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1. Introduction

External signals to activate cells often result with a change of the
cellular environment. To maintain viability cells must be able to
respond. This requires that cells must have the ability to change their
functions rapidly due to a given stimulus. Such cellular responsiveness
is accomplished through activation of signal transduction cascades
transmitting signals from the cell surface to internal cellular machiner-
ies, often accompanied by significant alterations of the protein composi-
tion of cells. In this respect, calcium is of pivotal importance for many
biological processes. As one of the second messengers it participates in
many different signal transduction pathways. Therefore, the balance of
calcium homeostasis is of central importance controlled by an elaborate
integrated system of channels, exchangers and pumps regulating Ca2+

fluxes into and out of the cell.
The response to cellular receptor activation can result in up to a 100-

fold rise of intracellular free Ca2+ concentration which in a resting cell is
in the order of 100–200 nM. The uptake of extracellular Ca2+ or the
release of Ca2+ from intracellular stores which thus can serve as an
intracellular secondmessenger leading to signal transduction for a num-
ber of different cellular activities such as protein phosphorylation andde-
phosphorylation, fertilization, cell proliferation, cell division and gene
expression, to name a few. Many of these functions are accomplished
due to the interaction of Ca2+ with specific proteins, mostly so-called
EF-hand proteins [1]. This results in specific modulations of protein–
opean Symposium on Calcium.
protein interactions owing to conformational changes of the Ca2+

receptors of which calmodulin is the most dominant regulator [2].
One of the key enzymes controlling the Ca2+ level in the cell is the

plasma membrane calcium ATPase (PMCA) (for recent reviews see
Refs. [3,4]). PMCA is regulated in manyways (see below), and probably
the most important regulator is calmodulin which directly interacts
with PMCA [5]. In this review the focus is on the diversity of the different
spliced isoforms of PMCA and their variation in expression during de-
velopment, differentiation and disease. Other aspects of PMCA can be
taken from Refs. [3,4].

2. General properties of PMCA

The existence of a Ca2+-dependent ATPase in erythrocytes was first
described byDunhamandGlynn in 1961 [6]. In 1966 it was Schatzmann
who provided evidence that Ca2+ is pumped out of the cell on the ex-
pense of ATP against a Ca2+ gradient across the membrane of human
red cells [7]. Like other ion pumps PMCA belongs to the P-type pump
family as classified by Pedersen and Carafoli [8,9]. These enzymes are
characterized by forming a phosphorylated high-energy intermediate
resulting in the formation of an acyl-phosphate, mostly an aspartyl-
phosphate, which provides the enzyme with sufficient energy to
pump the ion across the membrane against the ion gradient with a
1:1 Ca2+/ATP ratio for PMCA [10]. Therefore, it is thought that during
the reaction cycle of the enzyme one can distinguish at least two differ-
ent conformational states, E1 and E2 [11]. Later, Toyoshima and co-
workers described even more different conformations for the related
calcium pump of the sarco/endoplasmic reticulum by solving the
high-resolution structures at different states of the reaction cycle
which defines three different functional domains: the actuator, the
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catalytic or nucleotide-binding and the regulatory domain (for a recent
review see Ref. [12]). Similar changes of the conformationmay also exist
for PMCA as suggested by homology modeling based on the structures
of the SERCA pump, even if a high resolution structure of PMCA has
not been solved yet [13].

In 1977 two independent reports provided evidence that a Ca2+-
binding protein which later became known as calmodulin activated
the Ca2+ pump of human erythrocytes [14,15]. The direct interaction
of calmodulin with the pump was later exploited by Niggli et al. to pu-
rify the PMCA pump from human erythrocytes by calmodulin affinity
chromatography [16]. In 1988 PMCA was cloned from human [17] and
rat [18] tissues and its primary structure was determined. The protein
has 10 transmembrane domains, the N- and C-terminus are both locat-
ed in the cytosol and themajor proteinmass is protruding into the intra-
cellular space. The enzyme is an essential component of all mammalian
plasma membranes, and in mammals four different genes encode the
plasma membrane calcium pump which in humans are located on
four different chromosomes, i.e. PMCA1 on 12q21–23 [19], PMCA2 on
3p25.3 [20,21], PMCA3 on Xq28 [21] and PMCA4 on 1q25–q32 [19]. Ad-
ditional isoforms of the protein are produced by alternative splicing of
the primary transcripts as first demonstrated by Strehler et al. [22].
For the four genes two splice sites have been characterizedwhich are lo-
cated either close to orwithin regulatory regions of the pumpgiving rise
to about 30 spliced isoforms ([23], see Fig. 1). Site “A” is located closely
upstream of the phospholipid binding domain, and site “C” is found
within the calmodulin binding domain of the enzyme [23]. These splic-
ing variations can lead to proteins of different sizes with molecular
weights in the range between 120 and 140 kDa [22–24].
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The PMCA Ca2+ pump is a low abundantmembrane protein, but has
a high affinity to Ca2+ enabling it to regulate the fine tuning of the cal-
cium homeostasis of the cell. The enzyme can be activated not only by
calmodulin, but also by acidic phospholipids or by polyunsaturated
fatty acids [25], by oligomerization [26] or by phosphorylation [27,28].
In the absence of calmodulin, the calmodulin-binding domain is
interacting with two receptor sites within the catalytic domain of the
pump. The variable C-terminal part of the domain interacts with a site
upstream of splice site A, and the conserved N-terminal part of the
calmodulin-binding domain binds to a site located between the
phosphorylation- and the ATP-binding site of the ATPase which keeps
the enzyme in an inhibited state ([29,30]; see Fig. 1).

Alternative splicing is a dominant property of higher organisms to
producemultiple proteins from a single gene [31,32], but the regulation
of alternative splicing is still poorly understood. In order to splice the
pre-mRNA, introns must be distinguished from exons. Special se-
quences at the intron/exon junctions direct the pairing of the splice
sites at the 5′ and the 3′ ends of the intron to be spliced which have to
be recognized by the spliceosome with high precision. This splicing
pattern can be altered in many ways. Next to the frequent observation
that exons are constitutively included in the final mRNA, splicing can
be regulated in a way that an exon is either included or excluded in
the final mRNA, so-called cassette exons which sometimes could lead
to mRNAs with mutual exclusive exons [31]. Local cis-regulatory se-
quences such as exonic or intronic enhancers or silencersmay either en-
hance or suppress the usage of a splice site due to its proximity of that
site. In order to use these regulatory sequences trans-acting factors are
binding to those sites to determine the transcription of a specific
2

1

3

4
b

154

b

175

154

b

172 55

Splice Site C

C
a

10
6 7

98

b

C

a,c,d,e
edc

E A B,C,D
a

a,c
c

a A B

b

adc E A B,C,D
a,c,d,e

a,d
ad A D B

CaM

a

rane domains of the pump are numbered and indicated by red boxes. Splice sites “A” (first
e calmodulin-binding domain (yellow cylinder; defined by the structural model of CaM=
n for each of the 4 different PMCA genes. Constitutively spliced exons are indicated as dark
e labeled by their lower case symbols, the positions of the translation stop codons for each
s from a read-through of the 154-nt exon into the following intron (indicated as small open
id binding domain; P= location of the aspartyl-phosphate formation; PDZ= PSD-95/Dlg/
s.

Image of Fig. 1


2020 J. Krebs / Biochimica et Biophysica Acta 1853 (2015) 2018–2024
isoform. One of these factors is hnRNPL [33] which is important for the
regulation of the expression of PMCA1a aswill be discussed below. Thus
the expression of a specific isoform can become essential for the
development of a tissue or the differentiation of a cell.

3. The different PMCA genes and their spliced isoforms

Asmentioned before all 4 PMCA genes contain 2 splice sites, site “A”,
located closely upstream of the phospholipid binding site, and site “C”
which is foundwithin the calmodulin binding domain. This latter splice
site creates a highly variable calmodulin binding domain since due to
splicing events only the N-terminal part of the domain is conserved in
contrast to the C-terminal part which varies considerably. This results
in significant differences of the calmodulin affinity for the various
spliced isoforms with the exception of the “b” forms for which splicing
at the C-site does not occur. Originally it was suggested that there
exist 2 additional splice sites, sites “B” and “D” [34], but later these
sites turned out to be cloning artifacts [35,36]. As shown in Fig. 1 splicing
at site “A” affects an exon of either 36 nt (PMCA4), 39 nt (PMCA1) or
42 nt (PMCA3). These exons can be either spliced in or excluded giving
rise to spliced isoforms “x” or “z”, respectively. For PMCA2 splicing at
site “A” ismore complex as can be realized from Fig. 1. In this case either
33, 42, or 60 nucleotides can be either spliced in or are excluded
resulting in spliced isoforms “w”, “x” or “z”. 2 points have to be made
here: all additional exons spliced in at site “A” do not interfere with
the reading frame, and second, PMCA1 always contains the extra exon
of 39 nt spliced in, i.e. only PMCA1x exists.

In contrast to splice site “A” the splicing pattern of site “C” is much
more complex as can be realized from Fig. 1. The “a” splicing variant
of all 4 genes includes an extra exon (exon 21 for PMCA1). If the entire
exon of either 154, 172 or 175 nt was inserted the reading frame was
changed resulting in a protein with shorter C-terminal amino acid
sequences due to an early stop codon (see Fig. 1). On the other hand,
alternative splicing can make use of internal cryptic donor splice sites
which results in variants of variable length (forms c–e) [22,37]. This
also can lead to a change in the reading frame resulting in a shortened
C-terminal sequence. For PMCA2 and 3 the splicing can be even more
complex. As can be noticed from Fig. 1 in the case of PMCA2 2 additional
exons can be included, i.e. if both are inserted, this leads to variant “a”,
whereas if only the larger exon of 172 nt is spliced in, it leads to variant
“c”. The variant “e” of PMCA3 has the special property that 88 nt of the
following intron are added to the exon of 154 nt. In contrast, the “b” var-
iant of the 4 human genes do not include exon 21 leading to PMCAswith
a highly conserved C-terminal protein sequence which next to the
calmodulin-binding domain contains a PDZ domain-interacting
sequence [38]. This conserved sequence has been identified in all “b”
splicing variants [39] and also in some “c” and “d” isoforms, but not in
isoform “a” due to the truncated C-terminal sequence (Fig. 1). PDZ,
originally identified in the postsynaptic density protein PSD-95 [40], is
known to be important for protein–protein interactions, and thus it
has been demonstrated that PMCA can interact with various partners
such as PSD-95 of the family of membrane-associated guanylate kinase
(MAGUK) and others (for a review see [41]). There is accumulating
evidence that such interactions of higher order complexes in Ca2+ sig-
naling microdomains favorably occur in lipid rafts as documented in a
number of publications (e.g. see [42,43]; for a review see [44]).

4. The influence of splicing on the expression of the different
PMCA isoforms

Changes in splice site choice can significantly influence the proper-
ties of the encoded protein with respect to its enzymatic activity, its
way of regulation or its localization. This is especially common for
genes expressed in nervous tissues which can influence the properties
of the many different types of neurons [45] which is specifically
reflected by the various PMCA isoforms expressed in the brain as will
be shown below. In the following the tissue and cell-specific expression
of the different PMCA spliced isoforms will be described as well as
regulation of expression, localization and their importance for the
development of diseases.

4.1. PMCA1

PMCA1 is expressed ubiquitously and is known as a house-keeping
form of the plasmamembrane calciumpump. This is also demonstrated
by the fact that PMCA1 knockout mice are embryonically lethal [46].
Brandt and Neve [47] demonstrated that in the developing rat brain
PMCA1b was detected at the earliest embryonic day studied (E10). Sur-
prisingly, by comparing the mRNA levels of PMCA1b with 1a they
noticed that not only PMCA1a was faintly visible at E10, but during fur-
ther development of the rat brain the expression of PMCA1bmRNA de-
clined and the expression of variant 1a continuously increased
suggesting that PMCA 1a may be important for the maturation process
of neuronal development. This specific splice shift from PMCA1b to 1a
was later confirmed byKip et al. [48] studying rat hippocampal neurons.
Furthermore, Kenyon et al. provided evidence that PMCA1a is specifical-
ly expressed in the plasma membranes of neurons concentrating in
somata, dendrites and spines [49]. The importance of these observations
is not only given by the fact that PMCA1a and 1b differ significantly in
their activation by calmodulin, but also implicated the question what
signal regulates the switch in expression from variant 1b to 1a. Even if
this regulation is far from being understood in detail, certain aspects
may have become clear recently as will be described below.

In 2001 Xie and Black [50] made the important observation that the
Ca2+-calmodulin dependent kinase IV (CaMKIV) known to be essential
for calcium-dependent gene transcription using CREB as the transcrip-
tion factor [51] is directly involved in Ca2+-dependent regulation of al-
ternative splicing. By studying the calcium-dependent potassium
channel slo1 they noticed that the inclusion of exon STREX (stress-axis
regulated exon)which confers higher calcium sensitivity to the channel
[52] was under the control of alternative splicing. Depolarizing GH3 pi-
tuitary cells or cerebellar neurons resulted in a significant repression of
the STREX exon through a CA-rich RNA silencing element (CARRE)
which was regulated by CaMKIV [50]. The trans-acting factor recogniz-
ing the CARRE was later identified as hnRNP L [53]. Furthermore, it
could be shown that hnRNP L is phosphorylated at a conserved Ser513
by CaMKIV which resulted in the repression of the STREX exon [54].
By examining the human genomedatabase the group of Black identified
a number of exonsmatching the CARREmotif containing the general se-
quence CACA(T/C)NNTTAT [55] which later was modified to the mini-
mum consensus sequence CACA(T/C)N1–4A [56]. This permitted to
study the CaMKIV dependent splicing of a number of exons carrying
this motif which responded to depolarization conditions in P19 cells
[56] including exon 21 of PMCA1. As mentioned before the splice site
for including exon 21 of PMCA is located within the calmodulin binding
domain (see Fig. 1). Exon 21 of PMCA1 contains 2 internal splice donor
sites, and it is interesting to note that a CARRE consensus sequence of
CACATGTA can be identified at the second splice donor site of exon 21
of PMCA 1 [22]. If PMCA1a should be expressed which includes the
total sequence of 154 nt of exon 21 the internal splice donor sites
have to be suppressed. This could be achieved on one hand by suppress-
ing the second cryptic splicing site by recognizing the CARRE of that site.
On the other hand, it is known that secondary structure of pre-mRNA
can influence the regulation of alternative splicing [57] which could
contribute to suppress the first internal splicing site of exon 21, thereby
resulting in an increase of expressing PMCA1a as observed by
depolarizing differentiating granular cells [58], indicating that PMCA1a
is a specific neuronal isoform as documented in detail by Kenyon et al.
[49]. On the other hand, specific cell type differences in splicing pattern
may also exist. In this context it is of interest that Zacharias & Strehler
observed a different splicing pattern by studying changes in splicing
variants of PMCA in the IMR32 neuroblastoma cells [59]. These authors
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reported that by depolarizing these cells they noticed the additional oc-
currence of the splice variant PMCA2x next to PMCA2w in contrast to
PMCA1, 3 or 4 for which they did not observe a change in splicing pat-
tern. With respect to the discussion before concerning PMCA1a expres-
sion it is interesting that Zacharias & Strehler not only noticed that this
change of the PMCA2 splice variants was Ca2+-dependent but also that
the phosphorylation of probably a splicing regulating factor must be in-
volved in this process [59] as mentioned before for the regulation of
PMCA1a expression. In this context it is interesting that Kosiorek et al.
recently reported on the regulation of PMCA2 alternative splicing in
PC12 cells through the cooperation of NFAT1/3 andHDAC4 [60]. The au-
thors suggested that this influence on the isoform composition may be
important for altered dopamine secretion by PC12 cells [60].

One of the functional consequences of including exon 21 in PMCA1a
is the considerable difference in the C-terminal amino acid sequence of
the calmodulin-binding domain due to the shift of the reading frame.
Since the calmodulin-binding domain is responsible for the auto-
inhibition of the pump due to its interaction with receptor sites close
to regulatory domains of the enzyme [29,30] this change in its structural
property could influence the basic Ca2+-pumping activity of the en-
zyme in addition to its loss of calmodulin sensitivity. In fact, Caride
et al. [61] studied the difference in calmodulin binding and activation
between PMCA4a and 4b and demonstrated that PMCA4a is more effi-
cient than PMCA4b in reducing cytosolic Ca2+ concentrations after a
Ca2+ spike. Similar conclusions could be drawn for the activation kinet-
ics of PMCA1a in comparison to PMCA1b. Another important difference
between the “a” and the “b” variant concerns the ability to interact with
PDZ-domains which is only observed in the “b” form (and in some “c”
and “d” spliced isoforms) but never in the “a” isoform due to the
frame shift. Since the PDZ domain is a kind of scaffold for interacting
with a number of proteins influencing the activity of the PMCA Kip
et al. [48] recently argued that the lack of the PDZ-interaction sequence
in PMCA1a could result in a higher frequency of shuttling of this specific
isoform between different membrane domains involved in Ca2+ signal-
ing. This could enable PMCA1a to control Ca2+ homeostasis in different
local microdomains. In this context it is of interest that PMCA2which is
specifically abundant in hippocampal neurons does not shift between
isoforms “a” and “b” [48] which may be due to the fact that the corre-
sponding exon of PMCA2 does not contain a CARRE domain which
could permit CaMKIV to regulate the expression of PMCA2a. This is in
contrast to what has been described for the splicing pattern of
PMCA2 at splice site A where the x splice variant was concomitantly
expressed with w during depolarization of the cells [59].

Another aspect concerning the importance of CaMKIV dependent
regulation of the expression of PMCA1a during brain development con-
cerns the finding that the expression of CaMKIV during brain develop-
ment is tightly controlled by the thyroid hormone [62]. In a detailed
study we provided evidence that the expression of CaMKIV is induced
by T3 in a concentration and time dependentmanner in a rat fetal telen-
cephalic culture system [62]. These findings have later been supported
by similar observations of Liu and Brent in mouse stem cells including
the identification of a thyroid hormone receptor recognition sequence
in the promoter region of CaMKIV [63] and by the group of Bernal
who studied thyroid hormone regulation of gene expression in the de-
veloping rat fetal cerebral cortex [64]. Many studies provided evidence
that the availability of the thyroid hormone T3 is absolutely essential
for fetal brain development (for recent reviews see [65,66]). It is
known that in the first weeks of fetal neurodevelopment the pup is
completely dependent on maternal thyroid hormone supply [67]. Ma-
ternal thyroid hormone deficiency could therefore result in severe
brain impairment leading to mental retardation, cognitive deficits and
impaired learning and memory [68,69]. In a recent study by Zhang
et al. [70] it was shown that maternal hypothyroidism of rats strongly
impaired CREB-depending signaling pathwayswhich is closely associat-
ed with synaptic plasticity, learning and memory. Since the transcrip-
tion factor CREB is mainly controlled by CaMKIV it was interesting to
see that Zhang et al. provided evidence that rat pups suffering fromma-
ternal hypothyroidism showed a significantly impaired expression of
CaMKIV [70]. Therefore it would be of interest to investigate whether
the expression of PMCA1a would be impaired in the developing brain
during maternal hypothyroidism, and whether this would influence
the role of PMCA1a in calcium homeostasis during neuronal develop-
ment and synaptic formation. A detailed analysis of these implications
has to await further experiments.

4.2. PMCA2

Early on it was recognized that PMCA2 and its spliced isoforms are
specifically expressed only in highly specialized tissues such as inner
hair cells, the nervous system or other excitable tissues. Among the 4 dif-
ferent PMCA genes PMCA2 has the highest binding affinity for calmodu-
lin, but also a very high basal Ca2+ activity in the absence of calmodulin
[71] which could be important in specialized cells where a continuous
Ca2+ pumping activity at high rate is demanded. Splicing at site A inserts
up to 3 exons, at site C one or two exons (see Fig. 1). PMCA2was first de-
scribed by Brandt et al. [72] studying the developing nervous system of
the rat, later the humanhomologuewas characterized and the expression
of its spliced isoforms have been described [73]. PMCA2 is especially
abundant in Purkinje and granular cells of the cerebellum [73], but 2
spliced isoforms of PMCA2 deserve a special discussion here, i.e. the “w/
a” variant in which all possible exons of splice sites A and C are spliced
in leading to a truncated form of the pump due to the frame shift, and
the “w/b” variant in which all 3 exons of site A are included, but at site
C no extra exon is inserted. As pointed out by Antalffy et al. [74] splicing
at site A determines the final localization of the pump, thus the “w” vari-
ant directs the enzyme to the apical membrane of polarized cells.
PMCA2w/a is highly expressed in the outer hair cells of the inner ear
[75] where it is localized in the stereocilia [76]. Of special interest is the
5′ UTR of PMCA2 since it seems to contain different regulatory domains
which direct the enzyme into different cell types by using four different
transcriptional start regions [77]. One of these start regions permits the
expression of the pump in Purkinje neurons and in the outer hair cells, an-
other in cerebellar granular cells, and 2 in the epithelia of the lactating
mammary gland. Reinhardt & Horst [78] identified six calcium pumps in
the lactating mammary tissue, i.e. 3 PMCAs, 2 SERCAs and a Golgi Ca2+-
ATPase, later knownas SPCA (secretory pathway calciumATPase). Of spe-
cial interest with respect to the developing lactation process is the obser-
vation by Reinhardt and Horst that the most abundant transcript of a
calcium pump was that of PMCA2w/b which could increase up to 100
fold at the peak of lactation. As already pointed out by the authors the es-
pecially high basic Ca2+ activity of PMCA2b is well suited for themainte-
nance of calcium homeostasis in the lactating gland which was later
supported by the observation that the calcium content of the milk of lac-
tating mice lacking PMCA2w/b was reduced by 60% [79]. Another inter-
esting aspect is the modulation of the PMCA2 activity by the calcium-
sensing receptor which regulates the calcium level in the milk [80].

Asmentioned before PMCA2w/a is selectively expressed in the outer
hair cells of the inner ear where it is localized in the stereocilia contain-
ing the sensory transduction apparatus [75,76]. Since other Ca2+ clear-
ance systems are absent in stereocilia cells it is obvious that PMCA2w/a
plays a critical role in maintaining Ca2+ homeostasis in those cells.
Therefore it is not surprising that loss of function of PMCA2 results in
deafness as first observed in deafwaddler micewhich also have difficul-
ties in maintaining balance [81]. Similar results have been reported by
Kozel et al. [82] who produced PMCA2-deficientmice by gene targeting.
Street et al. [81] identified a mutation of a conserved glycine to serine
within the transduction domain (close to the phospholipid-binding do-
main of PMCA) which couples ATP hydrolysis with Ca2+ transport. Ac-
cording to the authors this glycine 283 of PMCA2 is conserved among
cation transporting ATPases, and has been shown for the SERCA pump
that substitution of a homologous glycine impaired calcium transport.
A similar G293S mutation of PMCA2w/a downstream of the G283S
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mutation reported for mice has later been demonstrated to occur in
humans. However, the reported symptomswere only similar if cadherin
23 was also mutated. The latter is critical for the correct functioning of
the transduction complex [83].

4.3. PMCA3

The plasmamembrane calcium pump of gene 3 is like PMCA2main-
ly restricted to the nervous system, but in contrast to PMCA2 which is
mainly found in postsynaptic densities PMCA3 is mainly located at pre-
synaptic terminals, especially in the cerebellum and in the choroid plex-
us [84–86], but PMCA3 has also been found in skeletal muscles [87].
Even if detailed findings concerning specificity and Ca2+ handling of
PMCA3, also with respect to the use of spliced isoforms, are still limited,
two recent reports of the involvement of PMCA3 mutations in connec-
tion with specific human diseases are of interest here. In an extensive
clinical study of patients suffering from aldosterone-producing adeno-
mas (APA) which leads to secondary hypertension, it was reported
that due to somatic mutations in the Na+/K+-ATPase (ATP1A1) and in
ATP2B3 in a number of clinical cases the ion homeostasis of the cells
were impaired [88,89]. In these studies the authors identified two dele-
tion mutants of PMCA3 within the transmembrane domain M4 (V426,
V427/L425, V426), leading to a distortion of the domainwhich probably
affects the Ca2+ binding site of the pump. The second study concerning
amutation of PMCA3was reported by Zanni et al. [90]who found amis-
sense mutation in PMCA3 which is located on the X chromosome [21].
This mutated PMCA3 was discovered in a family with congenital cere-
bellar ataxia. The identified G1107D mutation is located within the
calmodulin-binding domain closely upstream of splice site C. The
authors overexpressed the mutated form of the pump in human fibro-
blasts and by comparing with controls they found that the Ca2+-
pumping activity of the mutated form was impaired. These findings
can be rationalized on the basis of the NMR structure of calmodulin
bound to its binding domain [91] which would predict that replacing
gly1107 by asp would perturb the interaction between calmodulin
and its binding domain leading to decreased calmodulin-dependent
activation of the pump. On the other hand, since it is known that in
the absence of calmodulin its binding domain interacts with an internal
acceptor site of the pump [29,30] the G1107D mutation could also
weaken this interaction leading to an enhanced basal activity of themu-
tated pump, in otherwords the functional situation of themutated Ca2+

pump is likely to be more complex.

4.4. PMCA4

PMCA4 is like PMCA1 ubiquitously distributed in all tissues exam-
ined, but unlike PMCA1 it is not embryonically lethal. On the other
hand, a number of specific phenotypes have been reported indicating
that PMCA4 is of critical importance for certain cellular functions. So it
has been demonstrated that a plasma membrane calcium pump was
critical to maintain a resting Ca2+ level in sperm cells [92]. This PMCA
Table 1
Summary of Distribution of Different PMCA Isoforms and their Link to Different Diseases.

PMCA Location Destination KO

1 Ubiquit. Lethal
2 Neural Postsynaptic
2w Apical
2w/a Stereocilia Deafness, unbalanc

2w/b Lact. gland
3 Neural, skelet. muscle Presynaptic
3
3
4 Ubiquit. Male infertility
4b

mDeaf = Deafness in mice; hDeaf = Deafness in human; APA = aldosterone-producing aden
was later identified by Neyses and his co-workers as PMCA4b which is
highly enriched in the flagellar apparatus of the spermatozoon impor-
tant for the spermmotility [93]. Therefore the authors decided to target
the PMCA4 gene by homologous recombination in embryonic stem
cells. They could demonstrate that male homozygous deficientmice be-
came infertile due to impaired sperm motility [93]. However, an inter-
esting observation was recently reported by Brandenburger et al. [94].
They studied PMCA4 splice variants in bovine epididymis and found a
switch from PMCA4b to 4a during functional sperm maturation sug-
gesting that the sperm maturation process requires a shift from the
slow PMCA4b to the faster 4a variant due to its higher basic Ca2+

activity. By contrast, in the female reproductive tract ofmice both splice
variants of PMCA4, i.e. “a” and “b”, can be detected in a vesicular fraction
by which PMCA4a, and probably also 4b, can be secreted [95].

Since it has been demonstrated that all “b” variants of PMCA contain
a PDZ-interaction sequence at the C-terminus [38,39] Schuh et al.
[96] provided evidence that PMCA4b can interact with a calcium/
calmodulin-dependent serine protein kinase (CASK)whichwas also ob-
served by Aravindan et al. [97] in the mouse sperm flagellum. Similar
PDZ-dependent interaction of PMCA4b with the neuronal form of NO
synthase (nNOS)was shown byOceandy et al. [98]. By generating trans-
genic mice overexpressing human PMCA4b it could be demonstrated
that due to the interactionwith nNOS PMCA4b could regulate the activ-
ity of nNOS by controlling the local calcium concentration which is im-
portant for the regulation of beta-adrenergic signal transmission [97].
Such interaction could occur in microdomains as organized by lipid
rafts which have been demonstrated to be involved in the regulation
of various Ca2+ signaling pathways [44]. Also a PDZ-independent inter-
action of PMCA4b with the catalytic subunit of calcineurin, calcineurin
A, has been described [99]. The domain of PMCA4b to interact with cal-
cineurin has been located close to the ATP-binding site of the ATPase.
This interaction resulted in the inhibition of the calcineurin/NFAT con-
trolled signaling pathway.

Very recently Li et al. [100] reported the interesting observation that
a missensemutation of PMCA4was discovered in a Chinese family with
autosomal dominant familial spastic paraplegia (FSP). By whole-exome
and Sanger sequencing they detected a R268Q mutation in six family
memberswho suffered from FSPwhich could not be detected in healthy
members of the family, andwas also an unknownmutation in any of the
databanks. This mutation is located close to splice site A and in the
neighborhood of the phospholipid binding domain, 2 important regula-
tory sites of the enzyme. Computational modeling revealed that this
R268Q mutation could lead to a partly misfolded protein supported by
the finding of thermodynamic instability of the protein. Since PMCA4
has been reported to be localized in lipid rafts in the cerebellum [101]
which are important for postsynaptic signaling complexes Li et al. spec-
ulate that the R268Q mutation may be responsible for dysregulation of
Ca2+ signaling at such sites which may cause neuronal deficits
associated with FSP.

In summary, it can be concluded that the proteins translated from
the 4 different genes of the mammalian plasma membrane calcium
Mutation Disease Refs.

[46]
[67,84,85]
[74]

ed G283S G293S mDeaf
hDeaf

[76,81–83]

[78,79]
[86]

Deletion of V426, 427/L425, V426 APA [88,89]
G1107D Ataxia [90]

[93]
R268Q FSP [100]

omas; FSP = familial spastic paraplegia.



2023J. Krebs / Biochimica et Biophysica Acta 1853 (2015) 2018–2024
pump and their spliced isoforms differ in their tissue distribution, their
differences in controlling Ca2+ homeostasis and how their expression
is regulated. In addition, it becomes increasingly noticeable that
mutations at critical sites of PMCA can lead to severe dysfunction and
diseases (see Table 1).
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