E L* * m,u, um2E L*. 

The smallest integer d verifying this condition is called the synchronization delay 

of L. A language L has synchronization delay 0 if, for every m, , m2 E A*, m, m2 E L* 

implies ml, m2 E L”. 

For example, any subset B of the alphabet A has synchronization delay 0, 

B*(A\B) has synchronization delay 1. But (a’)* has no b.s.d. for any letter a E A. 

The previous definition is simplified when we restrict ourselves to prefix codes: 

a set L c A* is a prefix code if L does not contain any proper left factor of its words. 

Then, L has a b.s.d. if there exists a positive integer d such that for every u E Ld, 

for every m, , m, E A*, m,um2E L”*m,u, m2E L*. 

The theorem of Schutzenberger can now be given. 

Theorem 1.6 (Schtitzenberger [28]). 7’he class of star-free languages ofJinite words 

is the smallest class of languages that contains 0, {l}, {a} for any letter a and that is 

closed under union, concatenation product and star operations restricted to preJx codes 

with a bounded synchronization delay. 
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2. PTL definable languages are star-free 

The aim of this section is to prove the following result. 

Theorem 2.1. L(cp) is star-free for any temporal formula cp. 

Proof. This result is proved by induction on the structure of temporal formulas. If 

cp = T then L( cp) = A” is star-free; if cp = P, then L( cp) = aA” is star-free. 

Let cp and $ be temporal formulas such that L(cp) et L(I,!J) are star-free. One has 

L(cp v $) = L(P) u L($), L(lq) = A”\L(p), 

L(%) = AL(V), L(OP) = A*L(P), 

and these languages are star-free according to Theorem 1.5(4). 

It remains to prove that the language L(cp U (CI) is star-free. In the following result 

L(cp U I/J) is described using the two languages L(P) and L( $). Let cp and Cc, be 

temporal formulas such that L( cp) et L( I,!J) are star-free. Then there exists an aperiodic 

semigroup S, a morphism g : A+ + S which saturates L( cp) and a subset P, of S x S 

such that 

L(9)= u sg-‘[ eg-‘I”. 
(s,e)eP,nL(S) 

Proposition 2.2. With the above notations, one has 

L(cp U$)=L($)u /vLcs, {A*\A*[A*\Xn,~I). {U+) n W’LK’l”I, 

with Xn,r = UstS;~s,.f~tP, (sn-‘)g-‘. 
Proof. Let K denote the right-hand term of the equality: we first prove that 

L(cp U I+!J) = K. Let x E L(cp U (cr). Then either x E L($) and x E K, either xG L($) 

and x can be written x = a, a2 . . . with the following conditions: there exists a positive 

integer k such that u = ak+,aktz . . . E L(I+/I) and, for 1 G is k, ai.. . aku E L(q). 

According to Lemma 1.4, there exists a linked pair (n,f) E S x S such that u E 

ng-‘[fg-‘I”. It follows that u E L(I,!J) n ng-‘[fg-‘I”, and it suffices to prove that 

a, . . . ak E {A*\A*[A*\Xn,fi}. 

The following lemma will enlighten the meaning of the previous formula. 

Lemma 2.3. Let X be a language of A*. Then (A*\A*(A*\X)) is the set of words 

all of whose right factors are in X. 

Proof. It is easy to see that A*(A*\X) is the set of words which have no right 

factor in X. q 

Therefore, it remains to prove that, for any 1 G i G k, 

(*) a,...a,E 
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Let Bi denote a possibly infinite alphabet in bijection with the set {a,, . . . , uk} u 

{n, f}g-’ and let gi : Bi + S be the morphism defined by 

ujgi = a,g for i s j 6 k 
if DE ng-‘, 

ifvEfg_‘. 

Notice that vg, = vg for every v E Bi. 

Since the word u belongs to ngpl[fgpl]“, the word ui.. . a+ can be factorized 

on the alphabet Bi as 

ai.. . aku = (ai)(ai+l) . . . (ak)(vO)(vl) . . . (vn) . . . 

with u = v,,vi . . . v, . . . , v0 E ng-’ and v, E fg-’ for r > 0. 

It follows from Lemma 1.4 that there exists a linked pair (si, ei) E S x S such that 

(&)(aj+,) . . . (ak)(v,)(vl) . . . (u,) . . .E sig;l[eig;l]w. 

Using the definition of gi one deduces that ai.. . a$ E s,g-‘[ eig-l]w. As g saturates 

L(p), s,g-‘[e,g-‘I” is included in L(P) and (si, ei) E P,. The word ai. . . aku can be 

factorized using only letters of the alphabet Bi as 

ai . . . a,$ = (a;)(@+,) . . . (+&,v, . . . v,. . . with v0 E ng-’ and vj E fg-’ for j > 0, 

and “overfactorized” by putting together some factors of the previous factorization 

asai...aku=t,... t “... where toESig-‘p tjEeigp’ forj>Oand ~,EBT forjzO(see 

Fig. 1). By choosing j large enough, the word 5 can be written as the product of 

words Vk E fg-‘, 2% tj = Vi.1 . . . V’,r,. 

Therefore, ei = $g = (v,,,)g . . . (Vj,,)g =f, whence ei = f and (si, f) E P,+,. 

Moreover, the word ai.. . ak is a left factor of a word to.. . tq and therefore 

ai.. akvOvl . . . VI = totI . . . t, for some la 0. 

Thus (ai. . . a,)ghf’ = sf q. Since f2 =f, nf = f and sf= si, the following equality 

holds: (a,. . . ak)gn = si. This implies that (ai. . . ak)g E sine1 and so Ui.. . ak E 

(sin-‘)g-‘, which proves (*) and the inclusion L( cp U $) = K. 

It remains to prove the opposite inclusion: K c L( cp U (cr). Let x E K. If x E L( I/J), 

x E L(cp U $). Otherwise there exists a linked pair (n, f) E S x S such that x = VW, 

where 

w E L( +) n ng-‘[ fg-‘1” and v .@ A*[ A*\X,,f]. 

, ai I ‘i+l, ak 
y-I-4 

“0 

t0 t1 t2 

Fig. 1. 
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w can be factorized as w = wow, . . . IV,. . with w,g = n and w,g =f for i > 0. On the 

other hand, v = a, . . . ak and, by Lemma 2.3, for 1 s i < k, ai. . . ak E X,,J. According 

to the definition of X,,/, there exists s, E S such that (si,f) E P, and aj. . . ak E 

(sinP’)gP’. It follows in particular that (a,. . . akwo)g = (q. . . +)gn = s, and hence 

ai.. . ukw E s,g-‘[fg-‘I”. Since (si,f) E P,, a,. . . akw E L(q). In particular, since x = 

a ,. . . akw, x E ,!d(p u $). i, 

3. w-star-free languages are PTL definable 

This section is devoted to star-free languages of infinite words. It is proved that 

such languages can be defined by temporal formulas. 

Theorem 3.1. Let % be the class of languages of A” that can be dejined by a temporal 

formula. Then the class of star-free languages of A” is included in %. 

Proof. The characterization of star-free languages of infinite words given by Theorem 

1.5(4) will be used to prove this result. Consequently, it suffices to prove that %? is 

a Boolean algebra closed under left concatenation with star-free languages of A*. 

It is easy to see that %’ a Boolean algebra. Indeed, A” is equal to L(T), whence 

A” E %. Moreover, if L and K are two languages of % then L and K can be defined 

by two temporal formulas respectively, say, cp and $J. Hence A”\L = L(lcp) and 

LuK=L(cpv+). 

It remains to prove that if S is a star-free language and if L is a language of %‘, 

then SL belongs to ‘%. For this purpose, we construct a temporal formula defining 

SL as a function of the formula cp defining L, using the following definitions adapted 

from [17]. 

Definition 3.2. Let I,!J be a temporal formula, let L,, L2 be two star-free languages 

of A* and let L be a prefix language with a bounded synchronization delay, say d. 

The following temporal formulas are defined: 

(I) cp(& (CI) = F, ~(1, $) = 4, 

(2) qo(% G) = p0 A W, 

(3) cp(L,~L*,~)=~(L,,Icl)vcp(L~,ccI), 

(4) (P(LILZ, Icr) = cp(L,, (P(L*, $)), 
(5) if d = 0, 

p(L*, rL) = (I, v [cp(L, T) U cp(L, +)I, 

and if d>O, 

cp(L*, $) = CCI v 9(L, $) v. . . v P(L2d-1, $1 

v [cp(Ld, -0 A {(dLd+‘, -0 v ldLd, -0) U cp(L2d, $)}I. 
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Let 9’ denote the class of languages S of finite words such that, for every temporal 

formula (lr, L((p(S, +)) = SL( $). 9’ satisfies the following property. 

Proposition 3.3. 9 contains the star-free languages ofjinite words. 

Proof. According to Theorem 1.6, we only have to prove that A*Y contains 0, {l}, 

{a} for every letter a of the alphabet, and that 9 is closed under union, concatenation, 

and star operations restricted to prefix subsets with a bounded synchronisation delay. 

(1) Obviously 0, { 1) E A*9 

(2) Let a E A; then 

L(cp(a,+))=L(P,r\O$)=L(P,)nAL(+)=aA”nAL($)=aL($) 

and therefore {a} E A*Y for every a E A. 

(3) Let S,, S, E S*.Y. Then 

Urp(S* u S2, $)) = U(P(S1, $I) ” cp(S*, $)) 

= L(q(S, 3 $1) u U(P(S2, $1) 

and S, v S2 E A*Y. 

(4) Moreover, U(P(S,S~, CCI)) = UdS, d&, ICI))) = S,Ucp(%, 4)) because S, E 
A*Y and L( cp ( S,S2, fi)) = S,&L( $) because S, E A*9 Consequently, S1 S, E A”9 

Now let us consider a prefix language S of A*Y with a synchronization delay d. 

If d =O, we have, since SE A*Y, 

L((P(S*, 4)) = L(+) u ESAw q WccI)l. 
Now if d # 0, Sk E A”9 for all k > 0, and thus 

L((p(S*,~))=L(~)USL(l+4)uPJS2d-‘L(~) 

u [SdAW n{(SdflAW u (A”\SdAw)) Q S2dL($)}]. 

The following lemma concludes the proof. 

Lemma 3.4. For every prejix code S with a b.s.d., for every language L in A”, ifd = 0 

thenS*L=Lu[SA”~SL],andifd#O then 

S*L=LuSLu”‘uS2d-‘L 

u [sdA” n {(Sd+‘AW u (A”\SdAw)) ‘42 SZdL}]. 

Proof. We first treat the case d = 0. Let u E S*L. Then u E L or u can be written as 

u=u,u2... u,vw with na0, USES for lsisn, VES and WEL. Since VWESL, it 

suffices to prove that, for every right factor m of the word uluz . . . u,, mvw E SA”. 

Since m is a right factor of u,u2.. . u,, there exists aj E (1,. . . , n}, and there exists 

a possibly empty word m, such that m,m = uj. . . u,. then m,mv E S*. Since S is of 

delay 0, it follows m,, mu E S* and moreover, as v # 1, mu E Sf. Finally, mvw E SA”, 

and u E SA” Ou SL. 
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Conversely, let u E L u [SA” 42 SL]. If u E L then u E S” L. Otherwise, u E 

SA” Q SL and either u E SL and then u E S*L, or u = a, . . . a,vw with v E S, w E L, 

and for every i, 15 i 5 n, ai E A and ai.. a,vw E SA”. Since, for every i, ai.. . a,vw E 

SA”, there exists a (possibly empty) word mi such that a,m, E S. Since S is of delay 

0, ai E S for every integer i, 16 i c n. Then u E S” L. 

We now turn to the case d > 0. Put 

K=LUSLu...uS2d-,L 

u [SdA” n {(Sdf’AW u (A”\SdAw)) Ou S2dL}]. 

We first prove the inclusion K = S*L. Let u E K. If u E L v SL u * . + u S2dp’L, 

then u E S”L. Otherwise, either u E S2dL and u E S*L, or u E SdA” and u can be 

written as a, . . . a,v,v2w where v,,v2~Sd, WE L and, for lGj<n, n>O, 

(*) aj.. . a,v,v2w E Sd+‘A” u (A”\SdAw). 

The result is a consequence of the following lemma. 

Lemma 3.5. Let x = a, . . . a,,, v,, v2 E Sd, w E L be words such that 

(1) a,... a,,v, v2 w E SdA“’ and 

(2) for 1 e j G n, aj. . . a,v,v2w E Sdt’A”’ u (A”\SdA”). 

Then a,. . , a,v,v2w E S*L. 

Proof. By induction on n. If n = 1, then u = a,v,v2w. Since u E SdA”‘, condition (2) 

with j = 1 turns to u E S di’A”. Therefore u can be written as u = t, _ . . td+,x where 

each ti is a word in S and x is a word in A”. Several possibilities occur: 

(a) If t, = a, then u E S*L, because u = a,v,v2w with a,, v,, VIE S* and w E L. 

Otherwise there are still two possibilities: 

(bl) Either there exists an integer j, 1 c j G d + 1, such that a,v,v2 is a left factor 

of t, . . . 6; then there exists a word m such that a,v,v2m = t, . . . t, E S*. As v2 E Sd 

and as S is prefix b.s.d. of positive delay d, it follows a,v1v2 E Sd and u E S*L. 

(b2) Or there exist two words m,, m, such that m, t2. . . td+,m, = v,v2 E S*. Then 

t2.. . td+l E Sd so m2E S* and u = t, . . . t,+,m,wE S*L. 

For the general case, condition (2) with j = 1 is again applied and u can be written 

as u = t, . . . td+,x where each ti is a word in S. Similar cases occur: 

(a) If there exists an integer j, 1 s j s n - 1, such that t, = a, . . aj, then the induction 

hypothesis is applied to the word y = aj+, . . . a,v,v2w; indeed, since t2.. . td+, is a 

left factor of y, y belongs to SdAw and (1) is satisfied. (2) is clearly satisfied. Then 

y E S*L and u = tly E S*L. Otherwise there are still two cases: 

(bl) Either there exists an integer i, 1~ is d + 1, such that a, . . . anvIv2 is a left 

factor of t, . . . ti ; then there exists a word m such that a, . . . a,v,v2m = t, . . . tj E S*. 

As v2e Sd, it follows that a, . . . a,v, v2 E S* and u E S* L. This case can be illustrated 

by Fig. 2. 

(b2) Or there exist two words m,, m2 such that m, t2.. . td+,m2= v,v2 E S*, as 

shown in Fig. 3. Yet t2. . . td+, E Sd; then m, E S* and u = t, . . . td+, m2w E S*L. This 

concludes that proof of Lemma 3.5. 0 
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81 , an Vl , v2, w 

: j 
: mi 

I I 
11. ..ti 

Fig. 2. 

01, an VI v2 , w 

: m,i 
;$; 

I . . . . . 

t1 t2 ta++l 

Fig. 3. 

Proof of Lemma 3.4 (continued). It remains to prove the inclusion S*Lc K. Let 

uES*L. If uELuSLu**~uS2d-1 L, then u E K. If u E SZdL then u E Sd+‘A” and 

u E K. Otherwise, u can be written as u = u’ulv2w where U’E S”, v,, VIE Sd and 

w E L. It suffices to prove that 

u E SdA” n {(Sd”Aw u (A”\SdAw)) 42 S2dL}. 

Clearly, u E SdL, and it remains to prove that, for every suffix z of u’, 

j-=zv,v*wES d+‘Aw u (A”\SdAw) 

which is equivalent to showing that zv, v2 w E SdA” implies zv, v2 w E SdflAW. Suppose 

f~ SdA”. Then f= t, . . . tdx E S and x E A”. Set t = t, . . . td. there are two cases: 

(i) t is a proper prefix ofzvlv2. Set u’= pz. Then 

I.4 = pzv, v*w = ptx 

and there exists a ml E At such that ptm, = pzv, v2 = u’v, v2 E S”. Since t E Sd, it follows 

that m, E S+. Thus zv,v2 = tmlSdf’A* and f = zv1v2w E Sd+‘A”. 

(ii) zv,v2 is a prejix of t. Then t = zvIv2m’ where rn’E A*, and since t E S+ and 

v2 E Sd, it follows that zv, v2 E St. Now since vr E Sd, it follows that zvr E S+. Therefore 

f = zv1v2w E Sd+‘A“‘. 

This concludes the proof of Lemma 3.4. 0 

Proof of Theorem 3.1 (conclusion). Lemma 3.4 shows that if S is a prefix set of A*Y 

with b.s.d., then S* belongs to A*9 This proves Proposition 3.3. Now, by 

Theorem 1.6, A*Y contains the star-free sets of A*. It follows that for 

every star-free language S, for every language L in the class %, the language SL is 

defined by the formula cp(S, +) where $ is a temporal formula that defines L. The 

class ‘% is then closed under left concatenation with a star-free language in A*. By 

Theorem 1.5, it follows that the class of star-free w-languages of A” is contained 

in % (Theorem 3.1). •I 
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Conclusion 

The algebraic proof of the equivalence between PTL and star-free languages 

of infinite words is therefore complete. It is probably possible to extend this result 

to larger classes of languages by using on the one hand some more powerful temporal 

operators (see Wolper [37], for instance) and on the other hand, some other results 

of Schtitzenberger. This will be a subject of a future paper. 
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