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The concepts of weakly £2-invariant sets and strictly weakly Q-invariant sets
in control systems with bounded controls are defined and analyzed. Computable
conditions for weak £-invariance are derived, and the question of existence
of rest points and stationary points in weakly £2-invariant sets is considered.
For linear dynamics, properties of weakly Q-invariant sets are studied, and
questions of constrained reachability are investigated.

1. INTRODUCTION

Consider an autonomous control system described by # ordinary differen-
tial equations

= g(x, w), (L.1)

where x € R" is the state vector, w € R™ is the control vector, and for a subset
I'C R™, the set of admissible controls Wy is the set of all Lebesgue measurable
functions z: [0, c0) — I

Consider a control law % = A(x, u) so that the “closed loop” equations are
given by

& = f(x, u), (1.2)

where f(x, 1) = g(x, h(x, u)) and where # € R™ is a new control vector. For a
subset 2 C R™ the new set of controls Up, is then the set of Lebesgue mea-
surable functions #: [0, c0) — £, and given a subset X C R*, the pair X, Q is
called admissible [1] if for each x€ X and each u € 2, h(x, u) € I'. The following
question is then of considerable interest to the synthesis of feedback systems.
Given an (admissible) pair of subsets X, £2; under what conditions does there
exist for each x, € X a control u € U, such that the corresponding (unique)
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solution x(¢) = ¢(t, 0, x, , #) to (1.2) on [0, o0) satisfying x(0) = x, remains
in Xforallt >0?

Roxin [2], in his study of “‘general control systems” (which are defined
through their so called “‘attainability functions”), called sets X possessing
the aforementioned property positively weakly invariant. He considered
positively weakly invariant sets as a generalization of invariant sets of ordinary
stability theory of dynamical systems (see, e.g., [3]) and studied problems of
weak and strong stability in such sets via generalized Liapunov functions.

Weak invariance also received attention for ordinary differential equations
(without uniqueness) by Yorke [4] (see also [3]) and for systems described
by contingent equations by Yorke [5] (see also [6]) and by Bebernes and
Schuur {7]. In [4], where in the main, problems of weak invariance and
stability of ordinary differential equations were investigated, Yorke also gave
a sufficient (but not necessary) condition for positive weak invariance of a
closed set X C R™ relative to control system (1.2). Bebernes and Schuur [7]
gave a necessary and sufficient condition for positive weak invariance of
contingent systems based on a theorem of Nagumo {8], which was also a
principal tool in [4].

In the present paper we will be concerned with control system (1.2). We
assume that 2 C R™ is compact and wall positively weakly invariant sets
weakly Q-invariant to emphasize the dependence of this property on the
restraint set £2. We focus our primary attention on weak £2-invariance of
compact convex sets X C R".

The paper is organized as follows: In Section 2 we define the concepts of
weak $2-subtangentiality and strict weak Q-subtangentiality of a map f to a
compact convex subset X C R® and characterize some properties of such
maps. In Section 3 we prove a necessary and sufficient condition for a compact
convex subset X C R" to be weakly ©2-invariant (Theorem 3.2). It is also
shown that under certain conditions a weakly -invariant set contains an
Q-rest point, i.e., a point ¥, € X such that f(x,, %) = 0 for some u,cQ
(Theorem 3.3). The paper is concluded in Section 4, where some properties
of weakly 2-invariant sets for systems with linear dynamics are investigated.

2. PRELIMINARIES

For a nonempty subset X C R we denote by X, int(X), X, and H(X) its
boundary, interior, closure, and convex hull, respectively. If X is compact and
convex, we also denote, respectively, by ri(X) and 7b(X) its relative interior
and relative boundary. We let & denote the empty set. We denote the Eucli-
dean norm and inner product in R* by | || and (-, ->, respectively, and let
BAfweR | |o] = 1.
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Consider a compact and convex set X' C R™ For x € ¢X, let
F,={weB|{yy—x <0;yeX}

denote the set of unit outward normals to X at x. A point x € 0.X is called
regular if 17, is a single vector (denoted v,), and a compact convex set X is
called smooth if all its boundary points are regular. For X compact and convex
and any y € R™ we denote by Py(y) the projection of y on X; i.e., Py(y) is the
unique closest point of X to v.

For x € R® and a number ¢ >0 we let S(x) £ {veR" ||y — x| <€}
Similarly, for a subset X C R* we let S(X) £ (J,ex S(*) and denote by X
its closure.

It is readily verified (see also [9, 10]) that if X C R is compact and convex,
then X, is compact, convex, and smooth for each ¢ > 0. Moreover, given
yeéX,, then y — Py(y) = ev, and v, € I () -

We will later also need the following

Lemma 2.1. Let X C R" be compact and convex. Then the map 1™ of 6.X
into closed subsets of B defined by V(x) = V', is upper-semicontinuous.

Proof. Assume the lemma is false and that I” is not upper-semicontinuous
at some xy € 0X. Then for some ¢, > 0 (see, e.g., [L1]) there is a sequence
{8}, 8; >0, 8,—0 and associated sequences {v;} and {v,} such that
x; €85 (v) N OX, v eV, , v ¢ Seo( V%), and v; — v, € B (the latter con-
vergence being due to the compactness of B). Since S, (V. ) is open, it follows
that v, ¢ Sfo( V) Hence in view of the convexity of X and the continuity of
the inner product function, the set W, ={re X | {v;,x — x> >0} is
nonempty for sufficiently large k, a contradiction since v € V,, . |

Let A C R* be compact and convex. We call a vector z € R" subtangential
(strictly subtangential) to X at xe &X if {v,2) <0 (<0) for all ve V.
Similarly, a map f: R* x R™— R" is called weakly (strictly weakly) £2-sub-
tangential to X at x € 6.X (relative to a given subset Q C R™) if there exists
u € Q2 such that f(x, u) is subtangential (strictly subtangential) to X at . f1s
called weakly (strictly weakly) Q-subtangential to X provided the condition
holds for each x € 0.X.

In view of Lemma 2.] we can also characterize strict weak 2-sub-
tangentiality as follows.

Levna 2.2, Assume X C R* is compact and convex and that the following
conditions hold.
(Ay) f(x,u) is continuous in both arguments and is continuously dif-
ferentiable in x.
(Ay) Q2 C R™is nonempty and compact.
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Then f is strictly weakly Q-subtangential to X if and only if for some oy << 0 there
exists for each x € 0X a ueQ satisfying {v, f(x, u)) < oy for all veV,.

Proof. Sufficiency is obvious. To prove necessity, define the real function
gon 0X by

g(x) = I;lgl max<w, f(x, u)).
By hypothesis, g(x) << 0 for each x € 0.X. In view of Lemma 2.1 it is readily
verified [11, pp. 113-116] that g is an upper-semicontinuous function and
hence attains a maximum oy << 0 on the compact set 0.X. |

We conclude this section with the following approximation result.

Levmma 2.3.  Assume (A,) and (A,) hold and that f is weakly Q-subtangential
to a compact convex subset X C R™. Then, given any « > 0, there extsts e{a) > 0
such that for any ¢, 0 < e << e(o), and each x€0X,, there exists a ueQ

satisfying {v,, f(x, 4)> < a.

Proof. If the lemma is false then for some oy > 0 there exists a sequence
{e}, € >0, ¢,£—0 and an associated sequence {x;}, x;€ 90X, such that
vy, fx; , u)) > o for all ue 2. Denoting y; = Py(x;) € 0X, it is clear
that lx; — ;]| = ¢, and for some subsequence {i'} of {i}, x; — x* ¢ X and
vy, —> 0" € Ve, the latter convergence being due to the upper-semi-
contmulty of V and the fact that v, € V, for alli. Hence, since fis continuous,
we conclude that (¥, f(x*, u)> > o > 0 for all w e Uy, , violating the weak
Q-subtangentiality of fto X. []

3. WEAK £2-INVARIANCE

We consider system (1.2) and will assume throughout that conditions (A,)
and (A,) (of Lemma 2.2) hold. We will denote both vectors in Q2 and functions
in Uy, by u, the meaning always being clear from the context. Conditions (A,)
and (A,) guarantee that for any compact set X C R” and any ¢ > 0 there exists
T > 0 such that the following holds: Given any xye€ X and any ue U,
there exists a unique solution x(t) == ¢(t, 0, x, , #) on [0, T] to (1.2) (satisfying
2(0) = x,), and x(t) € X, for all [0, T1.

We will also need the following condition.

(Ag) For each x € R™ the velocity set f(x, £2) & { f(x, u) | u e Q} is con-

Vex.

For each x € R* and t > 0 we denote by Fy(x, t) the reachable set from x
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in time t, that is F(x, t) = U {¢(t, 0, x, u) | u € Uy}. For a compact subset
XCR" and € > 0 we define

T(X, ¢) = sup{T | Fa(», ) e X;2€ X,0 < t < T}

We then have the following variant of a well-known theorem due to
Fillipov [12] (see also [13, 14]), which will be required in the sequel.

THEOREM 3.1. Let X C R* be compact and assume (A,}A(Ag) hold. Then

(1) For each € >0 and T < T(X, ¢), the map (x,t)>Fg(x,t) &5 a
Housdorff continuous map of X x [0, T] into closed subsets of X, .

(i) For any € >0 and T < T(X, €) let {x,(t)}, x{t) = ¢(t, 0, x;, u;),
x;€X, u;e Uy be a sequence of solutions to (1.2) on [0, T). Then there is a
uniformly convergent subsequence {x,(t)} (on [0, T} of {x{t)} with limit x(t),
where x(t) s a solution to (1.2) for some ue Uy, .

DerFiNiTION. A subset X CR® is called weakly Q-invariant (strictly
weakly Q-invariant) relative to system (1.2) if for each x, € X there exists a
control u € Ug such that

x(t) = (2,0, %y, u) € X(int(X))  forall £ > 0.

The following sufficient condition for strict weak £2-invariance will be used
below to prove the main necessary and sufficient condition for weak £2-invar-
iance (Theorem 3.2).

Lemma 3.1, Assume (A,) and (A,) hold, and let X C R" be compact and
convex. If f is strictly weakly $2-subtangential to X, then X is strictly weakly
Q-invariant.

Proof. First note that A" has nonempty interior. Indeed, if int(.X) = &,
then X C & for some hyperplane .% C R™. But then for some v € B, both v
and —o are in ¥, for each x € X and strict weak £-subtangentiality is
violated.

For x, € @X choose (as in Lemma 2.2) #, € 2 such that

(v, f(xg,4y)> << g <O foralloe V.

Applying as control the constant function u(t) = u, , it is readily verified that
&(t, 0, x4, u,) € int(X) for ¢+ > 0 sufficiently small. Hence, if X is not strictly
weakly Q-invariant there is some x, € int(X) such that for each u € Uy, there
exists #(#) > 0 such that x;(u) = $(#(u), 0, x, , #) € 0X, ¢(¢£, 0, x, , #) € int(X)
for 0 <t < t(u) and sup{#(u) | ue Uy} = t* <C co. Consider any sequence
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{us}, u;e Uy, t(u;) - t*. By compactness of 6X we may assume that
xp(u;) — x* € 8X. For any 0 << h < #(u;) let

Pluy, h) 2 [xa(w;) — $(#(ws) — 1, 0, %o, w;)]/h-

By convexity of X, (v, $(u;, h)> >0 forall ve I/z (u) - Letting ¢ — oo and
h— 0, it is easily verified that f is not strictly weakly Q-subtangential to X
at x*. |

TaeoreM 3.2. Let X CR™ be compact and convex and assume (A,) and
(A,) hold. A necessary condition for weak Q-invariance of X is that f be weakly
Q-subtangential to X. If (Ag) also holds, the condition is also sufficient.

Proof. Necessity. Choose any x5 € 6X and let u; e U, satisfy
&(1, 0, x4, uy) € X for all £ = 0. Clearly, for any ¢ > 0 we have

v, [¢(2, 0, xg , u) — xo]/t> <O forallve V,,

Letting ¢ — 0, we readily conclude the existence of u* € £2 such that
o, f(xo,u*)) <Ofor allve V, . Hence f is weakly £2-subtangential to X.

Sufficiency. Consider a convergent sequence {a;}, o; >0, a;— 0. By
Lemma 2.3 there exists an associated sequence {¢;}, €; > 0, ¢, — 0 such that
for each i =1, 2,... and 0 < ¢ < ¢; there exists for x € 0X, a vector ue
satisfying (v, , f(x, u)) < o;. Let 4, & {we R*||w| < 2«;} and consider
the system

% = gl w,w) & f(x,4) + w, (89

where u€ Ugp and we W, (W, being the set of measurable functions
w: [0, oo) — A,). Clearly, for each ¢, g is strictly weakly 2 x A;-subtangential
to X, , and hence (by Lemma 3.1) X, is strictly weakly £ X A-invariant.
Let %o be any point of X and for each i = 1,2, Jet (u;, w) e Ug x W,
be a control pair such that the corresponding solution x,(#) to (S%) satisfies
x40) = x4 and x,(t) € X, for all = 0. Choose 0 < T' << T(X,, ¢,) arbitrarily.
Since X, C X, and WA C W, for all j > k, conditions (A;)~(A;) imply (in
view of Theorem 3. 1) that there is a uniformly convergent subsequence
{x;(t)} on [0, T] to a function x(t), which is clearly a solution to (1.2) for
some u € Uy, and which satisfies x(f) € X for all 0 <t <{ T. Using the above
convergence argument repeatedly, weak Q-invariance follows. |

Remark 3.1. In [4] Yorke gave a sufficient condition for weak invariance
(in a control system) that in the present setting can be stated as follows.

Consider system (1.2), assume (A,) holds, and let X C R* be compact and
convex. If there is a continuous map w: X — Q such that f(x, w(x)) is subtan-
gential to X at each x € 0X, then X is weakly Q-invariant.
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Although this condition is not easily verifiable, we mention it here since
it is independent of Theorem 3.2 in that the convexity of f(x, £2) (and even the
compactness of £2) is not required. It is worth noting, however, that this
sufficient condition is not necessary in general, as the following simple
example illustrates: Let f(x, #) = x + #, let X = [0, {] and 2 = {—1,0}.
X is clearly weakly @-invariant, but since £ consists of only two points,
subtangentiality cannot be satisfied by a continuous .

Remark 3.2. Although in the present paper we are concerned with weak
Q-invariance of convex sets, it should be noted that Theorem 3.2 could be
generalized to sets that are not necessarily convex. Such a generalization
could be obtained by using the same approximation approach as was used
to prove Theorem 3.2 after suitable modification of the concepts of sub-
tangentiality and strict subtangentiality. The generalization could also be
obtained by applying Fillipov’s theorem on measurable selection [12] to
Theorem 2 of [7] (see also [5]) or by combining Roxin’s results on generalized
dynamical systems [2, 15] with Fillipov’s theorem.

An important question that arises in connection with weakly £-invariant
sets X is that of existence of points ¥ € X at, or near, which it is possible to
maintain the state by means of controls in Ul .

DrriNiTION.  Consider system (1.2) with restraint set £ C R™. A point
x9€ X is called an £-rest point if there exist u, € £2 such that f(x, , #,) = 0.
A point x, € X is called an 2-stationary point if for any ¢ > 0 there exists an
open subset C(e) satisfying x, € C(e) C S(x,) and X N C(e) is weakly Q-invar-
1ant.

Remark 3.3. One should note that in general an £2-stationary point need
not be an £2-rest point nor need an 2-rest point be {2-stationary.

The following theorem provides a sufficient condition for the existence of
rest points in a weakly £2-invariant set.

THEOREM 3.3. Consider svstem (1.2) and assume (A))A;) hold. If a
compact convex set X C R" is weakly Q-invariant, it contains an §2-rest point.

Proof. For each t >0 and xe X, weak {2-invariance implies that
Fo(x, 1) N X 5= @. With the aid of Theorem 3.1, it can be seen that for
¢t > 0 sufficiently small, the map x > G,(x) & H(Fq(x, t)} N X is an upper-
semicontinuous map of X into the set of nonempty closed convex subsets
of itself. Hence, by Kakutani’s fixed point theorem [16] there exists ;€ X
such that x, € G(x,). For any sequence {¢}, t; >0, t;—0 let {x;} be an
associated sequence such that x, € G;(x;). By compactness of X we can
assume that {x,} converges to a limit x* € X that we claim to be an Q-rest
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point. Indeed, if 0 ¢ f(x*, £2) then in view of (A;)~(A,) there exist v € B and
a << 0 such that (v, f(x*, ¥)) < « for all # € 2. Hence, for some ¢ > 0 and
each x € S(x*), (v, f(x, #)> <0 for all u e Q2. But then it is readily verified
that there exists ¢ > 0 such that for xe S, ,(x*), x¢ H(Fg(x, 7)) for all
0 <1 <t, a contradiction. ||

4, LiNear DyNaMics AND CONSTRAINED REACHABILITY

We conclude the paper with an investigation of some properties of weakly
$2-invariant sets for systems with linear dynamics, i.e.,

% =f(x, u) = Ax + Bu, 4.0

where 4 and B are constant real matrices. In this case assumption (4,) is
always satisfied and assumption (A;) holds whenever @ is convex. Moreover,
we also have the following well-known lemma (see, e.g., [13]).

Lemma 4.1.  Consider system (4.1) and assume Q2 C R™ s compact. Then for
each x € R and each t > 0, Fo(x, t) = Fy(g)(x, t).

DEerINtTION. A subset X C R" is called approximately weakly Q-invariant
relative to system (1.2) if given any € > O there exists for each x € X a control
ue Ug such that (2,0, x, ) € X, for all ¢ > 0.

In view of Lemma 4.1 we then have the following.

THeorReEM 4.1.  Consider system (4.1) and let X C R™ and £ C R™ both be
compact. Then X is approximately weakly Q-invariant if and only if X is
weakly H(Q)-invariant.

Proof. That approximate weak {2-invariance of X implies weak H()-
invariance is immediate from Theorem 3.1. Conversely, assume that X is
weakly H(£2)-invariant. Then by Lemma 4.1, for any xe X and ¢ >0,
Fo(x, )N X % . Hence given any x€ X and any strictly increasing
sequence of positive numbers {1}, there exists a control u € U, such that
é(t;, 0, x,u4)e X for all =1, 2,.... Choosing e > 0 arbitrarily and setting
h=t,—t,_,=T(=2,3,..), where 0 << T < T(X, ¢), then implies that
é(t, 0, x, u) € X, for all ¢ 2> 0, and the proof is complete. |

Remark 4.1. One should observe that while weak H(£2)-invariance implies
approximate weak £2-invariance, it does not imply weak 2-invariance.

Below we will need the following notation. Let C C R"® be a nonempty
compact and convex subset and let ¢, be a given point of C. For any given
A = 0 we denote AC(cy) 2 {(1 — X) ¢y ++ Ac | c € C} and for any point ce C
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welety, (c| C) & inf{d = 0| c € A\C(c,)}. Clearly, for 0 << A < 1, AC(cy) C C,
and 0 <y, (c]C) <1 for all ceC. If ¢ eri(C), then for 0 <A <1,
ri[AC(c,)] # &, and for any 0 << A, << Ay < 1,

¢y € riAC(cy)) C ri(AClcy) C 7i(C).

Moreover, given ¢ € C'and setting A, = y, (¢ | C), it follows that ¢ € r6(A,C(cy)).

Consider now system (4.1) and assume that both X CR® and Q C R™
are compact and convex. Assume f = Ax - Bu is weakly £-subtangential
to X. Then X is weakly Q-invariant and hence contains an £-rest point x; .
It is readily verified that for 0 << A << 1, f is then also weakly Af2(x,)-sub-
tangential to AX(x,), where 1, € £2 satisfies Ax, -}- Buy = 0. Since AQ(x,) C £,
it follows that f is also weakly £2-subtangential to AX(x,). A similar conclusion
holds for strict weak £2-subtangentiality relative to £2-rest points x, € int(X).
In view of the above we can thus state the following.

TueOREM 4.2. Consider svstem (4.1), let X C R be compact and convex,
and let 2 C R™ be compact. If X is approximately weakly Q-invariant and
xo€ X is any H(RQ)-rest point, then for any 0 << A <1 the set AX(x,) is also
approximately weakly Q-invariant.

Proof. If X is approximately weakly Q-invariant, then it is weakly
H()-invariant, so that f is weakly H(£2)-subtangential to X" and hence also to
AX(x,). Consequently AX(x,) is weakly H({2)-invariant and by Theorem 4.1
it is approximately weakly (-invariant. ||

CoroLLARY 4.1. Consider system (4.1), assume X C R™ is compact and
convex and Q C R™ is compact. Assume in addition that int(X) # @ and that
some x,€int(X) is a H(Q)-rest point of X. If X is approximately weakly
Q-invariant, then int(X) is weakly Q-invariant and x, is an §2-stationary point.

Proof. For each x €int(X), Az & vy (x| X) <1 so that A X(xp) C int(X).
Hence for some ¢ > 0 we have [A,X(x,)]. C int(X), and since x € 8(A,.X(x,)),
the approximate weak Q-invariance of A,X(x,) establishes that int(X) is
weakly Q-invariant. By the same argument we conclude that for each
0 < X < 1 the set int(AX(x,)) is weakly 2-invariant so that x, is an £2-station-
ary point. |I

We established certain conditions for weakly £2-invariant sets X to contain
Q-rest points and £2-stationary points. It is interesting to find conditions
under which such points can be reached or even approached in finite time
from arbitrary points in X via trajectories that are wholly contained in X.
Below in Theorem 4.3 we give a partial answer to these questions.
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DermviTioN. Let X C R™ be weakly 2-invariant. An £2-rest point (or an
Q-stationary point) £ € X is called weakly reachable in X if given any x e X
and € > 0 there exists u € Ug and 0 < 4, <C o0 such that

x(t) =¢(t, 0, %, u) e X forallt >0

and x(t) € S(#) for all # > ¢, . & is said to be reachable in X if givenany x € X
there exists 0 < #; < o0 and a control # € Ug such that

() =¢(,0,x,u)e X  forallt >0 and «(¢) =42

Turorem 4.3.  Consider system (4.1), let 2 C R™ be compact, let X C R*
be compact, convex, and weakly Q-invariant. Assume that int(H(Q2)) = &,
int(X) = @, and f = Ax + Bu is strictly weakly Q-subtangential to X. Then

(1) Ewvery Q-stationary point £ € int(X) is weakly reachable in X.
(ii) If rank[B, AB,..., A™'B] =mn, then every S-stationary point
£ € int(X) such that A% + Bi = O for some i € int(H(£2)) is reachable in X.

Proof. First note that strict weak 2-subtangentiality of f implies that X
is strictly weakly Q-invariant. Upon combining this fact with Lemma 4.1
(which implies trajectory approximation), we conclude the theorem holds
for controls in Uy, whenever it holds for controls in Uy . Hence we will
assume that £2 is convex.

(i) Foreachxe X let A, = Y (% | X). If x £ x5, then 0 < A, <{ 1 and
A X(x,) is also strictly weakly Q2-invariant. Let Ug(x) denote the subset of Ug
for which u € Ug(x) implies that Ayq, 0,5, < As(c,.0,0,0) Whenever & > 1, .
Clearly, Ug(x) # o for all xe X. If x, is not weakly reachable, then for
some &€ Xinfyy @lim s As(0.2.m] = A>0. But then one readily
concludes that )\X(vo) is not strictly weakly Q-invariant, a contradiction.

(ii) Follows immediately upon combining (i) with the well-known
result on local controllability [13, Corollary 2, p. 84]. ||
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