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Summary

Bacterial endosymbionts play essential roles for many
organisms, and thus specialized mechanisms have

evolved during evolution that guarantee the persis-
tence of the symbiosis during or after host reproduc-

tion [1, 2]. The rice seedling blight fungus Rhizopus
microsporus represents a unique example of a mutual-

istic life form in which a fungus harbors endobacteria

(Burkholderia sp.) for the production of a phytotoxin
[3]. Here we report the unexpected observation that

in the absence of endosymbionts, the host is not capa-
ble of vegetative reproduction. Formation of sporangia

and spores is restored only upon reintroduction of
endobacteria. To monitor this process, we succeeded

in GFP labeling cultured endosymbionts. We also es-
tablished a laserbeam transformation technique for

the first controlled introduction of bacteria into fungi
to observe their migration to the tips of the aseptate

hyphae. The persistence of this fungal-bacterial mutu-
alism through symbiont-dependent sporulation is

intriguing from an evolutionary point of view and implies
that the symbiont produces factors that are essential

for the fungal life cycle. Reproduction of the host has
become totally dependent on endofungal bacteria,

which in return provide a highly potent toxin for
defending the habitat and accessing nutrients from

decaying plants. This scenario clearly highlights the
significance for a controlled maintenance of this

fungal-bacterial symbiotic relationship.

Results and Discussion

Stable symbiotic associations between endocellular
bacteria and eukaryotes are well known in the animal
and plant kingdoms, and numerous groundbreaking
studies have contributed to a deeper insight into the
hallmarks and mechanisms of living together [1, 2].
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Notably, only very little is known about symbiotic inter-
actions between fungi and endobacteria, and only
a few examples restricted to arbuscular mycorrhizal
(AM) fungi have been discovered within the last decade
[4–6]. Only recently we found that such little explored
symbioses also play a crucial role for the saprotrophic
fungus Rhizopus microsporus, which is infamous for
causing severe losses in rice nurseries. An antimitotic
polyketide metabolite, rhizoxin, isolated from fungal cul-
tures has been identified as the causative agent of the
plant disease, known as rice seedling blight [7, 8]. We
showed that this phytotoxin is not produced by the fun-
gus, but by symbiotic bacteria of the genus Burkholderia
that reside within the fungal cytosol [3]. This case repre-
sents an unparalleled example for a symbiosis, in which
a fungus harbors bacteria for the production of a viru-
lence factor. Our findings were corroborated by curing
the fungus with an antibiotic, which resulted in a symbi-
ont-free, rhizoxin-negative phenotype [3]. Furthermore,
we succeeded in isolating the endosymbiont in pure cul-
ture and in proving its capability for rhizoxin production
[9]. Cloning, sequencing, and mutagenesis of the entire
gene locus encoding rhizoxin biosynthesis within the
symbiont genome revealed the molecular basis for toxin
production [10]. Finally, reinfection of the cured fungal
strain with the isolated symbiont reestablished a rhizoxin-
producing fungal-bacterial symbiosis [3]. More recently
we found that also the ‘‘mycotoxin’’ rhizonin is actually
produced by bacterial endosymbionts [11]. These find-
ings were in full agreement with Koch’s laws and implied
that the symbionts can be transmitted horizontally. Such
a scenario is typical in cyclical endosymbioses, which
require regular reassociation events, and is exemplified
by the Geosiphon pyriforme-Nostoc punctiforme symbi-
osis [12, 13]. However, as for the Burkholderia-Rhizopus
symbiosis, the low frequency of infection and single-
spore germination experiments pointed toward a perma-
nent rather than a cyclical association type.

Cured Fungi Are Incapable of Sporulation

In the course of the studies on the true producer of the
phytotoxin, we found that no spores could be harvested
from the cured strain. A microscopic investigation re-
vealed that the symbiont-free mycelium forms neither
sporangia nor columellae, which is in stark contrast to
the wild-type (Figure 1). Apparently, the fungus pro-
duces only hyphae, but does not differentiate in the ab-
sence of the endosymbionts. In an alternative approach,
wild-type spores were immersed in ciprofloxacin-con-
taining media to eliminate endobacteria and were then
incubated to yield symbiont-free clones. Again, cured
fungi proved to be incapable of vegetative reproduction
through spores. Cocultivation of the symbiont-free
strains with isolated endosymbionts resulted in an intact
symbiosis, in which asexual reproduction was re-estab-
lished. To exclude any secondary effects that were po-
tentially caused by the antibiotic, all cured strains were
cultured in the absence of any additives.
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Figure 1. Micrographs of R. microsporus Cultures

(A) Typical appearance of the wild-type showing hyphae, columellae, and globose sporangium with spores.

(B) The cured strain does not form sporangia.

Scale bars represent 30 mm.
Restitution of Symbiosis by Laser-Mediated

Microinjection of GFP-Labeled Endobacteria
The most surprising and unprecedented observation in
this study is that the cured host forms only bulk hyphae
and is strictly incapable of vegetative reproduction
through spores under laboratory conditions. The formation
of sporangia and sporulation is exclusively observed in
the wild-type and after restoring the fungus-bacterium
association with living bacteria. This scenario implies a
highly specialized symbiotic interaction. To unequivo-
cally prove the transmission mode and monitor the
fate of bacteria in the cytosol, we needed to establish
techniques for labeling and introducing the cultured
endobacteria.

The Burkholderia symbionts are capable of invading
the fungal cell by a yet undiscovered mechanism. This
process is unpredictable in time and location, so we
sought to mechanically introduce labeled bacteria into
the cured fungi. For this purpose, we first established
an electroporation procedure for transformation of
electrocompetent cells of isolated endobacteria. With
this protocol, we successfully introduced a plasmid
(pHTK2) harboring a gene encoding green fluorescent
protein (GFP), which has been previously employed in
biofilm studies of the Burkholderia cepacia complex
[14]. Positive transformants selected for trimethoprim
resistance showed green fluorescence under blue light
(GFP filter). Subsequently, a technique for the directed
introduction of the GFP-labeled endosymbionts into
the fungal mycelium was required. To our knowledge,
the targeted infection of fungi by bacteria has not yet
been reported. To achieve this goal, we adopted a
method for the transformation of plants with DNA, which
involves a laser microbeam coupled to a microscope
[15, 16]. It has been shown that laser microinjection
allows natural barriers to be overcome, i.e., enables
transfection in cases where other techniques fail [17].
The beam was focused on the fungal cytoplasm
(Figure 2A), and several laser pulses proved to be suffi-
cient for microinjection at a specific site. The process
was monitored by CLS microscopy, which showed
that the labeled bacteria were rapidly taken up by the
fungus through osmotic pressure (Figures 2B–2E). The
motion of bacteria within the cytosol was clearly visible.
As displayed in Figures 2 and 3A, the motile bacteria are
likely prone to chemotaxis and migrate toward the tips
of the hyphae. Notably, this is the region with the best
supply of nutrients and where sporangia are formed. In
this context, it should also be highlighted that Rhizopus
is an aseptate fungus and thus movement of the bacteria
is not physically restricted.

Endosymbiont-Dependent Sporulation

While the symbiont-free host strains were strictly inca-
pable of developing sporangia in the cultivation medium,
the reinfected strain behaved like the wild-type. 4 days
after microinjection, the formation of sporangia was
clearly visible. Furthermore, GFP labeling of the symbi-
onts allowed their detection in the sporangia as well as
within the spores (Figures 3B–3D). In all investigated
individual spores, GFP-labeled, rod-shaped endobacteria
were clearly visible. The transformation experiment for
restoration of symbiosis has been successfully repeated
in two other R. microsporus strains. Taken together,
these experiments provide clear evidence that sporula-
tion is triggered only by the presence of endobacteria.

Ecological and Evolutionary Implications

A critical issue for the survival of all mutualistic life forms
is to ensure the transmission of the symbionts during or
after host reproduction. Symbionts can be heritable
through a vertical mode, i.e., directly from parent to off-
spring, which is characteristic for obligate symbiotic
relationships. Alternatively, partners may reproduce
independently and reassociate through horizontal sym-
biont transfer at a later stage [1]. Irrespective of the
mode of transmission, specific mechanisms must have
evolved for maintenance of the symbiosis as a long-
term strategy for survival of the mutualistic partners.

Species of the genus Burkholderia are known for their
ability to access and inhabit unusual ecological niches
[18]. The fungus R. microsporus represents an ideal vector
for rapid bacterial dispersal in new roots [19] and a most
efficient spreading of the symbiosis through spores. In
this context, it is remarkable that endobacteria isolated
from fungi of geographically distant collection sites all
over the globe are very closely related [3]. The fungus,
on the other hand, lost control over autonomous
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Figure 2. Monitoring Microinjection of GFP-Labeled Endosymbionts into the Fungus and Migration within the Hyphae

Micrographs (A)–(E) are screen captures taken at 0.5 min intervals. Scale bar represents 10 mm. Red arrow indicates site of laser injection; white

arrows highlight GFP-labeled bacteria and direction of their migration.
reproduction but has gained the antimitotic agent rhi-
zoxin, which is produced by the endosymbionts, as a
chemical weapon.

Endosymbiont-dependent host reproduction pro-
vides a viable control over symbiont transmission and
prevents the loss of any mutualistic partner. Yet effects
of endosymbionts upon growth and reproduction of
the host have been described in only a few animal sym-
bioses, where microorganisms often provide essential
nutrients [20, 21]. In extreme cases, their lack can even
lead to sterility. For example, adult Xyleborus ferrugi-
neus beetles that developed from symbiont-free eggs
reproduced only when a mutualistic fungus was inocu-
lated into the diet [22]. Oogenesis in the date stone bee-
tle, Coccotrypes dectyliperda, depends on symbiotic
bacteria [23], and in the Buchnera-aphid symbiosis,
the hosts suffer sterility when deprived of the symbionts
resulting from lacking nutrients [24–26].

The control over fungal spore formation and repro-
duction by endobacteria is unprecedented. Although
fungal development has long been the subject of vast
research endeavor, surprisingly little is known about the
factors mediating sporulation, and as of yet, no specific
triggers have been reported. Here we report the first
example of a bacterium required for sporulation in a fun-
gus. Low molecular weight molecules play pivotal roles in
the communication of bacteria and eukaryotes [2, 27–30],
so we postulate that the induction of sporulation has
a chemical basis. Irrespective of the nature of the trigger
or essential factors, the symbiont must bear genes
Figure 3. Confocal Laser Scanning Micrographs of Fungi after Microinjection with GFP-Labeled Bacteria

(A) Hypha showing bacteria migrating to the tip (scale bar represents 25 mm).

(B) A single vegetative spore containing a rod-shaped GFP-labeled endobacterium (scale bar represents 2 mm).

(C and D) Sporangiophores, sporangia, and spores formed after restitution of the symbiosis (white light and fluorescence mode, scale bar rep-

resents 30 mm).
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required for fungal development that have been func-
tionally redundant in an early stage of the symbiosis. In
the course of evolution, an ancestral fungal host strain
that was associated with bacteria producing the sporu-
lation factor must have lost the ability to produce the sig-
nal or essential components on its own. This loss of
function might be rationalized by either gene deletion
or lack of gene expression. It should be noted that add-
ing crude extracts of a symbiont fermentation did not in-
duce sporulation in the cured fungus.

The Rhizopus-Burkholderia association represents an
intriguing example for the evolution of a symbiosis. It is
generally conceivable that the bacteria exploit its host in
a less than mutualistic way. However, considering the
benefit of the antimitotic agent produced by the symbi-
ont, all observations imply an evolutionary parasitism-
mutualism shift, and eventually a transition from facultative
to an obligatory association [31]. Despite the evidence
for a highly specialized interaction, which points toward
an old symbiosis, the bacterial endosymbionts can
still be isolated and grown in pure culture. In insect sym-
bioses, substantial gene loss resulted in an integration
of host and symbiont metabolic functions [32]. Obvi-
ously, genome reduction of the Burkholderia symbiont
has not led to the loss of vital functions. This is reflected
by the still relatively large size of the genome of the
Rhizopus endosymbiont (3.8 Mb; C.H. and L.P.P.-M.,
unpublished results) compared to the yet unculturable
symbiont of Gigaspora (1.2 Mb) [6].

In conclusion, we have demonstrated that the phyto-
pathogenic alliance of Rhizopus and Burkholderia
employs a new mechanism for the maintenance of the
symbiosis. Two lines of evidence prove that the endo-
symbionts are vertically transmitted through spores,
which are formed only when symbionts are present. Con-
sequently, vegetative reproduction of the fungal host is
strictly dependent of the endosymbionts. To monitor
the process of bacterial migration in the fungal cytosol
and the mode of vertical transmission, we succeeded
in GFP labeling cultured endobacteria and established
a laserbeam transformation technique for the first con-
trolled introduction of endosymbionts into fungi. Both
the Rhizopus host and the Burkholderia endosymbionts
were cultured independently and could be reassembled
by the laser technique. The persistence of this mutalism
through controlled sporulation is of high significance
from an evolutionary point of view. Our results support
the hypothesis that the mutualism results from an an-
cient infection followed by the evolution of a concerted
mode of vertical transmission and imply an intermediary
functional redundancy in both partners. During evolu-
tion, the fungus lost its ability to produce endogenous
sporulation factors and became dependent on endobac-
teria for reproduction, which impressively demonstrates
the impact of the symbiosis: the fungal host gained
rhizoxin as an efficient chemical means for defending
the habitat against competitors and a supply of nutrients
from dead plant matter.

Experimental Procedures

Strains

Rhizopus microsporus CBS112285 (HKI 0383) harboring endobacte-

ria Burkholderia sp. B5 (HKI 0456) was used in this study. Endobac-

teria were isolated from their fungal host as reported.
Elimination of Endobacteria in Fungal Strains

Endobacteria from Rhizopus microsporus CBS112285 (HKI 0383)

were eliminated by continuous antibiotic treatment. Plates were

prepared with PDA (Potato-Dextrose-Agar) and supplemented with

0.02 mg mL21 ciprofloxacin (Bayer AG, Germany). Growing mycelium

(3 days old) was then transferred to a submerged culture of TSB

(Tripton-Soya-Broth) with ciprofloxacin (0.02 mg mL21) and incu-

bated overnight at 30�C and 115 rpm orbital shaking. The culture

was centrifuged for 5 min at 4000 rpm, and a slant from the superna-

tant was plated again onto PDA-ciprofloxacin. This procedure was

repeated three times, and the complete elimination of bacteria

was analyzed by PCR and monitoring the metabolic profile (absence

of rhizoxin as an indicator) of the cured fungi in production media

(1% corn starch, 0.5% glycerol, 1% gluten meal, 1% dried yeast,

1% corn steep liquor, and 1% CaCO3 at pH 6.5) without addition

of ciprofloxacin. The sterile fungal strain was named CBS112285/S.

Transformation of Endobacterial Strains with a Green

Fluorescent Protein Vector

Endobacterial strain Burkholderia sp. B5 was cultivated in TSB,

and cells were made competent as described by Choi et al. [33].

For electroporation, 750 ng of vector pHTK2 [14], kindly provided

by K. Tomlin at the University of Calgary, were first denaturated for

5 min at 95�C and then mixed with 100 ml Burkholderia sp. B5 elec-

trocompetent cells. The mixture was transferred to a sterile 2 mm

gap width electroporation cuvette, and a pulse with the following

settings was applied: 25 mF, 200 U, 2.5 KV on a Bio-Rad Gene-

PulserXCell (Bio-Rad, Germany). 1 ml of TSB was then added to

the cells and the contents transferred into a glass tube for overnight

cultivation at 30�C at 115 rpm. The cells were then harvested in a

microcentrifuge tube and concentrated to 50 mL. Cells were plated

in nutrient agar supplemented with 0.1 mg mL21 trimethoprim

(Fluka, Netherlands). Transformed colonies, designated B5 GFP,

appeared after 3–4 days and were analyzed with a Leica DM4500

B light microscope (Leica Microsystems, Germany) equipped with

a blue light, BP 470/40 excitation filter.

Microinjection of Bacterial Symbionts into the Fungal

Cytoplasm

For cell preparation, fungal strains were plated onto PDA agar and

allowed to grow at 30�C for at least 4 days. Transformed Burkholderia

sp. B5 cells were picked from the NA-trimethoprim plate and culti-

vated in 1 ml TSB with trimethoprim (0.1 mg mL21) at 30�C, 115

rpm for 2 days. In a borosilicate cover glass chamber (Lab-Tek

Chambered Coverglass System, Nalge Nunc International, USA),

700 ml of TSB with 4% glycerol were mixed with a small mycelial pel-

let and 200 ml of a culture of green fluorescent bacterial cells. With

a laser microbeam coupled to a microscope, it was possible to inject

the green fluorescent bacterial cells into the fungal cytoplasm. The

setup used here is based on an inverted confocal laser scanning mi-

croscope (LSM 510, Carl Zeiss, Jena, Germany). The output laser

beam of a pulsed laser (diode-pumped, Q-Switched Frequency-

Tripled Laser System: Triton; TEM00, 349 nm; maximum power

1 W, pulsed; repetition rate: single shot, 1 KHz; pulse width: <15

ns; pulse energy: up to 250 mJ; Spectra Physics, Darmstadt, Ger-

many) is expanded by a telescope system and is focused into the

object plane of the microscope by a Zeiss Plan-Neofluar 100/1.30

oil objective (spot diameter < 500 nm) after reflection by a dielectric

mirror (Laser Optik, Germany). The dielectric mirror is placed on the

empty laser scanning position of the fluorescence reflector slider

and transmits the scanning lasers as well as the emitted fluores-

cence and reflects the pulsed laser beam of Triton. Thus the imaging

functions of the LSM are not reduced. LSM is additionally equipped

with a cell culture cultivation system (Zeiss, Germany) that consists

of an incubation chamber, heating microscope stage, temperature

and CO2 controller units, objective heater, and a humidifying system.

This allows long-time live-cell imaging. To uptake the bacteria into

the fungal cytoplasm, the beam was focused on the fungal cyto-

plasm. The bacteria were incorporated into the fungal cytoplasm

by several laser pulses (at repetition rate of 20 Hz for a few seconds;

at w0.5 mJ in object plane), and the injection procedure was

recorded/controlled by time series function of LSM (stack size:

512 3 512; slice time: 985 ms).
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Injected fungal cells were then plated on PDA-trimethoprim

plates. After 6 days at 30�C, a mycelium pellet was inoculated in

100 ml production media and cultivated for 6 days, and mycelial

cake was then harvested and extracted with ethyl acetate (grown

culture: ethyl acetate 1:1 v/v).

Infection of Fungi by Cocultivation of Fungi and Bacteria

Fluorescent bacterial cells were first grown in liquid media (TSB with

trimethoprim) and then plated in PDA-trimethroprim. Bacteria were

allowed to grow for 2 days before inoculating a small pellet of mycelial

fungus. Cocultivation in the PDA-trimethoprim petri dish continued

for 1 week. Fungal extracts were prepared in the same manner as

for injected fungal strains. Microscopic preparations were observed

under a Leica DM4500 B light microscope attached to a digital camera

(Leica DFC480, Leica Microsystems, Germany).
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