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R-Invariance in Control Systems with Bounded Controls 
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The concepts of weakly Q-invariant sets and strictly weakly Q-invariant sets 
in control systems with bounded controls are defined and analyzed. Computable 
conditions for weak R-invariance are derived, and the question of existence 
of rest points and stationary points in weakly Q-invariant sets is considered. 
For linear dynamics, properties of weakly Q-invariant sets are studied, and 
questions of constrained reachability are investigated. 

1. INTRODUCTION 

Consider an autonomous control system described by n ordinary differen- 
tial equations 

.5 = g(x, w), (1.1) 

where x E R” is the state vector, zu E RlsE is the control vector, and for a subset 
r C Rnl, the set of admissible controls Wr is the set of all Lebesgue measurable 
functions 20: [0, co) + r. 

Consider a control law w = h(~, U) so that the “closed loop” equations are 
given by 

.t =f(x, u), (1.2) 

where f(x, U) =g(x, h(x, u)) and where u E Rn’ is a new control vector. For a 
subset Q C Rm the new set of controls Uo is then the set of Lebesgue mea- 
surable functions u: [0, CD) -+ Q, and given a subset X C Rn, the pair X, Q is 
called admissible [l] if for each XEX and each u E 52, h(x, U) E I’. The following 
question is then of considerable interest to the synthesis of feedback systems. 
Given an (admissible) pair of subsets X, Q; under what conditions does there 
exist for each x0 E X a control u E Uo such that the corresponding (unique) 
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solution x(t) = $(t, 0, .vs , U) to (1.2) on [0, co) satisfying s(O) = .yO remains 
in X for all t > 0 ? 

Roxin [2], in his study of “general control systems” (which are defined 
through their so called “attainability functions”), called sets X possessing 
the aforementioned property positme23, weakly invariant. He considered 
positively weakly invariant sets as a generalization of invariant sets of ordinary 
stability theory of dynamical systems (see, e.g., [3]) and studied problems of 
weak and strong stability in such sets via generalized Liapunov functions. 

Weak invariance also received attention for ordinary differential equations 
(without uniqueness) by Yorke [4] ( see also [3]) and for systems described 
by contingent equations by Yorke [5] (see also [6]) and by Bebernes and 
Schuur [7]. In [4], where in the main, problems of weak invariance and 
stability of ordinary differential equations were investigated, Yorke also gave 
a sufficient (but not necessary) condition for positive weak invariance of a 
closed set X C Rn relative to control system (1.2). Bebernes and Schuur [7] 
gave a necessary and sufficient condition for positive weak invariance of 
contingent systems based on a theorem of Nagumo [8], which was also a 
principal tool in [4]. 

In the present paper we will be concerned with control system (1.2). We 
assume that B C R” is compact and wall positively weakly invariant sets 
weakly !&invariant to emphasize the dependence of this property on the 
restraint set Q. We focus our primary attention on weak Q-invariance of 
compact convex sets XC R”. 

The paper is organized as follows: In Section 2 we define the concepts of 
weak P-subtangentiality and strict weak Lhubtangentiality of a map f to a 
compact convex subset XC Rn and characterize some properties of such 
maps. In Section 3 we prove a necessary and sufficient condition for a compact 
convex subset XC Rn to be weakly Q-invariant (Theorem 3.2). It is also 
shown that under certain conditions a weakly Q-invariant set contains an 
Q-rest point, i.e., a point x0 E X such that f (x,, , u,,) = 0 for some ua E Q 
(Theorem 3.3). The paper is concluded in Section 4, where some properties 
of weakly Q-invariant sets for systems with linear dynamics are investigated. 

2. PRELIMINARIES 

For a nonempty subset X C Rn we denote by ax, into, X, and H(X) its 
boundary, interior, closure, and convex hull, respectively. If X is compact and 
convex, we also denote, respectively, by G(X) and rb(X) its relative interior 
and relative boundary. We let ,D denote the empty set. We denote the Eucli- 
dean norm and inner product in R” by 11 /j and (., .>, respectively, and let 
B L {w E R” 1 11 v I/ = l}. 
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Consider a compact and convex set XC R”. For N E %X, let 

denote the set of unit outward normals to X at .r. A point Y E 8X is called 
regular if I,, is a single vector (denoted zjs), and a compact convex set X is 
called smooth if all its boundary points are regular. For Xcompact and convex 
and any 3’ E R’” we denote by Px(y) the projection ofy on X; i.e., P,&v) is the 
unique closest point of X to J. 

For s E R” and a number E > 0 we let J;(r) & \‘J E R” / /i y - .T 11 < c)-. 
Similarly, for a subset XC R” we let S,(X) 2 usGx S,(x) and denote by X6 
its closure. 

It is readily verified (see also [9, lo]) that if X C Rn is compact and convex, 
then X6 is compact, convex, and smooth for each E > 0. Moreover, given 
3’ E PA-< ) then 3’ - Px(>r) = EQ and vV E I-,,x(l,) . 

We will later also need the following 

LEhrn1.a 2.1. Let X C R” be compact and convex. Then the map L’ of 3.X 
into closed subsets of B dejined by r(x) = Vz is upper-semicontinuous. 

Proof. Assume the lemma is false and that I’is not upper-semicontinuous 
at some .~s E ax. Then for some e0 > 0 (see, e.g., [I 11) there is a sequence 
(S,}, ai > 0, ai -+ 0 and associated sequences (.vJ and {vi} such that 
.Y~ E S,i(.vJ n 8X, wi E VZi , zli $ S,& IT*.,,), and vi - v,, E B (the latter con- 
vergence being due to the compactness of B). Since &( V,@) is open, it follows 
that z+, $ SJ VxO). Hence in view of the convexity of X and the continuity of 
the inner product function, the set W, = (x E X j (vp , x - xr,> > O]- is 
nonempty for sufficiently large k, a contradiction since vl; E VZk . 1 

Let X C R” be compact and convex. We call a vector z E Rn subtangentiul 
(strictlJI subtangential) to X at x E iix’ if (a, z> < 0 (< 0) for all a E VZ . 
Similarly, a map f: R” >< R”” -+ RR” is called wea& (strictly we&y) Q-sub- 
tangential to X at .Y E 8X (relative to a given subset Q C R7’“) if there exists 
u E Q such that f (x, u) is subtangential (strictly subtangential) to X at s. f is 
called weahZy (strictl?, weahZy) Q-subtangential to S provided the condition 
holds for each x E aX. 

In view of Lemma 2.1 we can also characterize strict weak G-sub- 
tangentiality as follows. 

Lmrnw 2.2. Assume X C R” is compact and convex and that the following 
conditions hold. 

(A,) f (x, u) is continuous in both arguments and is continuously d;f- 
ferentiable irl x. 

(ilp) Q C R7” is nonempty and compact. 
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Then f is strictly weakly B-subtangential to X if and only if for some 01~ <O there 
e,xists for each x E aX a u E Q satisfying (et, f (x, u)) < OL,, for all v E k’, . 

Proof. Sufficiency is obvious. To prove necessity, define the real function 
g on 8X by 

By hypothesis, g(x) < 0 for each x E ax. In view of Lemma 2.1 it is readily 
verified [ll, pp. 113-1161 that g is an upper-semicontinuous function and 
hence attains a maximum 010 < 0 on the compact set ax. 1 

We conclude this section with the following approximation result. 

LEMMA 2.3. Assume (A,) and (AJ hold and that f is weakly Q-subtangential 
to a compact convex subset X C R”. Then, given any 01 > 0, there exists E(E) > 0 
such that for any E, 0 < E < c(a), and each x E ax, , there exists a u E Q 
satisfying (v, , f (x, u)) < a. 

Proof. If the lemma is false then for some 0~s > 0 there exists a sequence 
{Ed}, l i > 0, Ei+ 0 and an associated sequence {xi}, xt E aXEi such that 
(v,, ,f(.ri , u)> > ~1s for all u E 52. Denoting ~7~ = Px(x,) E ax, it is clear 
tha; // xi - yi // = ei and for some subsequence (i’} of {i}, xi’ + x* E aX and 
Wm., - v* E vz*, the latter convergence being due to the upper-semi- 
co’ntinuity of V and the fact that v,, E VV, for all i. Hence, since f is continuous, 
we conclude that iv*, f(x*, u)> g u,, > 0 for all u E Uo , violating the weak 
Q-subtangentiality off to X. \ 

3. WEAK !2-INVARIANCE 

We consider system (1.2) and will assume throughout that conditions (AJ 
and (AJ (of Lemma 2.2) hold. We will denote both vectors in Q and functions 
in Uo by u, the meaning always being clear from the context. Conditions (Al) 
and (AJ guarantee that for any compact set XC Rn and any E > 0 there exists 
T > 0 such that the following holds: Given any x,, E X and any u E Uo, 
there exists a unique solution x(t) = +(t, 0, x0 , u) on [0, T] to (1.2) (satisfying 
x(0) = x,,), and x(t) E X, for all t E [0, T]. 

We will also need the following condition. 

(AJ For each x E Rn the velocity set f(x, Sz) & {f (x, u) 1 u E Q> is con- 
vex. 

For each x E Rn and t >, 0 we denote by F*(x, t) the reachable set from x 
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in time t, that is F&J, t) = u {4(t, 0, 3c, U) 1 II E Vol. For a compact subset 
XCR” and E>O we define 

T(X, c) = sup(T 1 Fo(.r, t) E x,; x E X, 0 < t < T}. 

We then have the following variant of a well-known theorem due to 
Fillipov [12] (see also [13, 14]), which will be required in the sequel. 

THEOREM 3.1. Let XC Rn be compact and assume (AI)- hold. Then 

(i) For each E > 0 and T < T(X, E), the map (x, t) t+ F&x, t) is a 
Housdorff continuous map of X x [0, T] into closed subsets of Xc . 

(ii) For any E > 0 and T < T(X, c) let {xi(t)}, xi(t) = $(t, 0, xi , IQ), 
xi E X, ui E U, be a sequence of solutions to (1.2) on [0, T]. Then there is a 
un$nmZy conwergent subsequence {x,(t)} (on [0, T]) of {xi(t)} with limit x(t), 
where x(t) is a solution to (1.2) for some u E LJ, . 

DEFINITION. A subset XC Rn is called weakly Q-invariant (strictly 
weakly SZ-inwariant) relative to system (1.2) if for each x0 E X there exists a 
control u E Uo such that 

x(t) = $(t, 0, x0, u) E X(int(X)) for all t > 0. 

The following sufficient condition for strict weak O-invariance will be used 
below to prove the main necessary and sufficient condition for weak Q-invar- 
iance (Theorem 3.2). 

LEMMA 3.1. Assume (A,) and (A,) hold, and let XC R” be compact and 
convex. If f is strictly weakly O-subtangential to X, then X is strictti weakly 
O-invariant. 

Proof. First note that X has nonempty interior. Indeed, if int(X) = 5, 
then X C .P’ for some hyperplane 9 C R”. But then for some ZI E B, both z, 
and --z, are in V, for each N E X and strict weak Q-subtangentiality is 
violated. 

For x,, E aX choose (as in Lemma 2.2) u,, E Q such that 

<a, f (x0 9 u& G 010 < 0 for all w E VzO . 

Applying as control the constant function u(t) = u0 , it is readily verified that 

at, 0 , “v,, , uo) E int(X) for t > 0 sufficiently small. Hence, if X is not strictly 
weakly O-invariant there is some x0 E int(X) such that for each u E Uo there 
exists t(u) > 0 such that x8(~) = +(t(u), 0, x0 , u) E ax, #(t, 0, 3c0 , U) E int(X) 
for 0 < t < t(u) and sup{t(u) 1 u E Uo} = t* < co. Consider any sequence 
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@ii’;,“i E U,, $4 - t*. B y compactness of aX we may assume that 
z + x* E ax. For any 0 < h < t(q) let 

#(Ui 3 4 2 [X&i) - 4(W - h, 0, x0, %)1/h. 

By convexity of X, (et, #(ui , h)) > 0 for all v E V,+Ul) . Letting i -+ 00 and 
h -+ 0, it is easily verified that f is not strictly weakly Q-subtangential to X 
at x*. 1 

THEOREM 3.2. Let XC Rn be compact and convex and assume (A,) and 
(A,) hold. A necessar)’ condition for weak Q-invariance of X is that f be weakly 
Q-subtangential to X. If (AJ also holds, the condition is also suficient. 

Proof. Necessity. Choose any x0 E 8X and let u. E U, satisfy 
CO, 0, x o , uo) E X for all t > 0. Clearly, for any t > 0 we have 

<v, [$J@, 0, x0 , uf)) - .~,I/0 9 0 for all v E VT. . 

Letting t --f 0, we readily conclude the existence of u* E .Q such that 
<v,f(xo 3 u*)) <Ofor allzlEVZO. Hence f is weakly S2-subtangential to X. 

SuJiciency. Consider a convergent sequence {a~}, (Y~ > 0, 01~ -+ 0. By 
Lemma 2.3 there exists an associated sequence {Q}, ci > 0, E< + 0 such that 
for each i = 1, 2,... and 0 < E < ei there exists for x E ax, a vector u E Q 
satisfying <a, , f (x, u)j < oli . Let /li & {w E R” 1 11 w [/ < 2or,} and consider 
the system 

* = g(x, 11, w) ii f (x, u) + w, w 

where u E lJ, and w E WA, (W,. being the set of measurable functions 
w: [0, 03) -+ (li). Clearly, for each I, g is strictly weakly Q x /l,-subtangential 
to xc* 3 and hence (by Lemma 3.1) XEi is strictly weakly Q x &invariant. 

Let x0 be any point of X and for each i = 1, 2,... let (ui , wi) E U, x WA, 
be a control pair such that the corresponding solution xi(t) to (‘9) satisfies 
xi(O) = x0 and xi(t) E Xci for all t 3 0. Choose 0 < T < T(X, EJ arbitrarily. 
Since XE, C Xck and WA, C WA, for all j > k, conditions (A1)-(A3) imply (in 
view of Theorem 3.1) that there is a uniformly convergent subsequence 
{q,(t)} on [0, T] to a function x(t), which is clearly a solution to (1.2) for 
some u E U, and which satisfies x(t) E X for all 0 < t < T. Using the above 
convergence argument repeatedly, weak Q-invariance follows. m 

Remark 3.1. In [4] Yorke gave a sufficient condition for weak invariance 
(in a control system) that in the present setting can be stated as follows. 

Consider system (1.2), assume (A,) holds, and let XC R” be compact and 
conzlex. If there is a continuous map w: X -+ Q such that f (x, w(x)) is subtan- 
gential to X at each x E i3X, then X is weakly Q-invariant. 
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Although this condition is not easily verifiable, we mention it here since 
it is independent of Theorem 3.2 in that the convexity off(x, Q) (and even the 
compactness of Q) is not required. It is worth noting, however, that this 
sufficient condition is not necessary in general, as the following simple 
example illustrates: Let f(~, U) = x + u, let X = [0, +] and Q = {- 1, Oj. 
X is clearly weakly Q-invariant, but since J2 consists of only two points, 
subtangentiality cannot be satisfied by a continuous U. 

Remark 3.2. Although in the present paper we are concerned with weak 
Q-invariance of convex sets, it should be noted that Theorem 3.2 could be 
generalized to sets that are not necessarily convex. Such a generalization 
could be obtained by using the same approximation approach as was used 
to prove Theorem 3.2 after suitable modification of the concepts of sub- 
tangentiality and strict subtangentiality. The generalization could also be 
obtained by applying Fillipov’s theorem on measurable selection [12] to 
Theorem 2 of [7] (see also [5]) or by combining Roxin’s results on generalized 
dynamical systems [2, 151 with Fillipov’s theorem. 

An important question that arises in connection with weakly Q-invariant 
sets X is that of existence of points x E X at, or near, which it is possible to 
maintain the state by means of controls in co . 

DEFINITION. Consider system (1.2) with restraint set Q C Rm. A point 
.v,, E X is called an S2-rest point if there exist 21s E J2 such that f(xa , us) = 0. 
A point x,, E X is called an Q-stationary point if for any E > 0 there exists an 
open subset C(E) satisfying x0 E C(E) C &(x0) and X n C(E) is weakly Q-invar- 
iant. 

Remark 3.3. One should note that in general an D-stationary point need 
not be an Q-rest point nor need an Q-rest point be Q-stationary. 

The following theorem provides a sufficient condition for the existence of 
rest points in a weakly Q-invariant set. 

THEOREM 3.3. Consider sjutem (1.2) and assume (Ai)- hold. If a 
compact convex set X C Rn is weakly Q-invariant, it contains an Q-rest point. 

Proof. For each t > 0 and x E X, weak O-invariance implies that 
F&x, t) n X # %. With the aid of Theorem 3.1, it can be seen that for 
t > 0 sufficiently small, the map x ++ G,(x) A H(Fo(x, t)) n X is an upper- 
semicontinuous map of X into the set of nonempty closed convex subsets 
of itself. Hence, by Kakutani’s fixed point theorem [16] there exists xt E X 
such that xt E G,(x,). For any sequence {tj}, tj > 0, tj + 0 let {xi} be an 
associated sequence such that xi E Gfi(x,). By compactness of X we can 
assume that {xi} converges to a limit x* E X that we claim to be an Q-rest 
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point. Indeed, if 0 $f(x*, Q) then in view of (A,)-(A,) there exist w E B and 
01 < 0 such that (v,f(x*, u)) < OL for all u E Q. Hence, for some E > 0 and 
each .1c E &(x*), (~,f(x, u)) < 0 f or all u E Sz. But then it is readily verified 
that there exists t > 0 such that for x E S&.Y*), .Y 6 H(F,(x, T)) for all 
0 < 7 < t, a contradiction. 1 

4. LINEAR DYNAMICS AND CONSTRAINED REACHABILITY 

We conclude the paper with an investigation of some properties of weakly 
Q-invariant sets for systems with linear dynamics, i.e., 

3i=f(X,U)=Ax+Bu, (4.1) 

where A and B are constant real matrices. In this case assumption (A,) is 
always satisfied and assumption (A,) holds whenever 52 is convex. Moreover, 
we also have the following well-known lemma (see, e.g., [13]). 

LEMMA 4.1. Consider system (4.1) and assume Q C Rm is compact. Then for 
each x E Rn and each t > 0, F,(x, t) = FH&x, t). 

DEFINITION. A subset XC R” is called approximately weakly Q-invariant 
relative to system (1.2) if given any E > 0 there exists for each x E X a control 
u E Uo such that 4(t, 0, x, u) E X, for all t > 0. 

In view of Lemma 4.1 we then have the following. 

THEOREM 4.1. Consider system (4.1) and let XC Rn and Q C R” both be 
compact. Then X is approximately weakly Q-invariant if and only if X is 
weakly H(Q)-invariant. 

Proof. That approximate weak Q-invariance of X implies weak H(Q)- 
invariance is immediate from Theorem 3.1. Conversely, assume that X is 
weakly H(Q)-invariant. Then by Lemma 4.1, for any x E X and t > 0, 
Fo(x, t) n X # 0. Hence given any x E X and any strictly increasing 
sequence of positive numbers {t<}, there exists a control u E Uo such that 
+(ti , 0, x, u) E X for all i = 1, 2 ,.... Choosing E > 0 arbitrarily and setting 
t, = ti - timl - T (i = 2, 3 ,... ), where 0 < T < T(X, E), then implies that 
$(t, 0, 3c, u) E X, for all t > 0, and the proof is complete. 1 

Remark 4.1. One should observe that while weak H(Q)-invariance implies 
approximate weak Q-invariance, it does not imply weak Q-invariance. 

Below we will need the following notation. Let C C R” be a nonempty 
compact and convex subset and let c,, be a given point of C. For any given 
h 3 0 we denote hC(c,) A ((1 - h) c,, + Xc 1 c E C> and for any point c E C 
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we let ye,(r 1 C) 2 inf(h > 0 1 c E hC(c,)}. Clearly, for 0 < h 6 1, hC(c,) C C, 
and O<yJcIC)<l for all CEC. If c,~ri(C), then for O<X<l, 
r+K’(c,)J # O, and for any 0 < A, < h, < 1, 

co E Yi(h,C(C,)) c Yi(h,C(C,) c Ii(C). 

Moreover, given c E C and setting h, r= yc,(c j C), it follows that c E rb(h,C(c,,)). 
Consider now system (4.1) and assume that both XC Rn and 52 C R” 

are compact and convex. Assume f = A.z + Bu is weakly L?-subtangential 
to X. Then X is weakly Q-invariant and hence contains an Q-rest point x,, . 
It is readily verified that for 0 < h < 1, f is then also weakly WZ(u,)-sub- 
tangential to hX(x,), where us E 52 satisfies Ax, + Bu, = 0. Since hQ(u,) C Sz, 
it follows thatf is also weakly Q-subtangential to hX(.v,,). A similar conclusion 
holds for strict weak Q-subtangentiality relative to Q-rest points ‘r,, E int(X). 
In view of the above we can thus state the following. 

THEOREM 4.2. Consider system (4. l), let X C Rn be compact and convex, 
and let Q C R* be compact. If X is approximateb weakly Q-invariant and 
x,, E X is any H(Q)-rest point, then for any 0 < /\ < 1 the set xX(x,,) is also 
approximately weakly S-invariant. 

Proof. If X is approximately weakly Q-invariant, then it is weakly 
H(Q)-invariant, so that f is weakly H(Q) -subtangential to X and hence also to 
hx(x,). Consequently Xx(x,) is weakly H(Q)-invariant and by Theorem 4.1 
it is approximately weakly Q-invariant. 1 

COROLLARY 4.1. Consider system (4. l), assume X C Rn is compact and 
convex and Q C R’n is compact. Assume in addition that int(X) # .@ and that 
some x0 E int(X) is a H(Q)- rest point of X. If X is approximately weakly 
Q-invariant, then int(X) is weakly Q-invariant and x,, is an Q-stationary point. 

Proof. For each x E int(X), X, g yz,(x 1 X) < 1 so that &Y(jr,) C int(X). 
Hence for some E > 0 we have [&X(x,,)], C int(X), and since x E a(hJ(x,,)), 
the approximate weak Q-invariance of X&(J~,) establishes that int(X) is 
weakly Q-invariant. By the same argument we conclude that for each 
0 < h < 1 the set int(hX(x,)) is weakly Q-invariant so that .r,, is an Q-station- 
ary point. 1 

We established certain conditions for weakly Q-invariant sets X to contain 
Q-rest points and Q-stationary points. It is interesting to find conditions 
under which such points can be reached or even approached in finite time 
from arbitrary points in X via trajectories that are wholly contained in X. 
Below in Theorem 4.3 we give a partial answer to these questions. 
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DEFINITION. Let XC Rn be weakly Q-invariant. An Q-rest point (or an 
Q-stationary point) SZ E X is called weakly reachable in X if given any x E X 
and E > 0 there exists u E U, and 0 < t, < co such that 

x(t) = c&, 0, x, u) E x for all t > 0 

and x(t) E S,( f ) f or all t > t, . f is said to be reachable in X if given any x E X 
there exists 0 < t, < co and a control u E U, such that 

x(t) = $(t, 0, x, u) E x for all t > 0 and x(tl) = 32. 

THEOREM 4.3. Consider system (4.1), let DC R’” be compact, let XC Rn 
be compact, convex, and weakly Q-invariant. Assume that int(H(s2)) # O, 
int(X) # (2;) and f = Ax + Bu is strictly weakly Q-subtangential to X. Then 

(i) Every Q-stationary point 2 E int(X) is weakly reachable in X. 
(ii) If rank[B, AB,..., An-lB] = n, then every Q-stationary point 

2 E int(X) such that A2 + Bti = 0 for some 6 E int(H(Q)) is reachable in X. 

Proof. First note that strict weak Q-subtangentiality off implies that X 
is strictly weakly Q-invariant. Upon combining this fact with Lemma 4.1 
(which implies trajectory approximation), we conclude the theorem holds 
for controls in Uo whenever it holds for controls in UHcn) . Hence we will 
assume that Q is convex. 

(i) For each x E X let h, = yr,(x / X). If x # x,,, then 0 < h, < 1 and 
&X(X,,) is also strictly weakly Q-invariant. Let U,(x) denote the subset of U, 
for which u E U,(x) implies that Xm(t,,,,r,zl) < X6(t,,0,z,u~ whenever t, 3 tl . 
Clearly, Un(x) # o for all .Y E X. If x,, is not weakly reachable, then for ^ 
some 5Z E X inf,,u,&l im,,, hm(t,o,a,$J = X > 0. But then one readily 
concludes that /iX(q,) is not strictly weakly Q-invariant, a contradiction. 

(ii) Follows immediately upon combining (i) with the well-known 
result on local controllability [13, Corollary 2, p. 841. 1 
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