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a b s t r a c t

The phenomenon of backward bifurcation in disease transmission models, where a stable
endemic equilibrium co-exists with a stable disease-free equilibrium when the associated
reproduction number is less than unity, has been observed in a number of disease
transmission models. The epidemiological consequence of backward bifurcation is that
the classical requirement of the reproduction number being less than unity becomes
only a necessary, but not sufficient, for disease elimination (hence, the presence of this
phenomenon in the transmission dynamics of a disease makes its effective control in the
community difficult). This paper addresses the problem of finding the causes of backward
bifurcation in some standard deterministicmodels for the spread of some emerging and re-
emerging diseases (it contains a brief review of some common causes, as well as some new
causes, of backward bifurcation in some standard disease transmissionmodels). It is shown
that, in addition to the usual causes (such as the use of imperfect vaccine and exogenous
re-infection in TB disease), a number of other biological or epidemiological mechanisms,
such as vaccine-derived immunitywaning at a slower rate than natural immunity, disease-
inducedmortality in vector-borne diseases and differential susceptibility in risk-structured
models, could also cause backward bifurcation in disease transmission models.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of compartmental models for disease transmission is often characterized by the basic reproduction number,
denoted by R0. The threshold quantity (R0) measures the average number of new cases generated by a typical infected
individual introduced into a completely susceptible population [1–3]. Typically, when R0 is less than unity, a small influx
of infected individuals will not generate large outbreaks, and the disease dies out in time (in this case, the corresponding
disease-free equilibrium (DFE) is asymptotically-stable). On the other hand, the disease will persist if R0 exceeds unity,
where a stable endemic equilibrium exists. This phenomenon, where the disease-free equilibrium loses its stability and a
stable endemic equilibrium appears as R0 increases through one, is known as forward bifurcation [4–8]. Some of the main
characteristics of forward bifurcation are [6]:

(i) the absence of positive (endemic) equilibria near the DFE when R0 < 1 (in this setting, the DFE is often the only
equilibrium when R0 < 1);

(ii) a low level of endemicity when R0 is slightly above unity.

The forward bifurcation phenomenon, first noted by Kermack and McKendrick [7], has been observed in numerous disease
transmission models [6,3]. For models that exhibit forward bifurcation, the requirement R0 < 1 is necessary and sufficient
for disease elimination. A schematic diagram of forward bifurcation is given in Fig. 1.
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Fig. 1. Forward bifurcation.
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Fig. 2. Backward bifurcation.

Othermodels for disease transmission undergo another type of bifurcation, knownas backward bifurcation, where a stable
endemic equilibrium co-exists with a stable DFE when R0 < 1. The epidemiological implication of backward bifurcation
is that the requirement R0 < 1, while necessary, is not sufficient for effective disease control. In a backward bifurcation
setting, once R0 crosses unity, the disease can invade to a relatively high endemic level. In this case, decreasing R0 to its
former level will not necessarily make the disease disappear [6]. A schematic diagram of backward bifurcation is depicted in
Fig. 2. The common causes of backward bifurcation in disease transmission models are the use of an imperfect vaccine (see,
for instance, [9–12,8]) and exogenous re-infection in the transmission dynamics ofmycobacterium tuberculosis (TB) [13–17].
Backward bifurcation has also been observed in other models for disease dynamics, such as those for behavioral responses
to perceived risks [18], multi-groups [4,5], treatment [19], resistance mechanisms and structured acquired immunity
[20,21] and in-host dynamics of HTLV-I [22], public health education campaigns against the spread of HIV/AIDS
[23,24].

The aim of this study is two-fold. The first is to provide a short review of some of the common mechanisms (biological,
epidemiological, social etc.) that cause the phenomenon of backward bifurcation in disease transmissionmodels. The second
is to determine some newmechanisms that cause this phenomenon. To achieve this aim, a number of standard deterministic
models (which use standard incidence and variable population size) for the spread of some emerging and re-emerging
diseases will be considered. The paper contains a summary of some established results (based largely on some of our
previously published results on models that exhibit backward bifurcation) and some new results.
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Table 1
Description of variables and parameters of the TB model (1).

Variable Description

S(t) Population of susceptible individuals
L(t) Population of newly-infected individuals with latent TB
T (t) Population of infected individuals with active TB
WT (t) Population of treated individuals

Parameter Description

Π Recruitment rate into the population
µ Natural death rate
β Effective contact rate
α Progression rate to active TB of individuals with latent TB
ρ Progression rate to latent TB of treated individuals
ηT Modification parameter for reduction of infectiousness of treated individuals in comparison to untreated infectious individuals
ηr Probability of (exogenous) re-infection of latently-infected individuals
f Fraction of newly-infected individuals with latent TB (slow progressors)
1 − f Fraction of newly-infected individuals with active TB (fast progressors)
τ Treatment rate
δ Disease-induced death rate

2. Common sources of backward bifurcation

2.1. Exogenous re-infection in TB transmission disease

Consider the following model for the transmission dynamics of TB (see [25])

dS
dt

= Π − β
(T + ηTWT )

N
S − µS,

dL
dt

= f β
(T + ηTWT )

N
S + ρWT − ηRβ

(T + ηTWT )

N
L − (α + µ)L,

dT
dt

= (1 − f )β
(T + ηTWT )

N
S + ηRβ

(T + ηTWT )

N
L + αL − (τ + µ+ δ)T ,

dWT

dt
= τT − (ρ + µ)WT , N(t) = S(t)+ L(t)+ T (t)+ W (t),

(1)

where the associated variables and parameters are described in Table 1.
The model (1) has a disease-free equilibrium (DFE) given by

E0T = (S∗, L∗, T ∗,W ∗

T ) = (Π/µ, 0, 0, 0).

Furthermore, the associated reproduction number [26,1,3,27] of the model is given by

RT =
β[α + µ(1 − f )](ρ + µ+ ηT τ)

µ(ρ + α + µ)(τ + µ+ δ)+ αρ(µ+ δ)
. (2)

Let β∗ be the bifurcation parameter (obtained by settingRT = 1 and solving for β). Consider the associated invariant region
for the model

DT = {(S, L, T ,WT ) ∈ R4
+

: S + L + T + WT ≤ Π/µ}.

The following result can be established using center manifold theory (in particular, using Theorem 4.1 in [14] given in
Appendix A) [6,11,25,27].

Theorem 1. The model (1) undergoes backward bifurcation at RT = 1 if

ηR > (1 − f )

1 +

(α + µ)(ρ + τ + µ)

f β∗(ρ + µ+ τηT )+ τρ


.

It should be mentioned that the backward bifurcation of the model (1) persists even when the disease-induced mortality
rate (δ) is set to zero (the consequence of setting δ = 0 is that the total population becomes N = Π/µ, a constant, as
t → ∞; and the resulting limiting system, with N = Π/µ, has a mass action incidence). In other words, unlike in some
other models for disease transmission (see, for instance, themodels considered in [8]), substituting standard incidence with
mass action incidence does not remove the backward bifurcation property of the model (1).
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Table 2
Description of variables and parameters of the vaccination model (3).

Variable Description

S(t) Population of unvaccinated susceptible individuals
V (t) Population of vaccinated susceptible individuals
I(t) Population of unvaccinated infected individuals
W (t) Population of vaccinated infected individuals (breakthrough infections)
R(t) Population of recovered individuals

Parameter Description

Π Rate of recruitment into the susceptible population
β Transmission rate
φ Fraction of newly recruited susceptible individuals vaccinated (cohort vaccination)
1 − ψ Degree of protection (0 < ψ ≤ 1) for vaccinated susceptible individuals
ωv Waning rate of vaccine
ωr Rate of loss of infection-acquired (natural) immunity
σu Recovery rate for unvaccinated infected individuals
µ Natural death rate

2.1.1. Non-existence of backward bifurcation
It is clear from Theorem 1 that the backward bifurcation phenomenon will not occur if there is no re-infection (i.e.,

ηR = 0), since the right-hand side of the inequality in Theorem1 is non-negative. To further confirm the absence of backward
bifurcation in the model (1) when re-infection does not occur (i.e., ηR = 0), the following global-asymptotic stability result
is given for the DFE of the model for the case when ηR = 0 (the proof, based on using a Lyapunov function, is given in
Appendix B).

Theorem 2. Consider the TB model (1) with ηR = 0. The DFE, E0T , is globally-asymptotically stable (GAS) in DT if RT ≤ 1.

2.2. Models with imperfect vaccine

Consider the SVIRS vaccination model with waning vaccine-induced (ωv) and natural (ωr) immunity [11]:

dS
dt

= Π(1 − φ)+ ωvV + ωrR −
βI
N

S − µS,

dV
dt

= Πφ − (1 − ψ)
βI
N

V − (ωv + µ)V ,

dI
dt

=
βI
N

S + (1 − ψ)
βI
N

V − (σu + µ)I,

dR
dt

= σuI − (ωr + µ)R,

(3)

where the associated variables and parameters are tabulated in Table 2.
Define:

Rv = R0


1 −

µφψ

ωv + µ


, with R0 =

β

σu + µ
.

Following [11], the vaccine failure duration (VF ) and a critical vaccine failure duration (V C
F ) are defined, respectively, by

VF =
1 − ψ

µ+ ωv
, V C

F =
µ+ σu + ωr

(µ+ ωr)(µ+ σu)(R0 − 1)
.

The following results were established in [11].

Theorem 3. The vaccination model (3) exhibits backward bifurcation at Rv = 1 whenever

σuωr

(µ+ σu) (µ+ ωr)
> R0


1 −

µφψ

(µ+ ωv)


1 +

µ(1 − ψ)

(µ+ ωv)


.

Theorem 4. The vaccination model (3) does not undergo backward bifurcation at Rv = 1 if any of the following conditions hold:

(i) The vaccine offers perfect protection against break-through infection (i.e., ψ = 1)
(ii) Vaccine-derived immunity wanes faster than natural immunity (i.e., ωv ≥ ωr )
(iii) Vaccine failure duration does not exceed a certain critical value (i.e., VF ≤ V C

F ).
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Table 3
Description of variables and parameters of the dengue model (4).

Variable Parameter

SH (t) Population of susceptible humans
EH (t) Population of exposed humans
IH (t) Population of infectious humans
RH (t) Population of recovered humans

Parameter Interpretation

ΠH Recruitment rate of humans
ΠV Recruitment rate of mosquitoes
CVH Infection rate of humans
CHV Infection rate of mosquitoes
1
µH

Average lifespan of humans

1
µV

Average lifespan of mosquitoes
σH Progression rate from EH to IH class
σV Progression rate from EV to IV class
δH Disease-induced death rate for humans
δV Disease-induced death rate for mosquitoes
τH Recovery rate for humans
ηH , ηV Modification parameters

The imperfect nature of the vaccine is a well-known reason for the presence of backward bifurcation in vaccination
models (Case (i) of Theorem4 shows that if this imperfection is removed, then the phenomenon of backward bifurcationwill
not occur). Cases (ii) and (iii) of Theorem 4 are new additional sources of eliminating backward bifurcation in SIRS models
that incorporate an imperfect vaccine. It follows from Case (iii) that the backward bifurcation will disappear if infection
offers permanent immunity against e-infection (ωr = 0).

In summary, the SVIRS model (3) will not undergo backward bifurcation if any of the scenarios in Theorem 4 hold.

3. Other sources of backward bifurcation

In this section, other ‘‘un-common’’ sources of backward bifurcation will be discussed.

3.1. Models for vector-borne diseases

3.1.1. Dengue fever
Dengue is a mosquito-transmitted disease caused by any of four closely-related virus serotypes (DEN-1-4) of the genus

Flavivirus. Dengue, which ranks second to malaria among deadly mosquito-borne diseases (claiming over 100 million
infections and 20,000 deaths globally each year), is endemic in at least 100 countries in Africa, the Americas, the Eastern
Mediterranean and subtropical regions of the world, inhibited by over 2.5 billion people [29]. Dengue is transmitted to
humans throughmosquito bites. Femalemosquitoes (of the genus Aedes (Stegomyia)) acquire the infection by taking a blood
meal from an infected human (in the viremic phase of illness). These infected mosquitoes pass the disease to susceptible
humans.

Consider the following model for the transmission dynamics of dengue fever [29] (the associated variables and
parameters are described in Table 3)

dSH
dt

= ΠH −
CHV

NH
(ηVEV + IV )SH − µHSH ,

dEH
dt

=
CHV

NH
(ηVEV + IV )SH − (σH + µH)EH ,

dIH
dt

= σHEH − (τH + µH + δH)IH ,

dRH

dt
= τH IH − µHRH ,

dSV
dt

= ΠV −
CHV

NH
(ηHEH + IH)SV − µV SV ,

dEV
dt

=
CHV

NH
(ηHEH + IH)SV − (σV + µV )EV ,

dIV
dt

= σVEV − (µV + δV )IV .

(4)
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It should be mentioned that, in the formulation of the model (4), the conservation law of bites (i.e., the total number of bites
made by mosquitoes equals the total number of bites received by the human hosts) has been applied. The consequence of
the application of such law is that the infection rate for both humans and mosquitoes is normalized by the total human
population, NH(t) (see [29] for more details). The following result holds for the model (4).

Lemma 1. The closed set

Γ =


(SH , EH , IH , RH , SV , EV , IV ) ∈ R7

+
: SH + EH + IH + RH ≤

ΠH

µH
; SV + EV + IV ≤

ΠV

µV


is invariant for the dengue model (4).

It is convenient to define:

Rd =


C2
HVΠVµH(ηHQ2 + σH)(ηVQ4 + σV )

ΠHµVQ1Q2Q3Q4
,

where Q1 = σH + µH , Q2 = τH + µH + δH , Q3 = σV + µV and Q4 = µV + δV .
Garba et al. [29] proved the following result (the result in [29] was probably the first time backward bifurcation has been

established in the transmission dynamics of a vector-borne disease).

Theorem 5. The dengue model (4) undergoes backward bifurcation at Rd = 1 under certain conditions.

Consider next the model (4) in the absence of dengue-induced mortality in humans (i.e., δH = 0). With δH = 0, the total
human population becomes asymptotically constant (i.e., NH(t) → ΠH/µH as t → ∞) and the standard incidence model
(4) reduces to a mass action model. Furthermore, consider the following invariant region for the dengue model (4):

Γm = {(SH , EH , IH , RH , SV , EV , IV ) ∈ Γ : SH ≤ S∗

H , SV ≤ S∗

V }.

Define (where, now, Q2 = τH + µH ):

Rdm = Rd|δH=0 =


C2
HVΠHΠV (ηHQ2 + σH)(ηVQ4 + σV )

µHµVQ1Q2Q3Q4
.

The following result was proven in [29] (see also Appendix C for details):

Theorem 6. The DFE of the dengue model (4) with δH = 0 is GAS in Γm if Rdm ≤ 1.

Thus, the analyses in this section show that the backward bifurcation property of the dengue transmission model (4) is
caused by the dengue-induced mortality in humans (δH > 0). The backward bifurcation is removed if the dengue-induced
mortality is set to zero.

Niger and Gumel [30] also established the presence of backward bifurcation in the transmission dynamics of malaria
(using a repeated exposure model), another vector-borne disease, and showed that the phenomenon can be removed if the
disease-induced mortality in humans is zero.

3.1.2. West Nile virus
West Nile virus (WNV) is an arbovirus and a single-stranded RNA virus of the genus Flavivirus and the family Flaviviridae

first isolated in the West Nile district of Uganda in 1937. WNV is spread among humans and domestic animals (mainly
horses) by female mosquitoes that have fed from the blood of infected birds (in particular, by the principal vector Culex
[31]) with birds (primarily, crows and songbirds) as intermediate hosts. The virus has spread in Africa, Europe, the Middle
East, west and central Asia, Oceania and North America [31]. WNV is different from other mosquito-borne diseases, since it
involves a cross-infection between birds and mosquitoes (i.e., it involves the mosquito–bird–mosquito transmission cycle).

Consider the following model [31] for the transmission dynamics of WNV within the mosquito, bird and human
populations (the variables and parameters of the model are described in Table 4)

dMs

dt
= λM −

b1β1MsBi

NB
− µMMs,

dMi

dt
=

b1β1MsBi

NB
− µMMi,

dBs

dt
= λB −

b1β2MiBs

NB
− δBBs − µBBs,

dBi

dt
=

b1β2MiBs

NB
− dBBi − δBBi − µBBi,
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Table 4
Description of variables and parameters of the WNV model (5).

Variable Description

Ms Population of susceptible mosquitoes
Mi Population of infected mosquitoes
Bs Population of susceptible birds
Bi Population of infected birds
S Population of susceptible humans
E Population of exposed humans
I Population of infectious humans
H Population of hospitalized humans
R Population of recovered humans

Parameter Description

λB Recruitment rate of susceptible birds
λH Recruitment rate of susceptible humans
λM Recruitment rate of uninfected mosquitoes
1/µB Average lifespan of birds
1/µH Average lifespan of humans
1/µM Average lifespan of mosquitoes
b Average biting rate of mosquitoes
b1β1 Transmission rate from birds to mosquitoes
b1β2 Transmission rate from mosquitoes to birds
b2β3 Transmission rate from mosquitoes to humans
dB WNV-induced death rate of birds
dH WNV-induced death rate for humans
δB Migration rate of birds
1/α Incubation period in humans
δ Hospitalization rate of humans
r Recovery rate of infectious humans
τ Recovery rate of hospitalized humans

dS
dt

= λH −
b2β3MiS

NH
− µHS, (5)

dE
dt

=
b2β3MiS

NH
− αE − µHE,

dI
dt

= αE − δI − dI I − rI − µH I,

dH
dt

= δI − dHH − τH − µHH,

dR
dt

= τH + rI − µHR.

The total mosquito (NM), bird (NB) and human (NH) populations are given, respectively, by NM(t) = Ms(t) + Mi(t),
NB(t) = Bs(t) + Bi(t) and NH(t) = S(t) + E(t) + I(t) + H(t) + R(t). The biting rates (b1 and b2) are defined as (density-
dependent rates)

b1 =
bNB

NB + NH
and b2 =

bNH

NB + NH
.

The DFE of the model (5) is given by:

E0 = (M∗

s ,M
∗

i , B
∗

s , B
∗

i , S
∗, E∗, I∗,H∗, R∗) = (λM/µM , 0, λB/(µB + δB), 0, λH/µH , 0, 0, 0, 0).

Define:

Rw =
b

µMk2β1β2M∗

s B
∗

S

µMk2(B∗

S + S∗)
, (6)

where, k1 = µB + δB, k2 = µB + δB + dB, k3 = µH +α, k4 = δ+ dI + r +µH , k5 = τ +µH + dH . Blayneh et al. [31] proved
the following result.

Theorem 7. The WNV model (5) undergoes backward bifurcation at Rw = 1 under certain conditions.

Furthermore, it can be shown that the backward bifurcation property of the model disappears if the host mortality rates are
set to zero (i.e., δB = δH = 0). Jiang et al. [32] also established the presence of backward bifurcation in models for WNV that
consider the mosquito–bird–mosquito transmission cycle only.
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Table 5
Description of variables and parameters of the risk-structured model (7).

Variable Description

Sl(t) Population of low-risk susceptible individuals
Sh(t) Population of high-risk susceptible individuals
E(t) Population of exposed (latent) individuals
I(t) Population of infectious individuals

Parameter Description

Π Recruitment rate into the population (assumed susceptible)
f Fraction of recruited susceptible individuals who are high-risk
µ Natural death rate
β Effective contact rate
ψh Transition rate from high-risk to low-risk susceptible class
ψl Transition rate from low-risk to high-risk susceptible class
θh Modification parameter for assumed increased susceptibility of high-risk individuals
γ Recovery rate
δ Disease-induced death rate

In summary, the analyses in this section show that backward bifurcation arises in the transmission dynamics of vector-
borne diseases (notably dengue fever, malaria andWNV), and that such dynamic phenomenon can be removed if the host(s)
mortality rate(s) is set to zero.

3.2. Backward bifurcation in a risk-structured model

Consider the following risk-structured disease transmission model (where the susceptible individuals are stratified
according to their risk of acquiring infection):

dSl
dt

= (1 − f )Π + ψhSh − β
I
N
Sl − ψlSl − µSl,

dSh
dt

= fΠ + ψlSl − θhβ
I
N
Sh − ψhSh − µSh,

dE
dt

= β [Sl + θhSh]
I
N

− (σ + µ)E,

dI
dt

= σE − (γ + µ+ δ)I,

(7)

where the variables and parameters are described in Table 5.
The DFE of the risk-structured model (7) is given by

E0r : (S∗

l , S
∗

h , E
∗, I∗) =


(1 − f )Π + ψhS∗

h

µ+ ψl
,
Π [f (ψl + µ)+ ψl(1 − f )]

µ(µ+ ψl + ψh)
, 0, 0


,

and the associated reproduction number is given by (where N∗
= Π/µ)

Rr =
βσ(S∗

l + θhS∗

h )

N∗(σ + µ)(µ+ γ + δ)
.

It is convenient to define the following inequality (obtained from the application of center manifold theorem on the
system (7)):

(w1 + w3 + w4)S∗

h − w2S∗

l


θh < w1S∗

h − (w2 + w3 + w4)S∗

l , (8)

where,

w1 =
w2ψh(S∗

l + S∗

h )− βw4S∗

l

(ψl + µ)(S∗

l + S∗

h )
, w2 =

w1ψl(S∗

l + S∗

h )− βθhw4S∗

h

(ψh + µ)(S∗

l + S∗

h )
,

w3 = w3 > 0, w4 =
σw3

γ + µ+ δ
.

Theorem 8. The risk-structured model (7) undergoes backward bifurcation at Rr = 1 whenever inequality (8) holds.

It is worth noting that the inequality (8) will never hold if the high-risk susceptible individuals are equally likely to acquire
infection than low-risk susceptible individuals (i.e., θh = 1). Thus, the backward bifurcation property of the model (7) is
caused by the variability (heterogeneity) in susceptibility between the two susceptible risk groups. To further confirm the
above, global asymptotic stability of the DFE of the model (7) is given below for the special case with θh = 1 (the proof is
given in Appendix D).
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Theorem 9. The DFE of the risk-structured model (7) with θh = 1 is GAS whenever Rr ≤ 1.

In summary, the analyses in this section show that stratifying the susceptible population based on the risk (low or high)
of acquiring infection could induce the phenomenon of backward bifurcation (see also [28] for similar result associatedwith
the transmission dynamics of chlamydia trachomatis).

4. Conclusions

This paper identifies some epidemiological mechanisms that can induce the phenomenon of backward bifurcation in
standard Kermack–McKendrick type disease transmission models (that use standard incidence rate for the infection rate).
It is shown that backward bifurcation, which has significant consequences on the persistence or elimination of the disease
when the associated reproduction number of the model is less than unity, could arise due to mechanisms such as:

(1) Exogenous re-infection (of latently-infected individuals) in models for the spread of mycobacterium tuberculosis. Re-
infection, in general, causes backward bifurcation (see, for instance, [33,28] for the role of re-infection in the backward
bifurcation phenomenon observed in Chlamydia transmission dynamics);

(2) Vaccination. The main sources of backward bifurcation in vaccination models are (see also [11]):
(i) Imperfect vaccine efficacy against infection (i.e., vaccine does not offer 100% protection against infection in

vaccinated individuals);
(ii) Vaccine-derived immunity wanes at a slower rate than natural immunity;
(iii) Vaccine failure duration exceeds a certain critical value;

(3) Host(s) disease-induced mortality in models for the spread of vector-borne diseases (such as those associated with the
transmission dynamics of dengue fever, malaria and West Nile virus);

(4) Differential susceptibility in risk-structured disease transmission models.
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Appendix A. Backward bifurcation

Theorem 10 (Castillo-Chavez and Song [14]). Consider the following general system of ordinary differential equations with a
parameter φ

dx
dt

= f (x, φ), f : Rn
× R → R and f ∈ C2(Rn

× R), (9)

where 0 is an equilibrium point of the system (that is, f (0, φ) ≡ 0 for all φ) and assume

A1: A = Dxf (0, 0) =


∂ fi
∂xj
(0, 0)


is the linearization matrix of the system (9) around the equilibrium 0 with φ evaluated at 0.

Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;
A2: Matrix A has a right eigenvector w and a left eigenvector v (each corresponding to the zero eigenvalue).

Let fk be the kth component of f and

a =

n
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =

n
k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

The local dynamics of the system around 0 is totally determined by the signs of a and b.

i. a > 0, b > 0. When φ < 0 with |φ| ≪ 1, 0 is locally asymptotically stable and there exists a positive unstable equilibrium;
when 0 < φ ≪ 1, 0 is unstable and there exists a negative, locally asymptotically stable equilibrium;

ii. a < 0, b < 0. When φ < 0with |φ| ≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0 is locally asymptotically stable equilibrium, and
there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0with |φ| ≪ 1, 0 is unstable, and there exists a locally asymptotically stable negative equilibrium;
when 0 < φ ≪ 1, 0 is stable, and a positive unstable equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a
negative unstable equilibrium becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at φ = 0.
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Appendix B. Proof of Theorem 2

Proof. Consider the model (1) with ηR = 0. It is convenient to define k1 = α+µ, k2 = τ +µ+ δ and k3 = ρ +µ, so that
RT =

β(k3+ηT T )[k1(1−f )+f α]

k1k2k3−αρτ
. It is worth mentioning that k1k2k3 − αρτ = µ(ρ + α + µ)(τ + µ+ δ)+ αρ(µ+ δ) > 0.

Consider the Lyapunov function

V = α(k3 + ηT τ)L + k1(k3 + ηT τ)T + (ρα + ηTk1k2)WT ,

with Lyapunov derivative (where a dot represents differentiation with respect to t):

V̇ = α(k3 + ηT τ)L̇ + k1(k3 + ηT τ)Ṫ + (ρα + ηTk1k2)ẆT ,

= α(k3 + ηT τ)


f β(T + ηTWT )S

N
+ ρWT − k1L


+ k1(k3 + ηT τ)


β(1 − f )(T + ηTWT )S

N
+ αL − k2T


+ (ρα + ηTk1k2)(τT − k3WT ),

≤ α(k3 + ηT τ) [f β(T + ηTWT )+ ρWT − k1L] + k1(k3 + ηT τ) [β(1 − f )(T + ηTWT )+ αL − k2T ]
+ (ρα + ηTk1k2)(τT − k3WT ) since S ≤ N in DT ,

= (k1k2k3 − αρτ)(ηTWT + T )(RT − 1).

Thus, V̇ ≤ 0 if RT ≤ 1 with V̇ = 0 if and only if T = WT0. Substituting T = WT = 0 in (1) shows that L(t) → 0 as t → ∞

and S(t) → Π/µ as t → ∞. Further, the largest compact invariant set in {(S, L, T ,WT ) ∈ DT : V̇ = 0} is the singleton
E0T . It follows from the LaSalle’s Invariance Principle that every solution to the equations in (1) with ηR = 0 and initial
conditions in DT converge to the DFE E0T as t → ∞ whenever RT ≤ 1. That is, (S(t), L(t), T (t),WT (t)) → (Π/µ, 0, 0, 0)
as t → ∞. �

Appendix C. Proof of Theorem 6

Proof. The proof, given in [29], is based on using the Lyapunov function:

F = g1EH + g2IH + g3EV + g4IV ,

where,

g1 = ΠVµHQ4CHV (ηVQ4 + σV )(ηHQ2 + σH),

g2 = ΠVµHQ1Q4CHV (ηVQ4 + σV ),

g3 = µVµHQ1Q2Q4Rdm(ηVQ4 + σV ),

g4 = µVµHQ1Q2Q3Q4Rdm.

The Lyapunov derivative is given by

Ḟ = g1ĖH + g2 ˙IH + g3ĖV + g4 İV ,
= ΠVµHQ4CHV (ηHQ2 + σH)(ηVQ4 + σV )[CHV (ηVEV + IV )SH − Q1EH ]

+ΠVµHQ1Q4CHV (ηVQ4 + σV )(σHEH − Q2IH)
+µVµHQ1Q2Q4Rdm(ηVQ4 + σV )[CHV (ηHEH + IH)SV − Q3EV ]

+µVµHQ1Q2Q3Q4Rdm(σVEV − Q4IV ),
= µHQ1Q4CHV (ηVQ4 + σV )[−ΠV (ηHQ2 + σH)+ΠVσH + µVQ2ηHRdmSV ]EH

−µHQ1Q2Q4CHV (ηVQ4 + σV )[ΠV − µVRdmSV ]IH
+µH


ΠVC2

HVηVQ4(ηHQ2 + σH)(ηVQ4 + σV )SH + µVQ1Q2Q3Q4Rdm[σV − (ηVQ4 + σV )]

EV

+µHQ4[ΠVC2
HV (ηHQ2 + σH)(ηVQ4 + σV )SH − µVQ1Q2Q3Q4Rdm]IV ,

≤ ΠVµHηHQ1Q2Q4CHV (ηVQ4 + σV )(Rdm − 1)EH + µHΠVQ1Q2Q4CHV (ηVQ4 + σV )(Rdm − 1)IH
+µH


µVQ1Q2Q3ηVQ 2

4 (Rdm)
2
− µVQ1Q2Q3ηVQ 2

4 Rdm

EV

+µHQ4[µVQ1Q2Q3Q4(Rdm)
2
− µVQ1Q2Q3Q4Rdm]IV , since SH ≤ S∗

H and SV ≤ S∗

V ,

= ηHΠVµHCHVQ1Q2Q4(ηVQ4 + σV )(Rdm − 1)EH +ΠVµHCHVQ1Q2Q4(ηVQ4 + σV )(Rdm − 1)IH
+ ηVµVµHQ1Q2Q3Q 2

4 Rdm(Rdm − 1)EV + µVµHQ1Q2Q3Q 2
4 Rdm(Rdm − 1)IV ,

= µHQ1Q2Q4 [ΠVCHV (ηVQ4 + σV )(ηHEH + IH)+ µVQ3Q4Rdm(ηVEV + IV )] (Rdm − 1).
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Thus, Ḟ ≤ 0 if Rdm ≤ 1 with Ḟ = 0 if and only if EH = IH = EV = IV = 0. Further, the largest compact invariant set in

{(SV , EH , IH , RH , SV , EV , IV ) ∈ Γm : Ḟ = 0}

is the disease-free equilibrium for the model (4). The proof is completed as in the proof in Appendix B. �

Appendix D. Proof of Theorem 9

Proof. Consider the model (7) with θh = 1. It follows that S∗

l + S∗

h = N∗
= Π/µ. Further, consider the Lyapunov function

F =
σ

σ + µ
E + I,

with Lyapunov derivative:

Ḟ =
σ

σ + µ


β(Sl + Sh)

I
N

− (σ + µ)E


+ σE − (γ + µ+ δ)I,

≤
βσ

σ + µ
I − σE + σE − (γ + µ+ δ)I, since Sl + Sh ≤ N

=


βσ

(σ + µ)(γ + µ+ δ)
− 1


I,

= (Rr − 1)I ≤ 0 for Rr ≤ 1.

The proof is completed as in the proof in Appendix B. �
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