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The present research work presents a variational approach for stress analysis in a general symmetric lam-
inate, having a uniform distribution of ply cracks in a single orientation, subject to general in-plane load-
ing. Using the principle of minimum complementary energy, an optimal admissible stress field is derived
that satisfies equilibrium, boundary and traction continuity conditions. Natural boundary conditions
have been derived from the variational principle to overcome the limitations of the existing methodology
on the analysis of general symmetric laminates. Thus, a systematic way to formulate boundary value
problem for general symmetric laminates containing many cracked and un-cracked plies has been
derived, and appropriate mathematical tools can then be employed to solve them. The obtained results
are in excellent agreement with the available results in the literature. In the field of matrix cracks analysis
for symmetric laminates, the present formulation is the most complete variational model developed so
far.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In many branches of engineering, like aerospace and civil engi-
neering, composite laminates are increasingly used as structural
components. The observed damage process of laminated compos-
ites during operation is rather complex consisting of matrix cracks,
delaminations, fiber-matrix debondings, fiber breakage, etc. How-
ever, matrix cracking parallel to the fiber direction on off-axis plies
is usually the first damage mode observed for in-plane loading.
Although matrix cracking is not critical from a final fracture point
of view, its presence triggers the initiation of other damage modes
like delamination and fiber breakage or provides pathways for en-
try of corrosive liquids that may subsequently lead to fracture. In
addition, matrix cracks lead to stiffness reduction and stress redis-
tribution to adjacent plies, which are needed for computation of fi-
ber-dominated failure modes and laminate strength. Moreover, the
first step in any matrix cracking analysis is to obtain stress state for
laminate containing matrix cracks. Therefore, the capability in ana-
lyzing stress field of a cracked laminate has played an important
role in the development of damage mechanics for laminated com-
posites. Such capability has evolved over decades to build up in
terms of accuracy and versatility, from ply-discount method in
early days to shear-lag model (Garrett and Bailey, 1977),
stress-based variational approach (Hashin, 1985), finite element
(Herakovich et al., 1988), stress transfer model (McCartney,
1992), finite strip method (Li et al., 1994), displacement-based var-
iational approach (Berthelot et al., 1996), etc. The outcome of such
micromechanical stress analyses offer supports to other ap-
proaches in damage mechanics, such as self-consistent approach
(Laws et al., 1983), continuum damage mechanics (Lundmark
and Varna, 2005; Singh and Talreja, 2008) and discrete damage
mechanic (Barbero et al., 2011). The reader is referred to the follow-
ing publications for a detailed review of the developments in the
area of matrix cracking analysis (Nairn, 2000a; Berthelot, 2003).

Among the approximate analytical models, the stress-based
variational approach (Hashin, 1985, 1986, 1987; Nairn, 1989;
Nairn and Hu, 1992; Kuriakose and Talreja, 2004; Vinogradov
and Hashin, 2010) and stress transfer model (McCartney, 1992,
2000; McCartney and Pierse, 1997; Katerelos et al., 2006) have
shown to be more accurate from the micromechanical point of
view (Berthelot, 1997; Nairn, 2000a,b) in comparison to other
methods (e.g. shear-lag).

Stress transfer model of McCartney (1992) is a 2D analysis,
which considers the stress and displacement components based
on the generalized plane strain assumptions. The analysis satisfies
the equilibrium equations, the interface continuities and the
boundary conditions. However, some of the stress-strain relations
and boundary conditions are satisfied in an average sense. McCartney
(2000) has extended the stress transfer model to analyze general
symmetric laminates with arbitrary stacking sequence, having a
uniform distribution of ply cracks in a single orientation, under
general in-plane loading. The technique is basically analytical,
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but because of the resulting complexity, the analysis must be han-
dled numerically in some steps while making predictions of the
behavior of laminate. The stress transfer model can use the ply
refinement technique (Takeda et al., 2000; McCartney and Pierse,
1997) where each layer of the laminate is subdivided into plies
having the same properties in order that important through the
thickness variations of the stress and displacement components
could be taken into account. Today, stress transfer model is consid-
ered as one of the most efficient, versatile and accurate methods to
analyze stress field for the laminate containing matrix cracks.

Hashin (1985) has analyzed the stress distributions in cross ply
cracked laminates under tension or shear using a stress-based var-
iational approach. He has presented an approximate 2D stress
representation, which automatically satisfies the equilibrium
equations, interface and boundary conditions that must be satis-
fied by stress components. The so-called admissible stress field
was then used in conjunction with variational techniques to min-
imize the complementary energy and thus to provide an optimal
solution for the stress field. It has been revealed that the stress
field obtained by the variational approach does an excellent job of
predicting stiffness reduction and crack grow experiments
(Vinogradov and Hashin, 2010; Nairn, 2000a,b). Nevertheless, the
variational approach has mostly been used for treatment of either
cross-ply laminates (Hashin, 1985, 1986, 1987; Nairn, 1989; Varna
and Berglund, 1992; Nairn and Hu, 1992; Rebiere et al., 2001;
Kuriakose and Talreja, 2004) or other symmetric laminates that
by averaging out the off-axis plies are reduced to cross-ply (Joffe
and Varna, 1999; Li and Lim, 2005). Recently, Vinogradov and
Hashin (2010) have extended the capability of the variational ap-
proach to analyze stress field and consequently stiffness reduction
of angle ply laminates. It should be noted that the mathematical
model for all mentioned variational works involves effectively only
two layers, one cracked and one un-cracked, representing a
Fig. 1. Geometry of an arbitrary symmetric laminate containing cracks
three-layered laminate after applying symmetry considerations.
Therefore, these models do not have the capability of analyzing
stress field for the laminates with multiple cracked and un-cracked
layers, which cannot be simplified to a two-layer model using
symmetry, due to the lack of boundary conditions for un-cracked
layers. More recently, Li and Hafeez (2009) have overcome this
drawback by introducing some boundary conditions as an outcome
of variational procedure and translational symmetry (Li et al.,
2009), called natural boundary conditions, in the terminology of
variational calculus. As a result, the applicability of the variational
approach has been extended fundamentally for considering
multiple layers laminates. However, their model (Li and Hafeez,
2009) has only considered cross ply laminates under axial loading
due to the assumed admissible stress field.

In the current work, an attempt has been made to extend the
applicability of the variational approach for analyzing cracked
symmetric laminates with arbitrary stacking sequence under
general in-plane loading. An admissible stress field that satisfies
equilibrium and all the boundary and continuity conditions is
constructed and it is used in conjunction with the principle of
minimum complementary energy to achieve the optimal stress
state of a general symmetric cracked laminate with multiple
cracked and un-cracked layers. A systematic way of evaluating
governing equations is developed, which is completely analytical,
and consequently, the model could enjoy the advantages of ply
refinement technique. To donduct the analysis for considering
general symmetric lay-ups, a set of natural boundary conditions
is considered as an outcome of variational procedure and trans-
lational symmetry. Stress state of cracked laminate estimated by
the suggested approach is in excellent agreement with the re-
sults obtained from the formulations of Hashin (1985) and Li
and Hafeez (2009), which are special cases of the current
formulation.
in one 90� layer (only the upper set of N layers (z > 0) is shown).
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2. Theoretical formulation

Consider a symmetric multilayered laminate including 2N per-
fectly bonded layers, which can have any combination of orienta-
tions while the symmetry about the mid-plane of the laminate is
preserved. As laminate symmetry is assumed, it is better to con-
sider only the upper set of N layers as shown in Fig. 1. A global
set of rectangular Cartesian coordinates is chosen having the origin
at the center of the laminate as shown in Fig. 1. The x-direction
defines the longitudinal or axial direction, the y-direction defines
the in-plane transverse direction and the z-direction defines the
direction through the thickness. The locations of the N � 1 inter-
faces in one half of the laminate (z > 0) are specified by z = zi;
i = 1,2, ...,N � 1. The mid-plane of the laminate is specified by
z = z0 = 0 and the external surface is demonstrated by z = zN = h,
where 2h is the total thickness of the laminate. The thickness of
the ith layer is denoted by hi = zi � zi-1. The orientation of the
ith layer is specified by the angle hi (measured clockwise)
between the x-axis and the fiber direction of this layer. The lam-
inate must be such that the orientation of fibers in at least one set
of plies is aligned in y-direction. This assumption is not a limita-
tion as general in-plane loading conditions are considered so that
if cracks form in another single orientation the laminate can
rotate so that the crack planes are parallel to the y-axis and the
applied stresses transform to values appropriate for the new ori-
entation. The stress and strain components and also material
properties associated with the ith layer are denoted by a super-
script or subscript i. Some layers might have similar properties,
so that through the thickness variations in the stress fields can
adequately be modeled. We assume that the laminate can be infi-
nitely extended in both x and y directions (see Fig. 1), so that the
effect of edges is neglected.

The laminate is subjected to external uniform membrane loads
of Nxx, Nyy and Nxy in the coordinate system of xyz associated with
cracks. In an un-cracked laminate, the only nonzero components of
the stress tensor defined in the coordinate system associated with

cracks are r0ðiÞ
xx ;r0ðiÞ

yy ;r0ðiÞ
xy , where the superscript 0 denotes the

undamaged state and the superscript (i), i = 1,2, . . .,N, denotes the
number of the layer. The stresses are spatially uniform within
Fig. 2. Schematic of an elementary cell containing a cracke
each layer and linear functions of the applied load of Nxx, Nyy and
Nxy.

It is assumed that the ply crack distribution in damaged 90 plies
is uniform, having a separation 2a, and that the cracks in each dam-
aged 90 ply of the laminate are in the same plane. The cracked lam-
inate can be seen as a sequence of laminate fragments, bounded by
pairs of adjacent cracks (see Fig. 1). Further, it will be shown that
each fragment has the same ‘admissible’ traction boundary condi-
tions in the crack planes and hence can be treated separately. In
Fig. 2 a fragment of length 2a is indicated and it will serve as an
elementary cell for the construction of admissible stress field.
The origin of the coordinate system is located in the mid length
of the fragment. The geometry of the fragment is then symmetrical
with respect to the xy and yz planes.

Following the approach developed by Hashin (1985), the stres-
ses in the cracked material are represented as a superposition of
the stresses in the un-cracked material and some yet unknown
perturbation stresses due to the presence of the cracks.

~rðiÞmnðXÞ ¼ r0ðiÞ
mn þ rðiÞmnðXÞ ð1Þ

where m, n = x, y, z. The second term in Eq. (1) is the stress in the ith
ply of undamaged laminate, which can be obtained from a simple
analysis using classic laminate theory. The last term in Eq. (1) is
the perturbation stress in ith ply, which in contrast to the stresses
in the undamaged laminate, is a function of location. For a general
symmetric laminate, all the components of the perturbation stress
tensor are expected to be nonzero, even when some of the external
membrane forces are not applied. It is necessary to find an admissi-
ble stress field that satisfies the equilibrium equations ~rðiÞmn;nðXÞ ¼ 0,
traction boundary and continuity conditions, namely:

1. Zero traction condition on the external surfaces z = ±h:
~rðNÞxz ¼ ~rðNÞyz ¼ ~rðNÞzz ¼ 0.

2. Continuity condition at the interface between the plies at z = zi,
i = 1,2, . . .,N � 1: ~rðiÞxz ¼ ~rðiþ1Þ

xz , ~rðiÞyz ¼ ~rðiþ1Þ
yz , ~rðiÞzz ¼ ~rðiþ1Þ

zz .
3. Zero traction condition on the crack surfaces x = ±a:

~rðkÞxx ¼ ~rðkÞxz ¼ ~rðkÞxy ¼ 0, where superscript (k) represents cracked
plies. In addition, the stress field should balance the membrane
forces applied to the laminate.
d layer for the construction of admissible stress field.
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It should be mentioned that in the coordinate system where the
crack planes are parallel to the y-axis, the stress fields are indepen-
dent of the y coordinate due to this fact that cracks extend across
the entire width. Moreover, following the approach developed by
Hashin (1985), we assume that the membrane perturbation stres-
ses of each layer vary merely along the x direction, normal to the
crack surfaces, and are denoted as:

rðiÞxxðXÞ ¼ �uiðxÞ=hi ð2Þ

rðiÞxyðXÞ ¼ �wiðxÞ=hi ð3Þ

rðiÞyyðXÞ ¼ �giðxÞ=hi ð4Þ

where ui(x), wi(x) and gi(x) are unknown functions of x coordinate.
The other components of the stress tensor are allowed to depend on
both x and z coordinates.

Using Eqs. (2)–(4) the equilibrium equations ~rðiÞmn;nðXÞ ¼ 0 re-
duce to:

�u0iðxÞ=hi þ rðiÞxz;z ¼ 0 ð5Þ

�w0iðxÞ=hi þ rðiÞyz;z ¼ 0 ð6Þ

rðiÞxz;x þ rðiÞzz;z ¼ 0 ð7Þ

The solution of the equilibrium equations can be written in the
form of:

rðiÞxz ðx; zÞ ¼ u0iðxÞðz� ziÞ=hi þ fiðxÞ ð8Þ

rðiÞyzðx; zÞ ¼ w0iðxÞðz� ziÞ=hi þ giðxÞ ð9Þ

rðiÞzz ðx; zÞ ¼ �
1

2hi
u00i ðxÞðz� ziÞ2 � zf 0iðxÞ þ jiðxÞ ð10Þ

where fi(x), gi(x) and ji(x), i = 1,2, . . .,N are unknown functions,
which will be determined later and primes denote derivatives with
respect to x.

The external membrane forces applied to the laminate should
be balanced. The load is applied so that Nxx, Nyy and Nxy remain
constant as cracks appear in the laminate. Therefore, for an undam-
aged laminate:

Nxx ¼
Z h

�h

~rxx dz ¼ 2
XN

i¼1

r0ðiÞ
xx hi ð11Þ

Nxy ¼
Z h

�h

~rxy dz ¼ 2
XN

i¼1

r0ðiÞ
xy hi ð12Þ

Nyy ¼
Z h

�h

~ryy dz ¼ 2
XN

i¼1

r0ðiÞ
yy hi ð13Þ

And for a cracked laminates, we have:

Nxx ¼
Z h

�h

~rxx dz ¼ 2
XN

i¼1

ðr0ðiÞ
xx �uiðxÞ=hiÞhi ð14Þ

Nxy ¼
Z h

�h

~rxy dz ¼ 2
XN

i¼1

ðr0ðiÞ
xy � wiðxÞ=hiÞhi ð15Þ

Nyy ¼
Z h

�h

~ryy dz ¼ 2
XN

i¼1

ðr0ðiÞ
yy � giðxÞ=hiÞhi ð16Þ
Therefore, the following relations are valid:XN

i¼1

uiðxÞ ¼ 0 ð17Þ

XN

i¼1

wiðxÞ ¼ 0 ð18Þ

XN

i¼1

giðxÞ ¼ 0 ð19Þ

It can be seen that equilibrium of external forces provides three
relationships between the perturbation functions as shown in Eqs.
(17)–(19).

The boundary conditions for each cracked ply (k) on the crack
surfaces x = ±a become:

~rðkÞxx ðx ¼ �aÞ ¼ 0) rðkÞxx ð�a; zÞ ¼ �r0ðkÞ
xx ð20Þ

~rðkÞxy ðx ¼ �aÞ ¼ 0) rðkÞxy ð�a; zÞ ¼ �r0ðkÞ
xy ð21Þ

~rðkÞxz ðx ¼ �aÞ ¼ 0) rðkÞxz ð�a; zÞ ¼ 0 ð22Þ

The boundary conditions on the external surface of z = zN = h
are:

~rðNÞxz ðx; z ¼ hÞ ¼ 0) rðNÞxz ðx; z ¼ hÞ ¼ 0 ð23Þ

~rðNÞyz ðx; z ¼ hÞ ¼ 0) rðNÞyz ðx; z ¼ hÞ ¼ 0 ð24Þ

~rðNÞzz ðx; z ¼ hÞ ¼ 0) rðNÞzz ðx; z ¼ hÞ ¼ 0 ð25Þ

Symmetry with respect to xy plane requires:

~rð1Þxz ðx; z ¼ 0Þ ¼ 0) rð1Þxz ðx; z ¼ 0Þ ¼ 0 ð26Þ

~rð1Þyz ðx; z ¼ 0Þ ¼ 0) rð1Þyz ðx; z ¼ 0Þ ¼ 0 ð27Þ

Traction continuty at N�1 interfaces (z = zi, i = 1,2, . . .,N � 1)
requires:

~rðiÞxz ðx; z ¼ ziÞ ¼ ~rðiþ1Þ
xz ðx; z ¼ ziÞ ) rðiÞxz ðx; z ¼ ziÞ ¼ rðiþ1Þ

xz ðx; z ¼ ziÞ
ð28Þ

~rðiÞyz ðx; z ¼ ziÞ ¼ ~rðiþ1Þ
yz ðx; z ¼ ziÞ ) rðiÞyzðx; z ¼ ziÞ ¼ rðiþ1Þ

yz ðx; z ¼ ziÞ
ð29Þ

~rðiÞzz ðx; z ¼ ziÞ ¼ ~rðiþ1Þ
zz ðx; z ¼ ziÞ ) rðiÞzz ðx; z ¼ ziÞ ¼ rðiþ1Þ

zz ðx; z ¼ ziÞ
ð30Þ

Substituting Eq. (26) into Eq. (8) and Eq. (27) into Eq. (9), it
could be concluded that f1ðxÞ ¼ u01ðxÞ and g1ðxÞ ¼ w01ðxÞ. Moreover,
Eqs. (28) and (29) provide enough recursive relations to find fi(x),
giðxÞ; i ¼ 2; . . . ;N, respectively. Therefore, substituting Eqs. (28)
and (29) into Eqs. (8) and (9), it can be concluded that:

fiðxÞ ¼
Xi

j¼1

u0jðxÞ ð31Þ

giðxÞ ¼
Xi

j¼1

w0jðxÞ ð32Þ
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Correspondingly, we have:

rðiÞxz ðx; zÞ ¼ u0iðxÞðz� ziÞ=hi þ
Xi

j¼1

u0jðxÞ ð33Þ

rðiÞyzðx; zÞ ¼ w0iðxÞðz� ziÞ=hi þ
Xi

j¼1

w0jðxÞ ð34Þ

It can be easily verified that the traction boundary conditions in
Eqs. (23) and (24) are automatically satisfied considering Eqs. (17)
and (18), respectively. Li and Hafeez (2009) have shown that this is
the nature of any models in which rðiÞxx ;rðiÞxy are assumed to remain
constant through-the-thickness of each ply.

Substituting Eq. (25) into Eq. (10) and using Eqs. (31) and (32),
one concludes that

jNðxÞ ¼ h
XN

j¼1

u00j ð35Þ

Moreover, Eq. (30) provides enough recursive relations to find
jiðxÞ; i ¼ 1;2; . . . ;N � 1. Therefore, substituting Eqs. (30) into Eq.
(10), it is concluded that

jiðxÞ ¼
XN

j¼1

hu00j ðxÞ �
1
2

XN

j¼iþ1

ðzj þ zj�1Þu00j ðxÞ ð36Þ

Finally, the admissible stress field that satisfies all equilibrium
equations, tractions and continuity boundary conditions can be
summarized as:

~rðiÞxxðxÞ ¼ r0ðiÞ
xx �uiðxÞ=hi ð37Þ

~rðiÞyyðxÞ ¼ r0ðiÞ
yy � giðxÞ=hi ð38Þ

~rðiÞxyðxÞ ¼ r0ðiÞ
xy � wiðxÞ=hi ð39Þ

~rðiÞxz ðx; zÞ ¼ u0iðxÞðz� ziÞ=hi þ
Xi

j¼1

u0jðxÞ ð40Þ

~rðiÞyzðx; zÞ ¼ w0iðxÞðz� ziÞ=hi þ
Xi

j¼1

w0jðxÞ ð41Þ

~rðiÞzz ðx; zÞ ¼ �
1

2hi
u00i ðxÞðz� ziÞ2 � z

Xi

j¼1

u00j ðxÞ þ h
XN

j¼1

u00j ðxÞ

� 1
2

XN

j¼iþ1

ðzj þ zj�1Þu00j ðxÞ ð42Þ

where ui(x), wi(x) and gi(x), i = 1,2, . . .,N are unknown perturbation
functions yet to be determined. It should be noted that Eqs. (17)–
(19) represent three relations between unknown perturbation func-
tions, thus, the number of unknown perturbation functions which
should be determined is actually 3N � 3.

Notice that the expressions for the admissible stress field are
valid for any in-plane loading conditions. The influence of the ac-
tual loads under consideration comes through the constant field
in the boundary conditions at cracked surfaces of x = ±a (Eqs.
(20)–(22)) for the unknown functions that will be discussed in de-
tail.As discussed above, the general expressions for the perturba-
tion stresses contain 3N � 3 unknown functions. We will be
evaluating the optimal functions that minimize the complemen-
tary energy of the cracked laminate. The total complementary
energy ~UC associated with the admissible stresses in a laminate
subject to traction boundary conditions is defined as follows:

~UC ¼ 1
2

R
V

~rS ~rdV ¼ 1
2

R
V ðrþ r0ÞS ðrþ r0ÞdV ¼ U0

C þ UC þ 2Um;

U0
C ¼ 1

2

R
V r0 Sr0dV ; UC ¼ 1

2

R
V rSrdV ; Um ¼ 1

2

R
V rSr0 dV

ð43Þ

where S is the local compliance matrix and V is the volume of the
cracked laminate. Hashin (1985) went through a lengthy proof to
demonstrate that Um vanishes. This is in fact a direct consequence
of the virtual work principle. Thus, we have:

~UC ¼
1
2

Z
V

~rS ~rdV ¼ U0
C þ UC ð44Þ

where U0
C is the total complementary potential energy before crack-

ing, which does not contribute to the variation. For a cracked lam-
inate, we would minimize the functional over the volume of a
fragment of length 2a bounded by two adjacent transverse cracks,
such that jxj 6 a and jzj 6 h. Due to the symmetry with respect to
mid-plane z = 0, only the region 0 6 z 6 h can be considered.
Consequently:

UC ¼
XN

i¼1

R a
�a

R zi
zi�1

W ðiÞdz dx
� �

;

W ðiÞ ¼ frðiÞgT ½SðiÞ�frðiÞg;
frðiÞgT ¼ frðiÞxx ;rðiÞyy;rðiÞzz ;rðiÞyz ;rðiÞxz ;rðiÞxyg

ð45Þ

where W(i) is the perturbation stress energy density of ply (i) and
[S(i)] is the compliance matrix of ply (i) in the coordinate system
associated with cracks. In order to compute [S(i)], the compliance
matrix of the unidirectional fiber composite material should be ro-
tated to the corresponding angles of the plies hi, e.g. 90� for any
cracked plies. Substituting the expressions for the perturbation
stresses (Eqs. (2), (3), (4), (40), (41), (42)) and inserting the rotated
compliance matrices into Eq. (45), we can perform the integration
over z. The result of integration can be written in the following
form:

UC ¼
Z a

�a
Fðx; fug; fu0g; fu00g; fwg; fw0g; fggÞdx ð46Þ

where

Fðx; fug; fu0g; fu00g; fwg; fw0g; fggÞ

¼ fugT ½C00
11�fug þ fwg

T ½C00
22�fwg þ fgg

T ½C00
33�fgg

þ fugT ½C00
12�fwg þ fug

T ½C00
13�fgg þ fwg

T ½C00
23�fgg

þ fu0gT ½C11
11�fu0g þ fw

0g
T
½C11

22�fw
0g þ fu0gT ½C11

12�fw
0g

þ fu00gT ½C20
11�fug þ fu00g

T ½C20
12�fwg þ fu00g

T ½C20
13�fgg

þ fu00gT ½C22
11�fu00g ð47Þ

where:

fugT ¼ fu1;u2; . . . ;uNg1�N ; fu0gT ¼ fu01;u02; . . . ;u0Ng1�N ;

fu00gT ¼ fu001;u002; . . . ;u00Ng1�N; fwgT ¼ fw1;w2; . . . ;wNg1�N;

fw0g
T
¼ fw01;w

0
2; . . . ;w0Ng1�N ; fggT ¼ fg1;g2; . . . ;gNg1�N

ð48Þ

In addition, the coefficient matrices of ½C00
11�N�N , etc., with the

superscripts corresponding to the order of derivatives and sub-
scripts corresponding to independent unknown functions involved
(e.g. [C20

13] is associated with fu00g and fgg or [C11
12] is associated

with fu0g and fw0g), were evaluated systematically as given in
Appendix. It should be noted that all the unknown functions are



M. Hajikazemi, M.H. Sadr / International Journal of Solids and Structures 51 (2014) 516–529 521
not independent and one out of any n unknowns of ui;wi;gi;

i ¼ 1;2; . . . ;N can be eliminated using Eqs. (17)–(19), respectively.
In order to have a systematic way for developing the formulation,
we choose the nearest un-cracked ply to the upper surface of the
laminate (assigned its ply number to the integer variable m) and
eliminate its perturbation functions based on Eqs. (17)–(19). Thus,
it is necessary to rewrite Eqs. (46)–(48) based on the independent
unknown functions as follows:

UC ¼
Z a

�a
Fðx; fug; fu0g; fu00g; fwg; fw0g; fggÞdx ð49Þ

where:

Fðx; fug; fu0g; fu00g; fwg; fw0g; fggÞ

¼ fugT ½A00
11�fug þ fwg

T ½A00
22�fwg þ fgg

T ½A00
33�fgg

þ fugT ½A00
12�fwg þ fug

T ½A00
13�fgg þ fwg

T ½A00
23�fgg

þ fu0gT ½A11
11�fu0g þ fw

0gT ½A11
22�fw

0g þ fu0gT ½A11
12�fw

0g

þ fu00gT ½A20
11�fug þ fu00g

T ½A20
12�fwg þ fu00g

T ½A20
13�fgg

þ fu00gT ½A22
11�fu00g ð50Þ

Where in the new notation with the assumption that mth ply
represents an un-cracked ply, we have:

fugT ¼ fu1;u2; . . . ;um�1;umþ1; . . . ;uNg1�N�1;

fu0gT ¼ fu01;u02; . . . ;u0m�1;u
0
mþ1; . . . ;u0Ng1�N�1;

fu00gT ¼ fu001;u002; . . . ;u00m�1;u
00
mþ1; . . . ;u00Ng1�N�1;

fwgT ¼ fw1;w2; . . . ;wm�1;wmþ1; . . . ;wNg1�N�1;

fw0gT ¼ fw01;w
0
2; . . . ;w0m�1;w

0
mþ1; . . . ;w0Ng1�N�1;

fggT ¼ fg1;g2; . . . ;gm�1;gmþ1; . . . ;gNg1�N�1

ð51Þ

Again, the remaining unknowns will be denoted as {u}, {w},
{g} hereafter in this paper and they are the independent un-
known functions for the mathematical formulation of the prob-
lem. A ply corresponding to an independent unknown function
will be referred to as an ‘independent ply’. In addition, in order
to evaluate new coefficient matrices of ½A00

11�ðN�1Þ�ðN�1Þ, etc, we
have:

½A00
11�ðN�1Þ�ðN�1Þ ¼ ½M�

T ½C00
11�½M�; ½A00

22�ðN�1Þ�ðN�1Þ ¼ ½M�
T ½C00

22�½M�;

similarly . . . ½A22
11�ðN�1Þ�ðN�1Þ ¼ ½M�

T ½C22
11�½M�

ð52Þ

where [M]N�(N-1) is a matrix to consider the Eqs. (17)–(19), in order
to remove dependent unknown functions effects in the coefficient
matrices, which can be defined as below:

½M�N�ðN�1Þ ¼

Mi;j ¼ �1; i ¼ m

Mi;i ¼ 1; i > m

Mi;i�1 ¼ 1; i < m

Mi;j ¼ 0; else

8>>><
>>>:

9>>>=
>>>;

ð53Þ

where m is one of the un-cracked plies (the nearest un-cracked ply
to the upper surface of the laminate), which is assumed as the
dependent ply.

The functions {u}N-1,1, {w}N-1,1 and {g}N-1,1 are now to be deter-
mined from minimization of the complementary energy func-
tional. It is well known that when a variation is taken for the
total complementary potential energy, the stationary value condi-
tion, d~UC ¼ 0, leads to Euler-Lagrange equations as the governing
equations for the problem as follows:
@F
@fug � d

dx
@F

@fu0g

� �
þ d2

dx2
@F

@fu00g

� �
¼ 0;

or ½B1�fu0000g þ ½B2�fu00g þ ½B3�fug þ ½B4�fw00g
þ½B5�fwg þ ½B6�fg00g þ ½B7�fgg ¼ 0

ð54Þ

@F
@fwg � d

dx
@F

@fw0g

� �
¼ 0;

or ½B4�Tfu00g þ ½B5�Tfug þ ½B8�fw00g þ ½B9�fwg þ ½B10�fgg ¼ 0
ð55Þ

@F
@fgg ¼ 0;

or ½B6�Tfu00g þ ½B7�Tfug þ ½B10�Tfwg þ ½B11�fgg ¼ 0
ð56Þ

where

½B1� ¼ ½A22
11� þ ½A

22
11�

T
; ½B2� ¼ ½A20

11� þ ½A
20
11�

T
� ½A11

11� � ½A
11
11�

T
;

½B3� ¼ ½A00
11� þ ½A

00
11�

T
; ½B4� ¼ �½A11

12� þ ½A
20
12�; ½B5� ¼ ½A00

12�;

½B6� ¼ ½A20
13�; ½B7� ¼ ½A00

13�; ½B8� ¼ �½A11
22� � ½A

11
22�

T
;

½B9� ¼ ½A00
22� þ ½A

00
22�

T
; ½B10� ¼ ½A00

23�; ½B11� ¼ ½A00
33� þ ½A

00
33�

T

ð57Þ

The Eqs. (56) define {g} in terms of the other two unknown
functions:

fgg ¼ �½B11��1ð½B6�Tfu00g þ ½B7�Tfug þ ½B10�TfwgÞ ð58Þ

Substituting above expression back to the functional in Eq. (50),
we can rewrite it in terms of two sets of independent unknown
functions of {u} and {w}:

Fðx; fug; fu0g; fu00g; fwg; fw0gÞ

¼ fugT ½P00
11�fug þ fwg

T ½P00
22�fwg þ fug

T ½P00
12�fwg

þ fu0gT ½P11
11�fu0g þ fw

0gT ½P11
22�fw

0g þ fu0gT ½P11
12�fw

0g

þ fu00gT ½P20
11�fug þ fu00g

T ½P20
12�fwg þ fu00g

T ½P22
11�fu00g ð59Þ

where

½P00
11� ¼ ½A

00
11� �

1
4
½A00

13�½A
00
33�
�1
½A00

13�
T
; ½P00

22� ¼ ½A
00
22� �

1
4
½A00

23�½A
00
33�
�1
½A00

23�
T
;

½P00
12� ¼ ½A

00
12� �

1
2
½A00

13�½A
00
33�
�1
½A00

23�
T
; ½P11

11� ¼ ½A
11
11�; ½P11

22� ¼ ½A
11
22�;

½P11
12� ¼ ½A

11
12�; ½P20

11� ¼ ½A
20
11� �

1
2
½A20

13�½A
00
33�
�1
½A00

13�
T
;

½P20
12� ¼ ½A

20
12� �

1
2
½A20

13�½A
00
33�
�1
½A00

23�
T
; ½P22

11� ¼ ½A
22
11� �

1
4
½A20

13�½A
00
33�
�1
½A20

13�
T

ð60Þ

Again, the Euler-Lagrange equations as the governing equations
for the problem based on functional in Eq. (59) are as follows:

½T1�fu0000g þ ½T2�fu00g þ ½T3�fug þ ½T4�fw00g þ ½T5�fwg ¼ 0 ð61Þ

½T4�Tfu00g þ ½T5�Tfug þ ½T6�fw00g þ ½T7�fwg ¼ 0 ð62Þ

where

½T1� ¼ ½P22
11� þ ½P

22
11�

T
; ½T2� ¼ ½P20

11� þ ½P
20
11�

T � ½P11
11� � ½P

11
11�

T
;

½T3� ¼ ½P00
11� þ ½P

00
11�

T
; ½T4� ¼ �½P11

12� þ ½P
20
12�; ½T5� ¼ ½P00

12�;

½T6� ¼ �½P11
22� � ½P

11
22�

T
; ½T7� ¼ ½P00

22� þ ½P
00
22�

T

ð63Þ

The Eqs. (61) and (62) are an extension of work done by
Vinogradov and Hashin (2010) for two-layer angle ply laminates
into the more applicable case of general symmetric laminates with
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multiple-layer cracked and un-cracked plies. Note here that for a
cross-ply laminates [T4] = [T5] = 0 and the Eqs. (61) and (62) be-
come uncoupled.

½T1�fu0000g þ ½T2�fu00g þ ½T3�fug ¼ 0 ð64Þ

½T6�fw00g þ ½T7�fwg ¼ 0 ð65Þ

which is the case considered by Hashin (1985) for a two-layer cross
ply and (Li and Hafeez, 2009) for a multiple-layer cross ply lami-
nates; with only one (usually negligible for a cross-ply) difference
that here the perturbation of ryy has not been neglected.

The Eqs. (61) and (62) are a pair of coupled systems of simulta-
neous linear ordinary differential equations with constant coeffi-
cients arising from the variational analysis of general symmetric
multiple-ply laminate containing cracks in some layers. Using dif-
ferential operator notation, the system of Eqs. (61) and (62) may be
expressed as

½T1�D4fug þ ½T2�D2fug þ ½T3�fug þ ½T4�D2fwg þ ½T5�fwg ¼ 0 ð66Þ

½T4�T D2fug þ ½T5�Tfug þ ½T6�D2fwg þ ½T7�fwg ¼ 0 ð67Þ

where D is the differential operator defined as

D ¼ d
dx

and if generalized Dn ¼ dn

dxn ð68Þ

Combining these systems, we obtain the coupled system, ex-
pressed as follows:

½T1�D4 þ ½T2�D2 þ ½T3� ½T4�D2 þ ½T5�
½T4�T D2 þ ½T5�T ½T6�D2 þ ½T7�

 !
fug
fwg

� �
¼ 0 ð69Þ

Let us denote the differential operator matrix on the left hand
side of the above equation by MMðDÞ:

MMðDÞ ¼ ½T1�D4 þ ½T2�D2 þ ½T3� ½T4�D2 þ ½T5�
½T4�T D2 þ ½T5�T ½T6�D2 þ ½T7�

 !
ð70Þ

Then, the characteristic equation for the coupled system would
be

jMMðkÞj ¼ det
½T1�k4 þ ½T2�k2 þ ½T3� ½T4�k2 þ ½T5�
½T4�Tk2 þ ½T5�T ½T6�k2 þ ½T7�

 !( )
¼ 0

ð71Þ

The characteristic equation (71) for the coupled system is a
polynomial of degree 6(N � 1) in k.

If the lay-up is cross-ply or the system is uncoupled, i.e.
[T4] = [T5] = 0, the Eqs. (64) and (65) should be solved separately.
In that case, there are two characteristic equations as follows:

jMMðkÞj ¼ detfð½T1�k4 þ ½T2�k2 þ ½T3�Þg ¼ 0 ð72Þ

jMMðkÞj ¼ detfð½T6�k2 þ ½T7�Þg ¼ 0 ð73Þ

where the first characteristic equation is a polynomial of degree
4(N � 1) and the second one is a polynomial of degree 2(N � 1) in k.

Since the derivatives in both coupled and uncoupled systems
are all even, the parameters ki; i ¼ 1;2; . . . ;6ðN � 1Þ appear in both
positive and negative valued pairs of square roots which may not
always be real. In the case of a complex root, it is always accompa-
nied by its conjugate due to the fact that all coefficients of the
equation are real. Moreover, it is feasible to obtain all roots
numerically for Eq. (71) or Eqs. (72) and (73) using Maple software,
Matlab software or any other mathematical software. Once the
characteristic equations are solved and the all roots are found for
a laminate, it is possible to write the functions {u} and {w} as series
expansions of exponential functions as long as the values ki are all
distinct. In other words, for a coupled system, each of these solu-
tion functions is of the following form

ukðxÞ ¼
X6ðN�1Þ

i¼1

qi;kekix;

wkðxÞ ¼
X6ðN�1Þ

i¼1

qi;kþN�1ekix; k ¼ 1;2; . . . ;m� 1;mþ 1; . . . ;N

ð74Þ

where qi,k are arbitrary constants that should be determined using
boundary conditions. It should be mentioned that all values of qi,k

are not independent. It is due to this fact that they are members
of eigenvectors concerning characteristic equation roots of ki.

In addition, for the uncoupled systems, each of these solution
functions is of the following form

ukðxÞ ¼
X4ðN�1Þ

i¼1

qi;kekix; k ¼ 1;2; . . . ;m� 1; mþ 1; . . . ;N ð75Þ

wkðxÞ ¼
X2ðN�1Þ

i¼1

qi;kþN�1ekix; k ¼ 1;2; . . . ;m� 1; mþ 1; . . . ;N ð76Þ

This is because the system is one of linear ordinary differen-
tial equations with constant coefficients. For complex roots, the
terms associated with a conjugating pair can be expressed in
term of products of exponential and harmonic functions to avoid
the appearance of imaginary numbers in the expression. It is
necessary that all ki values are distinct for expressions
(74)–(76) to hold. This uniqueness condition is checked after
solving Eq. (71) for coupled systems and Eqs. (72), (73) for
uncoupled systems, and it is found to be satisfied by the input
data in all considered cases. When repeated roots are present,
the form of the solution needs to be modified a little to accom-
modate them. These are all standard treatments in ordinary dif-
ferential equations and hence not described in details here.
Moreover, it is noted that the coupled system in Eqs. (61) and
(62) is very similar to the equations which has been derived
by McCartney (2000) using a stress transfer model. The method
of numerically solving the system of differential equations (61)
and (62) is
described by Hannaby (1997) for coupled case (i.e. ½T4�–0 or
½T5�–0) as well as the uncoupled case (i.e. [T4] = [T5] = 0)

(Hannaby, 1993). The reader can also refer to these publications
to find details about solving of the governing equations. Once
the governing equations are solved, the last step is finding arbi-
trary constants using boundary conditions.

It could be easily seen that one system (Eq. (61)) is fourth order
in terms of the variables u and second order in terms of the vari-
ables w and the other system (Eq. (62)) is second order both in
terms of u and the w. Thus, the first system requires 4(N � 1)
boundary conditions and the second needs 2(N � 1) boundary con-
ditions, making 6(N � 1) in total. Suppose that there are Nc cracked
and Nu un-cracked plies. Then clearly, we have:

Nc þ Nu ¼ N ð77Þ

Eqs. (20)–(22) should be satisfied For each of the cracked plies,
and these equations can be written in terms of unknown functions
as comes in the following:

uiðaÞ ¼ uið�aÞ ¼ r0ðiÞ
xx hi ð78Þ
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wiðaÞ ¼ wið�aÞ ¼ r0ðiÞ
xy hi ð79Þ

u0iðaÞ ¼ u0ið�aÞ ¼ 0 ð80Þ

There are clearly 6Nc of these boundary conditions.
For an un-cracked ply, the physical conditions available in the

problem can only produce four boundary conditions. Take the in-
plane shear stress rxy, axial stress rxx and transverse shear stress
rxz from the free body diagram as shown in Fig. 3, to start with.
The continuity consideration leads to

rxy1 ¼ rxy2 and rxy3 ¼ rxy4;

rxx1 ¼ rxx2 and rxx3 ¼ rxx4;

rxz1 ¼ rxz2 and rxz3 ¼ rxz4;

ð81Þ

While the periodic condition or translational symmetry
requires

rxy1 ¼ rxy3 and rxy2 ¼ rxy4

rxx1 ¼ rxx3 and rxx2 ¼ rxx4

rxz1 ¼ rxz3 and rxz2 ¼ rxz4

ð82Þ

Consequently:

rxy2 ¼ rxy3 ! rxyða; zÞ ¼ rxyð�a; zÞ ) wiðaÞ ¼ wið�aÞ ð83Þ

rxx2 ¼ rxx3 ! rxxða; zÞ ¼ rxxð�a; zÞ ) uiðaÞ ¼ uið�aÞ ð84Þ

rxz2 ¼ rxz3 ! rxzða; zÞ ¼ rxzð�a; zÞ ) u0iðaÞ ¼ u0ið�aÞ ð85Þ

The rotational symmetry about the vertical central axis can also
serve another boundary condition (Li and Hafeez, 2009). This sym-
metry is always present in the laminate, cracked or not, in general
(Li and Reid, 1992; Li et al., 2009). It is also seen by the loading con-
dition as long as the loads the laminate is subjected to can be ex-
pressed in terms of generalized stresses (membrane forces) as
defined in the classic laminate theory. The rotational symmetry
on rxy and rxx yields the same condition as in Eqs. (83) and (84),
respectively. However, for rxz, as it is anti-symmetric under this
particular symmetry transformation, this symmetry requires

rxz2 ¼ �rxz3 ! rxzða; zÞ ¼ �rxzð�a; zÞ ) u0iðaÞ ¼ �u0ið�aÞ ð86Þ

where together with Eq. (85), the boundary conditions associated
with transverse shear can be given as

rxzða; zÞ ¼ rxzð�a; zÞ ¼ 0) u0iðaÞ ¼ u0ið�aÞ ¼ 0 ð87Þ

With Eqs. (22) and (80) for cracked plies and (87) for un-cracked
plies, it can be seen that the transverse shear stress at x = ±a van-
ishes in all plies of the laminate, both cracked and un-cracked. This
leads to the fact that the first order derivative of ui vanishes at
x = ±a for all plies. Finally, the Eqs. (83), (84), and (87), which be-
long to independent un-cracked plies, clearly provide 4(Nu � 1)
boundary conditions.
Fig. 3. Axial stress, in-plane shear stress, and transverse s
The physical construction of the problem itself does not offer
any more boundary conditions without resorting to displacements.
As a result, there will not be sufficient boundary conditions directly
from the physical conditions. McCartney (1992, 2000) has intro-
duced a displacement boundary condition. In a stress-based ap-
proach, as is the case here, displacements are not involved, and
one has to find extra boundary conditions in terms of stresses for
each independent un-cracked lamina before the solution can be
determined.

Li and Hafeez (2009) have shown that for any laminate having
more than two un-cracked plies, an extension is required in terms
of boundary conditions. There is a shortfall of two boundary condi-
tions for each independent un-cracked ply (2(Nu � 1) in total). In
the next paragraphs, it will be shown that the fifth and sixth
boundary conditions for each independent un-cracked ply can be
obtained mathematically from the variational calculus itself in
terms of natural boundary conditions.

As Euler-Lagrange’s equations are derived using variational cal-
culus, terms also emerge which take their values at boundaries
resulting from steps of integration by parts. For the variation of
the functional to vanish so that the functional takes its stationary
value, these terms must also vanish. This leads to boundary condi-
tions, called natural boundary conditions in variational principles.
For the current problem with the functional given in Eq. (49), the
natural boundary conditions obtained directly from the variational
calculus are as following:

@F
@fu0g �

d
dx

@F
@fu00g

� �T

f@ug
" #x¼a

x¼�a

¼ 0 ð88Þ

@F
@fw0g

� �T

f@wg
" #x¼a

x¼�a

¼ 0 ð89Þ

The left-hand side of the above equations, shortly denoted as
½XY�x¼þa

x¼�a, can be manipulated as (Li and Hafeez, 2009), (Li, 2008)
and (Li et al., 2009):

½XY�x¼þa
x¼�a ¼ XþaYþa � X�aY�a ¼

1
2
ðXþa � X�aÞðYþa þ Y�aÞ

þ 1
2
ðXþa þ X�aÞðYþa � Y�aÞ ð90Þ

(Y+a � Y-a) = {ou}+a � {ou}�a = 0 or (Y+a � Y-a) = {ow}+a � {ow}-a = 0,
are based on (84) and (83), respectively. Therefore

½XY�x¼þa
x¼�a ¼

1
2
ðXþa � X�aÞðYþa þ Y�aÞ ð91Þ

And Eqs. (88) and (89) reduce to

@F
@fu0g �

d
dx

@F
@fu00g

� �T

f@ug
" #x¼a

x¼�a

¼ 1
2

@F
@fu0g �

d
dx

@F
@fu00g

� �
þa

� @F
@fu0g �

d
dx

@F
@fu00g

� �
�a

� �T

ðf@ugþa þ f@ug�aÞ ¼ 0 ð92Þ
hear stress at the boundary of an un-cracked lamina.
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@F
@fw0g

� �T

f@wg
" #x¼a

x¼�a

¼ 1
2

@F
@fw0g

� �
þa

� @F
@fw0g

� �
�a

� �T

f@wgþa þ f@wg�a

� 	
¼ 0 ð93Þ

As ({ou}+a + {ou}-a) represents the variations of ({u}+a + {u}-a)
and also ({ow}+a + {ow}-a) represents the variations of
({w}+a + {w}-a), which are arbitrary for un-cracked plies but vanish
for cracked ones, for the above expression to vanish, one must have
the following relationship as the natural boundary conditions for
the un-cracked plies

@F
@fu0g �

d
dx

@F
@fu00g

� �
þa
� @F

@fu0g �
d
dx

@F
@fu00g

� �
�a
¼ 0 ð94Þ

@F
@fw0g

� �
þa

� @F
@fw0g

� �
�a

¼ 0 ð95Þ

Given F as expressed in Eq. (59), the natural boundary condi-
tions in Eqs. (94) and (95) can be obtained as

½T1�ðfu000ð�aÞg � fu000ðþaÞgÞ þ ½T4�ðfw0ð�aÞg � fw0ðþaÞgÞ ¼ 0 ð96Þ

½T6�ðfw0ð�aÞg � fw0ðþaÞgÞ ¼ 0 ð97Þ

In obtaining Eqs. (96) and (97), physical boundary conditions in
Eq. (87) have been considered. [T4] is associated with off-axis plies
and it disappears for cross ply laminates. Apparently, Eqs. (96) and
(97) apply only to independent un-cracked plies and clearly pro-
vide 2(Nu � 1) boundary conditions.

As mentioned above, Eqs. (78)–(80) prepare 6Nc, Eqs. (83), (84),
and (87) prepare 4(Nu � 1) and Eqs. (96) and (97) prepare 2(Nu � 1)
boundary conditions which provide

6Nc þ 4ðNu � 1Þ þ 2ðNu � 1Þ ¼ 6ðNc þ NuÞ � 6 ¼ 6ðN � 1Þ ð98Þ

boundary conditions in total, as required.

3. Results and discussions

The numerical results for stress field will be given for graphite/
epoxy and E-glass/epoxy laminates. The properties are summa-
rized as follows:
Fig. 4. [0/90]s graphite/epoxy laminate under uniaxial tension: distributions
For graphite/epoxy (Hashin, 1985; Li and Hafeez, 2009)

E1 ¼ 208:3 GPa; E2 ¼ E3 ¼ 6:5 GPa; G12 ¼ 1:65 GPa
G23 ¼ 2:3 GPa; t12 ¼ t13 ¼ 0:255; t23 ¼ 0:413;
Ply thickness ¼ 0:203 mm

ð99Þ

For E-glass/epoxy (Varna et al., 1999)

E1 ¼ 44:7 GPa; E2 ¼ E3 ¼ 12:7 GPa; G12 ¼ 5:8 GPa;
G23 ¼ 4:5035 GPa; t12 ¼ t13 ¼ 0:297; t23 ¼ 0:41;
Ply thickness ¼ 0:144 mm

ð100Þ

For comparison, the case of [0/90]s graphite/epoxy laminate
(h1 = h2 = 0.203 mm) is considered, which has been presented in
Hashin (1985). It is noted that for the mentioned lay-up (i.e.
[0/90]s) [T4] = [T5] = 0 and the Eqs. (61) and (62) become uncou-
pled, therefore, they should be solved separately. Moreover, the
lay-up is containing only two layers, one cracked and one un-
cracked representing a three-layered laminate after the application
of symmetry considerations; thus, there is no need to use the nat-
ural boundary conditions presented in Eqs. (96) and (97) because
there is no independent un-cracked ply. The stresses are plotted in
Figs. 4 and 5 at several typical locations for the crack spacing
2a = 4 � 0.203 mm under uniaxial tension and in-plane shear,
respectively. It is noted that the stresses in Fig. 4 have all been nor-
malized with respect to the direct stress in the x-direction in the
90-lamina before cracking, and stresses in Fig. 5 have all been nor-
malized with respect to the in-plane shear stress in the 90-lamina
before cracking, which have been obtained from the classic lami-
nate theory. In addition to the results of the present analysis, the
results obtained from the variational method by Hashin (1985)
are also presented for validation; his method is based on plane
stress assumptions, which neglects the perturbation of ryy. It is
worth mentioning that the current method can predict the exact
results of Hashin’s (1985); it is enough to put the perturbation of
ryy in Eq. (58) equal to zero. Therefore, it can be concluded that
the Hashin’s formulation is the special cases of the current formu-
lation for cross ply laminate with only two layers, one cracked and
one un-cracked, which do not need more boundary conditions
other than those provided by the physical conditions available in
the problem. The excellent agreement between two sets of results
is observed. All of the features and trends as obtained from
of stresses between two cracks with crack spacing 2a = 4 � 0.203 mm.



Fig. 5. [0/90]s graphite/epoxy laminate under shear: distributions of stresses between two cracks with crack spacing 2a = 4 � 0.203 mm.
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Hashin’s (1985) analysis are observed here. This agreement shows
that the perturbation of ryy is actually negligible for the assumed
cross ply. It is worth mentioning that both approaches are approx-
imate, however, in the current approach all equilibrium equations,
the interface continuities and the boundary conditions are satisfied
exactly. Moreover, the obtained stress field minimizes the comple-
mentary energy. Therefore, for symmetric cracked laminates, with
a uniform distribution of ply cracks in a single orientation, the
present stress field is the optimal admissible stress field that can
be developed based upon the single fundamental assumption that
the in-plane stresses in each ply element are independent from the
through-thickness direction.

As the second step, the case of [0/902/0]s laminate
(h1 = h3 = 0.203 mm & h2 = 0.406 mm) presented in Li and Hafeez
(2009) is considered. Again, for the mentioned cross ply lay-up
Fig. 6. [0/902/0]s graphite/epoxy laminate under uniaxial tension: distribution
(i.e. [0/902/0]s), [T4] = [T5] = 0 and the Eqs. (61) and (62) become
uncoupled, therefore, they should be solved separately. However,
the lay-up contains three layers in the upper part (considering
upper part of symmetric laminate), one cracked and two un-
cracked layers; thus, there is one independent un-cracked layer
and the Eqs. (96) and (97) should be implemented to achieve en-
ough boundary conditions. The stresses at several typical locations
for the crack spacing 2a = 4 � 0.203 mm are plotted in Fig. 6. It is
noted that the stresses in Fig. 6 have all been normalized with re-
spect to the direct stress in the x-direction in the 90-lamina before
cracking. Beside the presentation of the results obtained from the
present analysis, the results obtained from variational method by
Li and Hafeez (2009) based on plane strain assumptions are also
presented for validation, which also neglects the perturbation of
ryy (usually negligible for a cross-ply). It is noted that Li and Hafeez
s of stresses between two cracks with crack spacing 2a = 4 � 0.203 mm.



Fig. 7. [h/908/h0.5]s E-glass/epoxy laminate under uniaxial tension: distributions of stresses between two cracks with crack spacing 2a = 8 � 0.144 mm.
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(2009) have considered the lower part of the symmetric laminates,
therefore, the out-of-plane shear stresses have been presented in
Fig. 6 applying a negative sign so that the results are compatible
with those of Li and Hafeez (2009). The excellent agreement be-
tween two sets of results is observed. This agreement shows that
the Li and Hafeez’s results (2009) can be easily obtained by the
present formulation, which means that their formulation is an
especial case of the current formulation. Moreover, it can be con-
cluded that the perturbation of ryy is actually negligible for the as-
sumed cross ply.

In order to show the capability of the method in handling stress
analysis of cracked laminates with general symmetric lay-up, a set
Fig. 8. [h/908/h0.5]s E-glass/epoxy laminate under uniaxial tension: distributions of out
of [h/908/h0.5]s E-glass/epoxy laminates with different h angles
(h ¼ 0�; 30� 45� and60�) is considered and the stresses are
plotted at several typical locations for the crack spacing
2a = 8 � 0.144 mm under uniaxial tension in Figs. 7–10. It should
be noted that for h = 0� the Eqs. (61) and (62) are uncoupled,
however, for the remaining cases under consideration the
equations are coupled and should be solved together. Moreover,
all lay-ups under consideration need more boundary conditions
in addition to those provided by the physical conditions available
in the problem. It is due to this fact that there is one independent
un-cracked ply in the laminates and consequently the Eqs. (96) and
(97) should be implemented to provide enough boundary
of plane shear stresses between two cracks with crack spacing 2a = 8 � 0.144 mm.



Fig. 9. [h/908/h0.5]s E-glass/epoxy laminate under uniaxial tension: distributions of out of plane shear stresses between two cracks with crack spacing 2a = 8 � 0.144 mm.
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conditions. It is also noted that the stresses in these figures have all
been normalized with respect to the axial stress in the x-direction
of the 90-lamina before cracking.

Fig. 7 shows the variations of non-dimensional axial and in-
plane shear stresses versus non-dimensional x-coordinate in the
cracked 90-lamina. It is clearly seen in Fig. 7 that the axial stress
in cracked ply ~rð2Þxx has its maximum value at the mid-point be-
tween the cracks. This maximum value is smaller than r0ð2Þ

xx and in-
creases with increasing the h angle. It is also seen that under
uniaxial tension, the in-plane shear stresses are zero for cross ply
laminate (i.e. h = 0�).
Fig. 10. [h/908/h0.5]s E-glass/epoxy laminate under uniaxial tension: distributions of out
The variations of non-dimensional through-the-thickness shear
stresses ~rð2Þxz and ~rð2Þyz versus non-dimensional x-coordinate are de-
picted in Figs. 8 and 9, respectively. It is clearly seen in Fig. 9 that
under uniaxial tension, ~rð2Þyz is zero for cross ply laminate (i.e.
h = 0�).

The variations of non-dimensional through-the-thickness axial
stresses ~rzz versus non-dimensional x-coordinate are depicted in
Fig. 10. It is seen that in the plane of symmetry (i.e. z = 0), the
maximum tensile ~rzz occurs at the center point between any
two cracks and the maximum compressive ~rzz occurs at the crack
tips.
of plane axial stresses between two cracks with crack spacing 2a = 8 � 0.144 mm.
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4. Conclusion

A variational model for analyzing stress field in general sym-
metric cracked laminates under general in-plane loading is
developed. To do that, an admissible stress field is constructed
that satisfies equilibrium and all the boundary and continuity
conditions. We used these equations in conjunction with the
principle of minimum complementary energy to get the optimal
stress state of a cracked laminate with multiple cracked and un-
cracked layers. The formulations have been derived in general
terms in this paper and to the best knowledge of the authors,
the present model is the most complete variational model devel-
oped so far.

The formulation can be a little enhanced to accurately esti-
mate stiffness reduction and crack evolution of cracked lami-
nates with general symmetric lay-up. This certainly
necessitates a future detailed research work. It should be noted
that similar analysis can be performed for a symmetric laminate
with the cracks in the outer plies taking into account the possi-
bility of formation of non-symmetric or staggered crack arrays,
as in similar research works (Nairn and Hu, 1992). However, a
more complex geometry compared to those considered here,
which is not symmetric, is needed as an elementary cell to con-
sider staggered crack arrays.
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where S(i) is the compliance matrix of the ith ply in the laminate
coordinate system (the coordinate system associated with cracks),
which can be stated in terms of engineering constants and ply angle
hi as follows:
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In the equations above the elastic properties E; m;G denote
Young’s modulus, Poisson’s ratio and shear modulus, respectively.
Subscripts 1, 2 attached to axial and transverse elastic constants
appearing in Eq. (A-14) refer to in-plane stresses and deformation
while the corresponding subscripts 3 denotes elastic constants that
involve out-of-plane stresses and deformations.
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